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ABSTRACT

This paper reviews the usual open boundary conditions (OBCs) for coastal ocean models and proposes
a complete set of open boundaries based on stability criteria, on mass and energy conservation arguments,
and on the ability to enforce external information. This set includes a radiation condition for barotropic
variables, an equation of wave propagation for baroclinic velocities, and an advection equation for tracers.
Considerations on mass and energy conservation properties suggest a suitable numerical treatment of the
barotropic scheme, which is different from what is commonly used. Restoring terms, when classically added
in the Sommerfeld OBCs, are not consistent with external fields. It is shown that this can be avoided if
proper numerical schemes are used or if OBCs are applied on differences between the model and forcing
rather than on absolute variables. Finally, this paper shows that simplistic advection-type methods for
temperature and salinity should not be used in sigma coordinate models because this introduces errors in
the computation of the horizontal pressure gradient.

1. Introduction

In coastal ocean modeling, open boundary conditions
(OBCs) have a crucial impact on the inner domain so-
lution. This is largely due to the fact that time scales
associated with the propagation of waves throughout
the coastal area are comparable to the length of the
simulation itself, when they are not much shorter. A
barotropic wave can, for instance, cross a 100-m-deep
and 100-km-long shelf in about 1 h and a 1 m s�1 in-
ternal wave can cross it in about 1 day. This is much
shorter than the length of a classical forecast, which is at
least a week long. Moreover, it is well known that
OBCs lead to basically ill-posed problems (Oliger and
Sundström 1978) and that perfect OBC schemes do not
exist. Actually, the OBC problem can be considered as
one of the most challenging aspects of coastal model-
ing.

Schematically, OBCs have a double purpose. They
are first of all required to force the inner solution with
external fields (obtained from observations or large-
extent models) under incoming conditions. At the same

time, they should allow waves to radiate out or water
masses to leave the modeling domain under outgoing
conditions, without any spurious reflections. But it is
difficult to satisfy these two objectives simultaneously
and modeling systems tend to choose locally between
one scheme or the other according to the incoming or
outgoing character of the dynamical field. The direction
of wave propagation is often obtained by inversion of
an equation of “wave propagation” based on model
variables in the neighborhood of open boundaries. The
incoming or outgoing character of the local dynamics is
related to the sign of the computed phase speed in the
direction normal to the boundary (Orlanski 1976). This
method is of course questionable as a large spectrum of
waves can propagate through coastal areas, and their
main characteristics (phase speed, direction, or disper-
sion) are poorly taken into account by usual methods.
Such methods are generally optimal for trivial cases
such as single nondispersive waves propagating in a di-
rection normal to the boundary. This could prove to be
a severe limitation as recent studies (Marchesiello et al.
2001) rather suggest that the ability of modeling sys-
tems to distinguish outgoing from incoming regimes (in
other words their ability to choose a proper OBC
scheme), could be as important as the OBCs them-
selves.

Most of the OBCs have been largely studied in the
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past 20 years (Palma and Matano 1998, 2000). These
studies provide a comparison of several OBCs in well-
identified cases (free wave propagation, wind-induced
coastal jets, traveling storms, etc.) for which reference
solutions exist (either analytical solutions or numerical
solutions obtained from the same model but with cyclic
boundary conditions or using a larger domain). Briefly,
the most popular schemes can be divided into three
classes (Palma and Matano 1998): 1) radiative condi-
tions (Blumberg and Kantha 1985), 2) characteristic
methods (Hedstrom 1979), 3) relaxation methods
(Martinsen and Engedahl 1987). The goal of this paper
is not to add another set of tests to the already numer-
ous existing studies dedicated to this topic but to bring
up some new considerations on a particular set of
OBCs that now seem to be used by a large community
of coastal modelers. In practice, we selected the follow-
ing OBC: the radiation method proposed by Flather
(1976) for barotropic variables, radiative methods for
baroclinic velocities, and advection schemes for tracers.
Mass and energy conservation properties, the reliability
of adaptative methods, restoring terms limitations, and
potential traps associated with the use of sigma coordi-
nates are examined and, accordingly, suitable numeri-
cal treatments are suggested.

This paper is mainly concerned with the widely used,
free surface sigma coordinate model, such as the
Princeton Ocean Model (POM; Blumberg and Mellor

1987) or the Regional Ocean Modeling System
(ROMS; Shchepetkin and McWilliams 2005). Model
equations are given in section 2. OBCs for barotropic
variables are discussed in section 3. Conservation of
mass and energy is examined in sections 4 and 5. OBCs
for baroclinic velocities and tracers are discussed in sec-
tions 6 and 7. Section 8 is concerned with buffer zones
in which restoring conditions toward prescribed fields
can be applied. Finally, possible developments to im-
prove present OBCs are discussed in section 9.

