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ABSTRACT

An eigenvector (EV) method for the determination of directional spectra from heave, pitch and roll buoy
data is presented. Both a direct and an iterative form (based on an algorithm by Pawka) of this data-adaptive
procedure are developed. The direct form outperforms the Longuet-Higgins et al. method, the cosine spread
model and the maximum likelihood (ML) method for both simulated and real data. In the iterative form, the
iterative EV method is superior to the other methods tested, including the iterative ML method for unimodal
peaks when the noise-to-signal ratio is greater than 0.2 and for bimodal peaks at all noise levels. With real data,
the direct EV method produced errors within an 80% confidence zone of the data cross-spectral matrix within
the stopping criteria of Lawson and Long. Errors of the iterative EV and iterative ML methods were lower than
for both the direct EV and ML results and were about the same magnitude when compared to each other. The
iterative EV method, however, produced narrower, more sharply defined unimodal and bimodal spectra.

1. Introduction

For nearly twenty years, heave, pitch and roll buoys
have offered an attractive operational means to deter-
mine wave directional spectra. For a moderate cost,
the buoy can be deployed at a remote single location,
the wave information can be telemetered to recording
instruments and the results can be used to give time
series of the sea-surface directional spectra. Although
the mechanical configuration of the sensor may vary,
essentially one obtains estimates of the wave amplitude
and directional derivatives of the sea surface as a func-
tion of time. By far the most commonly used analysis
of the data was proposed by Longuet-Higgins et al.
(1963). Here the directional spectrum is expanded in
a Fourier series which is truncated at second order and
the coeflicients are fit to the elements of the cross-spec-
tral matrix of the amplitude and two slopes. This tech-
nique has several disadvantages. First, a direct appli-
cation of the method can result in negative spectral
energy densities. An arbitrary weighting function must
be applied to correct this deficiency and hence the re-
sulting spectrum is not unique. As Longuet-Higgins et
al. (1963) state: “Other weighting functions of course
are possible; which particular function one chooses is
to some extent a matter of taste.” Second, the resulting
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spectrum is broad-banded; consequently, waves from
two different directions at the same frequency cannot
be resolved. Another major approach is to select math-
ematical functions a priori to model the directional
distribution of wave energy. Prevalent among these is
the cosine-spread model in which the Longuet-Higgins
parameters are fit to a cosine function raised to a (vary-
ing) power, One is restricted here, however, to resolving
symmetric unidirectional distributions.

An alternative analysis is an inverse technique out-
lined by Lawson and Long (1983). It is an extension
of an iterative inverse technique designed for multiele-
ment arrays proposed in Long and Hasselmann (1979).
This approach does resolve two directions at the same
frequency (i.e. bimodal distributions) and implicitly
requires the calculation of the estimated error between
the model and directly measured cross-spectral matrix.
The resulting directional spectrum, however, is weakly
dependent on an a priori chosen favored direction dis-
tribution, and the iteration is quite complex to imple-
ment. Davis and Regier (1977) have described several
data adaptive techniques based on the maximum like-
lihood (ML) method for calculating the directional
spectra for arrays of wave detectors. Oltman-Shay and
Guza (1984) have proposed an iterative technique
based on the ML method that increases the directional
resolution of heave, pitch and roll buoys. In this paper,
we propose a generalized version of the ML technique
in which the data are partitioned into signal and noise
components determined by the eigenvalues of the cross-
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spectral matrix. The method is data adaptive, and in
its direct form gives a resolution superior to other direct
methods tested; for the majority of frequencies it also
produces errors in the estimated cross-spectral matrix
within the minimization criteria of Lawson and Long
(1983). The method is also adaptable to the iterative
scheme of Pawka et al. (1984), and in this form shows
superior resolution of bimodal spectra.

2. Theory

Let the measured wave amplitudes and slopes be
described as 7;(¢) where i = 1 is the vertical displace-
ment of the sea surface from the undisturbed state, /

.= 2 is the east slope positive up and i = 3 is the north
slope positive up. An estimate of the cross-spectral ma-
trix can be calculated as

; R .
O =5- [ (nlomc+pear ()

where (7;(t)n;(t + 7)) is the covariance between the ith
and jth data type at lag 7, and T is duration of the
sample. The caret indicates that the estimate of the
cross-spectrum results from a band-limited sampling.
A signal consisting of a plane wave of infinite duration
and wavenumber k traveling from a direction 6 can be
described by

g—l_ = Aﬂ,-ei["(" cosf+y sinB)—wl]( (2)

where 8 = (1, ik cosf, ik sinf) is commonly called the
look vector in acoustic beamforming theory. A mea-
surement will consist of a signal and a noise component

n=§ite 3)

where ¢; is the noise. The noise can arise from geo-
physical effects where the plane wave assumption is
not valid, from inherent instrument error, and from
statistical uncertainty due to sampling a finite quantity
of data. Furthermore, the power estimate at any par-
ticular direction may be affected by adjoining wave-
numbers due to spectral “leakage”.

For the maximum likelihood (ML) estimate, it is
assumed that an estimate of the heave amplitude can
be constructed from a linear combination of the data

elements )
S=2 vk 4
The directional spectrum is then given by
E@)=(hEE) =4*0n. (5)

Here, v is a vector of filter coefficients which when
applied to the input signal estimates, results in the true
amplitude signal. The asterisk (*) represents complex
conjugation and the brackets denote an ensemble av-
erage of a number of realizations of the spectral esti-
mate. If the signal consists purely of a plane wave with
no noise, Eq. (4) becomes
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Equation (5) is minimized subject to the constraint
that a pure plane wave signal be filtered with unit gain
[i.e. Eq. (6)] by Lagrange’s method of undetermined
multipliers. The result is

. ' 1

*O=Gra gy @
The development of the ML technique is standard.
Capon (1969) gives an extensive discussion of the tech-
nique in a geophysical context and describes the rela-
tionship of the method to the likelihood function.
Kanasewich (1981) describes the minimization pro-
cedure.

An eigenvector (EV) method has been proposed for
acoustic wave detection. It is assumed that the cross-
spectral matrix can be partitioned into noise and signal
components

Q=S8+N @®)
where $ is an estimate of the signal component of the
cross-spectral matrix and N is an estimate of the noise
component of the cross-spectral matrix. The directional
spectrum is again given by Eq. (5) subject to the con-
straint of Eq. (6). Now, however, only the estimate of
the noise component of the directional spectrum is
minimized viz

82 =v*Ny +A(v*8 — 1).

The result is A
_ N8
TN

which upon substitution into Eq. (5) gives a spectral

estimate of o :

B*N"!QN~'B
(B*N~'BY?

The partitioning of the noise and signal components
is achieved through the diagonalization of the cross-
spectral matrix. If there are 7 sensors, the p eigenvectors
corresponding to the largest eigenvalues are assumed
to span the signal while the n-p eigenvectors corre-
sponding to the n—p smallest eigenvalues are assumed
to span the noise of the process. The data cross-spectral
matrix is then partitioned as

E@0)= (10)

14 n
0i=ZNdie*+ 3 Auper*=S+N  (11)
=1 m=p+1

where A are the eigenvalues (A\; > A\, + * ) and ¢ are
the corresponding eigenvectors. Since the noise cross-
spectral matrix is orthogonal to the signal component,
Eq. (10) reduces to
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Johnson (1982) derives the EV technique different
principles and describes its relation to other acoustic
beamforming methods.

The partition between signal and noise is arbitrary.
If all the eigenvectors are assumed to span the noise
(p = 0), the eigenvector (EV) and maximum likelihood
(ML) estimates of the directional spectrum are iden-
tical. Hence the ML estimate can be considered to be
a subset of the EV method. In fact, for this paper the
ML-based calculations were computed using the EV
algorithm. For heave, pitch and roll buoys, we have
only three possible eigenvectors. If only the smallest
eigenvector is assumed to span the noise spurious peaks
are then introduced into the directional spectra. All
EV calculations in this paper use p = 1. The selection
of signal and noise components is more critical for
multicomponent arrays. Barrodale et al. (1985) offer
suggestions for determining a suitable partition in this
case.