2. Model equations

Most numerical coastal ocean circulation studies are
based on models solving the Navier–Stokes equations
on a vertically staggered C grid using classical finite-
difference methods. These models generally have a free
surface and sigma terrain-following coordinate, and use
the Boussinesq and hydrostatic approximations. In this
paper, modeling is carried out with the Symphonie
model, a description of which, together with recent ex-
amples of applications, can be found in Ulses et al.
(2005), Pairaud and Auclair (2005), Petrenko et al.
(2005), and Estournel et al. (2005). With the exception
of the variables of the turbulence closure scheme (Gas-
par et al. 1990), this model is based on six variables, (u,
�, w, T, S, �), computed using the following equations.

Momentum and continuity equations are given by
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The hydrostatic pressure is given by
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The free surface elevation anomaly � is deduced from
the divergence of the depth-averaged current (u, v):
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where h is the ocean depth. The density of water � is
related to the temperature T and the salinity S, which
are given by
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where 	Is/	z stands for the solar radiation forcing. The
vertical diffusivities K� are computed using the turbu-
lence closure scheme proposed by Gaspar et al. (1990).
The constant horizontal viscosity Kh is set to 15 m2 s�1

in the application of section 4. Barotropic (u, v) and
baroclinic (u
, v
) components of the current (u � u �
u
, � � v � v
) are computed separately using the time-
splitting technique described by Blumberg and Mellor
(1987).
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3. Barotropic boundary conditions

We chose the Flather condition (Flather 1976) that,
according to the conclusions of the numerous studies
previously mentioned, seems to be the best compro-
mise among the usual barotropic OBCs. Several au-
thors (Blayo and Debreu 2005; Shulman and Lewis
1995; Palma and Matano 2001) have recently com-
mented on the interesting properties of mass and en-
ergy conservation of this scheme. Our numerical ap-
proach to the barotropic OBCs took these consider-
ations into account and led to a new implementation of
the Flather condition. We propose to apply this condi-
tion to the surface elevation anomaly rather than to the
velocity. To illustrate this in a simple way, we consider
here the equations for a barotropic linearized case in
the x direction only, namely:
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with open boundaries at x � 0 and x � L. Note that our
hypothesis of linearization also leads us to neglect the
sea surface elevation term in the integrated continuity
equation (i.e., U � hu). Using the same leapfrog time-
stepping and centered gradient schemes as in our
model, we obtained the following numerical expres-
sions for (8) and (9):
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Equation (10) was computed from i � 2 to i � N � 1
with boundary conditions for u at i � 1 and i � N. This
computation was carried out over a horizontally stag-
gered C grid where sea surface elevation and current
grid points were shifted (Fig. 1). An integrated energy
balance, from the initial time and over the whole do-
main, can be obtained from Eq. (8) once multiplied by
U (Gill 1982):
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where (9) was used to compute the potential energy
term (second term on the left-hand side). Equation (12)
means that the global variation of mechanical energy
(left-hand side) is equal to the integral over time of the
potential energy fluxes through the open boundaries
(right-hand side). A numerical expression of (12),
based on (10) and (11), is given by
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We can see that a sea surface elevation OBC such as
�N�0.5 � UN�1/c and �1.5 � �U2/c with c � �gH (i.e.,
a Flather condition on surface elevation anomaly with
no external forcing terms) would make the right-hand
side of (13) always negative, therefore enhancing the
stability of simulations since OBCs could in no way be
responsible for an unexpected increase in global en-
ergy. We finally retained this scheme but with a slight
modification in order to define an additional boundary
condition for U1 and UN [required when horizontal gra-
dients related to momentum advection and diffusion
are restored in Eq. (10)]. At the same time we expect
the scheme to satisfy the local mass conservation con-
straint, namely, Eq. (11). In practice, currents at open
boundaries are obtained from Eq. (11) together with
the so-called Flather scheme, but applied to sea surface
elevation taken at iteration t � 1:
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Equation (14) is usually more complicated for two rea-
sons. First, the Flather condition must take external
forcing into account

� � �F � �UN � UF
N��c, �15�

where UN is the transport in the direction normal to the
boundary and F refers to external forcing terms. Sec-

FIG. 1. Sketch of the C grid in the Ox direction.
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ond, the gradient in the direction tangential to the
boundary of the tangential component of transport,
which we intentionally omitted in (11), in fact reap-
pears in the right-hand side of (14). A boundary con-
dition for the tangential component of the transport, is
given by

�UT

�n
�

�UF
T

�n
, �16�

where n refers to the direction normal to the open
boundaries. We see that OBCs (15) and (16) result in
the radiation of the difference between computed and
forcing fields out of the model domain as recommended
by Blayo and Debreu (2005) or Perkins et al. (1997).
We investigate this point in sections 6 and 7 for three-
dimensional OBCs. Although many authors
(Marchesiello et al. 2001; Palma and Matano 2001) ap-
ply the Flather condition to the normal component of
transport and complete their scheme with two other
radiative conditions for the tangential component of
transport and sea surface elevation, we see that consid-
erations on energy and local mass conservation actually
suggest that the Flather condition should be applied to
sea surface elevation and the scheme completed with
one radiative condition on the tangential component of
transport, the normal component then being deduced
from the previous pair of variables thanks to the con-
tinuity of Eq. (5).