Both the ML and EV techniques were initially in-
troduced as signal detectors. When the number of de-
tectors in the array is small, the results of Pawka (1983)
and Pawka et al. (1984) suggest that the ML underes-
timates the .actual spectral power density. The EV
method tends to compensate for the underestimation.
If the actual signal is a pure plane wave from a direction
o, then the eigenvector corresponding to the largest
eigenvalue will match the phase and amplitude rela-
tions of the wave [i.e., ¢! = B(8) = (1, ik cosby, ik
X sinfp)]. The other two eigenvectors will be orthogonal
to ¢'. As E(0) is evaluated at 6, then the denominator
of Eq. (12) will go to zero and the estimate of the spec-
tral power density will be infinite. Surface gravity waves,
however, have a finite directional spread and for all
cases calculated the estimated direction spectrum re-
mained finite. It is not essential that the spectral esti-
mation from Eq. (11) be exact, but rather that the rel-
ative amplitudes be correct from one direction to the
next. Both the EV and ML spectral estimates were nor-
malized to ensure that the power density was conserved:

21r
On(w)= A E(6)ds (13)

where Q);(w) is the estimated spectral power density
at frequency w.

Pawka (1983) has proposed an iterative technique
to improve the resolution of the ML directional esti-
mates. It has been adapted by Oltman-Shay and Guza
(1984) for application to pitch and roll type measure-
ments. Let E£‘(6) be a new spectral estimate at direction
8 found from ‘

E6)=E™'(6) + «(0).
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Pawka calculates the improvement as

E+1 i1
ei=|01| E™Y6) (14)
ay
where .
10T,
a=1.0 Eo(a) )

T1(6) is the ML spectrum calculated from the cross-
spectral matrix of E(f) and E°#) is the original ML
spectrum. The parameters ¢ and ¥ control the rate of
convergence and in accordance with Oltman-Shay and
Guza (1984), values of £ = 1.0 and ¥ = 20.0 were
chosen for this study and iteration was stopped after
50 improvements. The iterative algorithm is indepen-
dent of the form of calculation of the spectra and is
readily adapted to both the ML and EV calculations.
When iteration is performed on the ML spectral esti-
mates, the directional spectra will be referred to as the
IML spectra. Similarly, an iterated EV spectra will be
referred to as the IEV spectra.

3. Simulated data

Two sets of experiments on simulated spectra were
performed with the intention of determining the
strengths and weaknesses of the EV and IEV spectral
calculations. First, the EV technique was compared to
commonly used direct spectral-estimation techniques.
These include the ML, the Longuet-Higgins (1963)
(LH) method and a directional spectrum modeled as
a cosine spread (CS):

E@,f) = A(f) coszﬂ(”—_z—”") . (15)

A detailed discussion of the LH and CS approaches
will not be presented here, as numerous accounts ap-
pear in the literature. The coeflicients p and 6, of the
CS model can be determined from the LH coeflicients
as given in Hasselmann et al. (1980) as the 1M coef-
ficients. Long (1980) suggested that this representation
may not be appropriate over the frequencies of max-
imum spectral power density. Next, more detailed
simulations were made to compare the data-adaptive
calculations including the EV, ML, IEV and the IML
methods.

To conform to the analysis of Oltman-Shay and
Guza (1984), the simulations consisted of calculating
a directional spectrum of the form

2 0—6,)
E@)= > P, exp(—-(—z—az—)) + EM9) (16)

n=1

where Ex6) is the isotropic background noise in the
signal. The noise-to-signal ratio (NSR) is defined as

27
A EM6)do

NSR = —5=

.an
A > P, exp(—(0 — 0,)*/24%)db
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The cross-spectral matrix was then calculated using
2x
Q= S BiBFEW®)dS. (18)
From the simulated cross-spectral matrix the estimated
directional spectra [E(f)] was calculated by the four
techniques outlined above. The fidelity of the estimated
directional spectrum was determined from the weighted
average error (WAE)
2
f |E(6) — E(0)\db
0
WAE = D
E(6)dp

(19)

A frequency of 0.1 Hz was chosen as being represen-
tative of the frequency of the spectral peak in the North
Atlantic Ocean. The results were found to be insensitive
to the frequency selected. The waves were assumed to
be deep-water waves and the wavenumber was calcu-
lated from '

The results of the simulation runs for the direct cal-
culation appear in Table 1. The two data adaptive
techniques are superior to the LH and CS calculations.
Only at a NSR of 0.05 and an angular spread of 60°
full width at half-maximum power (FWHP) does the
CS model most closely resemble the input spectrum.
The EV and ML techniques are equivalent at low NSR
levels. An examination of the spectra shows that the
EV technique tends to overestimate the maximum
power while the ML tends to underestimate the peak
power and overestimate the background noise. For in-
creased NSR, the EV method is consistently superior
to the ML technique. Figure 1 shows the directional
spectrum for a NSR of 0.5 and FWHP of 30°. The EV
method most accurately models the spectrum and
background noise levels. The other three estimates se-
verely underestimate the maximum power and the ML
method overestimates the background noise level.

TABLE 1. Value of WAE for the direct calculations. Af is the
angular full width at half maximum power (FWHP).

NSR A EV ML LH (]
0.05 10 0.478 0.997 1.59 1.19
005 - 30 0.594 0.547 1.15 0.510
0.05 60 0.345 0.308 0.728 0.196
0.50 10 0.734 0.993 1.11 1.27
0.50 30 0.246 0.626 0.807 0.890
0.50 60 0.123 0.382 0.510 0.536
1.00 10 0.682 0.777 0.836 1.03
1.00 30 0.310 0.512 0.606 0.773
1.00 60 0.102 0.312 0.383 0.504
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FIG. 1. Directional spectrum for the EV, ML, LH and
CS techniques for a NSR of 0.5 and a FWHP of 30.0°.
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Pawka (1983) and Oltman-Shay and Guza (1984)
have concentrated on developing spectral estimation
techniques for nearshore regions. Their studies have
demonstrated the efficacy of the IML spectral estimates
for waves of high signal strength (NSR of 0.1 and less)
and of small angular spread (e.g. 10° full width at half-
maximum power). This is quite appropriate for their
purposes. First, the shoreline limits the possible fetch
directions to 180°, making wave motion opposite to
the peak direction impossible. Second, their instru- .
ments were located in 9.0 m of water. At this depth,
even short surface gravity waves (e.g. 0.25 Hz) will be
influenced considerably by bottom topography and
have their wave crests refracted to align with the shore.
Consequently, the results of Pawka (1983) do indicate
swell peaks with an angular spread of about 10° and
with very little background noise. Over the open ocean,
however, one can expect much higher noise levels and
much wider directional distributions. Hasselmann et
al. (1980) estimate the sharpest directional distributions
to have a minimum angular spread of 50° at half-max-
imum power. Long and Hasselmann (1979), in a sim-
ulation experiment, consider a swell peak with a full
width of 20° above background noise having a NSR
of 1.5. Finally, the results of Oltman-Shay and Guza
(1984), simulating heave, pitch and roll data (their Fig.
13), show considerable background noise at three of
four frequencies even for the near shore. Only the
fourth frequency (0.059 Hz) has a noise-to-signal ratio
of about 0.1 and an angular spread of about 30° at-
half-maximum power.

Figure 2 shows the WAE for the four data-adaptive
techniques as a function of NSR for an input spectrum
with a 30° angular spread at half-maximum power.
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FIG. 2. Weighted average error for the IEV, EV, ML and IML
techniques as a function of NSR for an input spectrum of 30° FWHP.

For a NSR of less than 0.2 the IML method is clearly
superior. Above this level, the EV and IMIL methods
have virtually identical WAE while the IEV method
has a substantially lower error. Figure 3a shows a com-
parison of the four techniques for a NSR of 0.05 with
increasing angular spread. Overall, the IML method is
superior for all angular spreads. Figure 3b shows the
spectra produced for NSR = 0.05 and an angular spread
of 30°. The EV and IEV techniques over-resolve the
simulated spectrum and produce results which over-
estimate the maximum power and underestimate the
spectral width. Figure 4a shows the WAE for a NSR
of 0.5 and varying angular spread. For angular spreads
of less than 40° the IEV is clearly the superior method.
Furthermore, the noniterative EV method is marginally
superior to the IML technique. Figure 4b shows the
predicted spectra for a NSR of 0.5 and angular spread
of 30°. The IEV reproduces nearly the exact input
spectrum, while the other three techniques appear to
underestimate the maximum power and overestimate
the spectral width.

Figure 5 shows the WAE as a function NSR for a
spectrum consisting of two peaks with a FWHP of 30°
separated by 120°. The IEV method is clearly superior
to the other techniques and is most accurate in the low
NSR regime. Figure 6a shows the WAE for increasing
angular spread for a NSR = 0.05. The IEV produces
small errors for small values of the FWHP. Figure 6b
shows an example of the predicted spectrum for NSR
= 0.05, FWHP = 30° and an angular separation of
120°. The IEV predicts the spectral peaks and the
spectral gap most accurately. Figure 7a shows the WAE
as a function of increasing spectral width for a NSR of

FIG. 3a. WAE for the data-adaptive techniques as a function
of angular spread for a NSR of 0.05.

0.5, while Fig. 7b gives an example of the specific spec-
trum for an angular spread of 30°. Here, none of the
predicted spectra are particularly accurate as all meth-
ods tend to underestimate the spectral peaks. Again
the IEV method yields the best estimate. The angular
separation was also varied for a bimodal distribution
for NSR = 0.05 with an angular spread of 30°. Results
similar to Oltman-Shay and Guza (1984) were found.
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FIG. 3b. Example of the directional spectrum for a NSR
of 0.05 and 30° FWHP.
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FIG. 4a. As in Fig. 3a but for a NSR of 0.5.

For separations less than 60° the two peaks could not
be detected by any method. For separations greater
than 60° both peaks could be resolved at the correct
peak directions.

The stability of the estimation technique to input
stochastic errors in the cross-spectral matrix was tested
following the method of Brennan and Mallet (1976).
As in Oltman-Shay and Guza (1984), 50 estimates of
a cross-spectral matrix with 30 degrees of freedom were

1]

180.089

10&.00 '
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FIG. 4b. As in Fig. 3b but for a NSR of 0.5.
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FIG. 5. WAE as a function of NSR for a spectrum consisting
of two peaks with a FWHP of 30° separated by 120°.

made. The input deterministic spectrum had a unit
amplitude at a peak direction of 0.0°, FWHP = 30°
and a NSR of 0.5. As in Long and Hasselmann (1979)
it is assumed that at least part of the background noise
level is of physical, and not stochastic, origin. The mean
and standard deviations of the peak direction and the
peak amplitude were calculated and are shown in Table
2. The peak directions were virtually identical for all
methods. All produced a mean peak direction near 0.0°
and a standard deviation of about 7.0°. The estimated
amplitudes for the ML, IML and EV techniques are
biased low (as one expects from the deterministic re-
sults, see Fig. 4b). The IEV results show a maximum
power at the peak direction very close to the input 1.0.
The standard deviation of the EV, IEV and IML results
are somewhat larger than for the ML method. The
maximum amplitude, however, has as a lower limit,
the input energy is divided by the bandwidth, and hence
for similar stability one expects lower standard devia-
tions for lower mean amplitudes. All techniques exhibit
a similar stability and direction. The IEV technique,
however, also reproduces the correct mean maximum
amplitudes.

4. Real data

The spectral estimation methods were used to detect
the directional spectrum from heave, pitch and roll
data collected during a Canadian Environmental
Studies Revolving Fund intercomparison study of di-
rectional spectra estimates sampled on the Grand
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FIG. 6a. WAE as a function of angular spread for a bimodal
spectrum with a NSR of 0.05 and an angular separation of 120°.

Banks of Newfoundland, Canada at the location shown
in Fig. 8. The wave-detection instrument was a Data-
well Wavec heave, pitch and roll buoy which was
moored in 85 m of water. It sampled at 1.28 Hz for
34 minute bursts every three hours. For this study,
each 34 minute burst was divided into 20 groups of
128 data points, giving a frequency resolution of 0.01

RERAL
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T T
36.900 108.09
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DIRECTION IN DEGREES

180.09

FIG. 6b. Example of a bimodal spectrum with a NSR
of 0.05, FWHP of 30° and an angular separation of 120°.

ANGULAR SPREAD IN DEGREES
FIG. 7a. As in Fig. 6a but with NSR of 0.50.

Hz and 40 degrees of freedom. Further details of in-
strument deployment and data collection can be found
in Juszko (1985).

The directional spectra were calculated from the
cross-spectral matrix according to methods outlined in
preceding sections and then were inverted to construct
a vector (b) of model cross-spectral entries according
to

-

-
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FIG. 7b. As in Fig. 6b but with a NSR of 0.5.

180.00
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TaBLE 2. Comparison of peak direction and peak angle for a simulation of stochastic errors for an input spectrum
of unit peak amplitude with a peak direction of 0.0°, full width at half power of 30° and a NSR of 0.5.

Method EV IEV ML IML
Peak direction —1.72 +6.76° —1.72+7.22° 2.30+7.24° 2.30+7.33°
Peak amplitude 0.79 £ 0.41 0.96 £0.51 0.43£0.17 0.70 +£0.32
1.0 refer to the amplitude and tilt channels. Following Long
0.0 (1980), the wavenumber was estimated from
27 . é + C‘ 1/2
—| kcos(9)E©B)db k=22 1)
C C'll
11
Ci 0.0 where the careted variables indicate data values. This
O 2 A was found to give more stable estimates of the direc-
Cis — |  ksin(8)E(6)do tional spectrum than inverting the surface gravity wave
- o =C (20)- dispersion relation. Juszko (1985) has shown that the
O . ® two estimates of the wavenumber agree on average for
2 k* cos"E(0)db moderate wind conditions, Letting b be the vector of
83 0 data cross-spectral values, an estimate of the error in
23 2 ) . the model cross-spectral values is given b
Cas k? cos(6) sin(6)E(6)db P given oy
0 pP’=eVle (22)

0.0

27
k2 sin%(0)E(6)do
0

where C represents the model cospectral value, Q rep-
resents the model quadspectral value and the subscripts

where e = b — b and V is the variance of the model
cross-spectral estimates. A derivation of the expected
errors for this matrix can be found in Jenkins and Watts
(1969). In practice, Eq. (11) of Long (1980) was used
to estimate the entries. For small errors, p? follows a
x* distribution. The normalization of the total model
power spectral density to C;; and the implementation

GRAND

BANKS OF NEWFOUNDLAND

4

FIG. 8. Location of ESRF intercomparison study.
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of (21) reduce the nine cross-spectral entries to seven
degrees of freedom. Lawson and Long (1983) use p?
as a criterion of performance for the iteration to their
directional spectra. They set the 80% probability zone
as an acceptable level of error. This means that there
is a 20% probability that an acceptable model fails to
meet the X2 criterion. For seven degrees of freedom,
any value of p? < 9.8 lies within the 80% confidence
zone of the particular model. In effect, p? acts as a
residual error estimate for the cross-spectral matrix and
can be used to assess the effectiveness of the model
directional spectrum in accounting for the data and
allows an intercomparison between our results and
those of Lawson and Long (1983).

One possible scenario for the development of wave
propagation in two directions at the same frequency
occurs during storm build-up. The wave spectra could
be composed of a swell originating remote from the
sampling location and of a directly forced sea arising
from local winds. Fig. 9(a) shows a heave spectrum,
9(b) the p? for each of the four direct methods, and
9(c) p? for the data adaptive methods. Two peaks are
evident-—at 0.1 Hz and at 0.2 Hz. The 80% confidence
level is indicated by the horizontal line in Figs. 9(b)
and 9(c). Over the regions of large spectral power den-
sity the CS values of p? exceed the bounds of the graph.
The LH method reasonably models the low-frequency
peak, but its errors fall well outside the 80% confidence
interval for the high-frequency peak. The ML error is
smaller than for the LH and CS estimates, but it is
consistently larger than the EV method particularly
over the high-frequency regime. Finally, the confidence
level of the EV method compares favorably with the
results achieved by the iterative procedure of Lawson
and Long (1983). Figure 9(c) shows the same calcu-
lation for the data-adaptive techniques. The iterative
IML and IEV methods show nearly identical errors.
Except for two frequency bands, these results are well
within the 80% confidence band.

Figure 10 shows typical directional spectra calculated
over the two maxima in the power spectra of Fig. 9.
At 0.10 Hz all the data adaptive analyses clearly in-
dicate two spectral peaks. The IEV method, however,
has the smallest error and shows the sharpest resolution
of the two peaks. The NSR is estimated at 0.5 and the
simulation runs indicate that the peaks are probably
underresolved. At 0.20 Hz, the IEV method produces
a narrower peak than the other three methods. The
spectral width from the EV, IEV and IML techniques
indicates that the wave field has an FWHP of about
20.0°. The NSR for this peak is estimated at-between
0.2 and 0.3. The error in the cross-spectral matrix is
similar between the EV, IEV and IML methods, again
in agreement with the simulation runs.

5. Summary and conclusions

A new data-adaptive technique for the analysis of
heave, pitch and roll buoy data has been presented.
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FIG. 9a. Heave spectrum during a storm development.

The data cross-spectral matrix is diagonalized and the
eigenvectors corresponding to the two smallest eigen-
values are assumed to span the noise of the measure-
ment, and the eigenvector corresponding to the largest
eigenvalue is assumed to span the signal. The direc-
tional spectrum is then determined from the noise
component. If the three eigenvectors are used to de-
termine the directional spectrum, then the method is
identical to the maximum likelihood spectral estimate.

The eigenvector technique was compared to other
directly calculated spectral estimates, including the
maximum likelihood estimate, the Longuet-Higgins et
al. (1963) estimate and the cosine spread model. In the
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FIG. 9b. Value of p? for the direct spectral estimation techniques.
FIG. 9c. Value of p? for the data adaptive
spectral estimation techniques.



2166

109,99

FREQUENCY .18 IEV J—

3.82

T T T T T T
7.09 79.09 151.68 223.99

205.09
DIRECTION IN DEGREES
o
bt
& FREQUENCY .28 IEV — 3.22
i : EV 3.48
2 ML -~ 15.37
o IML -~ 4,23
=4
-
(-]
o
o
ol
(]
w2
o
e-3
£
@
o
<
L3
-
4
. T T T L L] L
-65.28 7.20 78.00 151,98 223,00  285.00

DIRECTION IN DEGREES

FiG. 10. Examples of unimodal and bimodal spectra calculated
by the data adaptive techniques.

simulation experiments, the eigenvector method over-
all proved superior to all other direct calculations, for
all noise-to-signal ratios and for all angular spreads.
With real data, the error in the cross-spectral matrix
was used as an indicator of goodness-of-fit. Again, the
eigenvector method was clearly superior to the other
methods tested. Furthermore, the error in the cross-
spectral matrix was within the 80% confidence limits
which form the basis of the iteration method of Lawson
and Long (1983).
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An ijterative version of the eigenvector method was
calculated according to the technique of Pawka (1983).
The results were compared to the eigenvector, the
maximum likelihood and the iterative maximum like-
lihood estimates. In the simulation tests, for a single-
peak spectrum with a spread of 30° full width at half-
maximum, there was a definite demarcation in accu-
racy. For the high-signal regime (noise-to-signal ratio
less than 0.20), the iterative maximum likelihood es-
timate was superior. The eigenvector and iterative ei-
genvector methods overestimated the peak power. For
a noise-to-signal ratio greater than 0.20, the eigenvector
and iterative eigenvector methods produced lower
weighted-average errors. For a double-peaked spec-
trum, the iterative eigenvector method was superior at
all noise levels tested. ‘

The four data-adaptive methods were also tested for
simulated stochastic noise in the cross-spectral matrix.
The average of fifty simulated cross-spectral matrices,
each with 30 degrees of freedom, indicated virtually

‘no difference in stability among the four data-adaptive

methods. The mean direction and peak amplitudes
were, on average, as predicted by the simulated spectra.

The iterative methods were also tested on real data
using the error in the predicted cross-spectral matrix
to indicate model significance. The two iterative meth-
ods produced errors well below the 80% confidence
limits. For a double-peaked spectrum, the iterative ei-
genvector method showed the lowest error and most
clearly defined the two peaks and the spectral gap. For
the single peak, the error in the eigenvector, the iterative
eigenvector and the iterative maximum likelihood
techniques were nearly identical. It must be emphasized
that these results are representative not only of the small
sample presented but also of more than 350 spectra
examined. In short, the eigenvector and iterative ei-
genvector methods give superior estimates of wave-di-
rectional spectra in the moderate noise situations that
can be expected over the open ocean.
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