4. Global mass conservation

It is well known that OBCs sometimes do not con-
serve global mass in a reasonable way. Blumberg and
Kantha (1985) reported a mean sea surface elevation
drift of several centimeters after a few days of simula-
tion, using the Sommerfeld boundary conditions. That
shortcoming was circumvented by adding to the wave
equation a restoring term toward some control vari-
able. Some other authors have suggested the constraint
that the integral of the normal component of transport
over the open boundaries as a whole must vanish—this
condition keeping the mean sea surface elevation
strictly unchanged (Marchesiello et al. 2001).

Although global mass cannot be exactly conserved
with a Flather condition, we believe that this OBC nev-
ertheless has interesting mass conservation properties
and could be used without the aforementioned mass
correction. To illustrate this point of view, we consider
now a mass balance based on the integral of (5) over
the numerical area, using the Green–Ostrogradsky
property to simplify the divergence of the transport in-
tegral:

����

�t
dxdy � ��

L

U · n dl, �17�

where the right-hand side symbol stands for a closed
integral along the whole boundary (n being a unit out-
ward vector) and the left-hand side integration gives
the global variation of sea surface elevation over the
domain area S. We can then define the mean sea sur-
face elevation by � � (1/S)��� dx dy and a sea surface
anomaly �
 such that � � � � �
. To make the sea
surface elevation appear on the right-hand side of (17)
we use a Flather condition with a constant surface el-
evation forcing term but zero forcing current (i.e., � �
�F � � U/c, such an external field could for instance
correspond to an “inverse barometer” type of response
of the ocean to atmospheric pressure). Finally, we sup-
pose that bathymetry is constant. Thus, (17) now reads

��
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�

L
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L

S
c���B � �F�, �18�

where L is the whole length of the open boundary and
�
B is the sea surface anomaly at the open boundary. In
general cases (18) should not admit trivial solutions. If
the size of our numerical domain is small compared to
the barotropic deformation radius (this assumption
does not seem unreasonable considering our coastal
context), sea surface elevation should be nearly equal
to its domain-averaged value. In that case, we can con-
sider that �
B is small enough to be neglected in the
right-hand side of (18). A solution for the mean sea
surface elevation is then given by

� � �F � �0e��Lct�S�. �19�

Equation (19) means that if our run begins with an
initial mismatch �0 on sea surface elevation, the mean
sea surface elevation will quickly approach the external
value, the initial difference being divided by 10 after a
time roughly equal to 2S/Lc (or approximately half an
hour for S � 10 000 km2, L � 400 km, H � 100 m). We
have verified on different academic cases that (19) is in
reasonable agreement with computed surface eleva-
tion. Figure 2 shows that (19) is still relevant for the
realistic and complex bathymetry of the northwestern
Mediterranean. In this case, the time scale for mass
conservation adjustment S/Lc is about 0.7 h.

5. Global energy conservation

It is generally considered that models perform better
when global conservation properties are respected.
OBCs have a significant impact on the global mecanical
energy budget through the boundary potential energy
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flux. Shulman et al. (1998) and Shulman (1997) showed
for instance that simulations of tidal- and wind-driven
coastal circulations were clearly improved when a con-
straint on the boundary energy flux was applied.

If a general form of the Flather condition is used (i.e.,
a form including external forcing terms) potential en-
ergy fluxes at open boundaries are given by

�gU� � �gUF�F � gc��2 � g���UF � c�F�,

�20�

where �
 � � � �F is the difference between the com-
puted sea surface elevation and its external counter-
part. Note that for sake of simplicity only one open
boundary (at x � L) is considered. In an idealized case
where external field is constant and where �
 consists of
periodic waves, the last term on the right-hand side of
(20) becomes negligible when integrated over a long
time:

�g�U� dt � �g�UF�F dt � gc���2 dt. �21�

As the second term on the right-hand side of (21) is
always negative, the cumulated energy flux never ex-

ceeds its external counterpart, suggesting that the
Flather condition should prevent, in this simple case,
the spurious increase of global energy.

More realistic situations should be less favorable.
Under outgoing conditions, the circulation in the vicin-
ity of open boundaries is more influenced by interior
dynamics than boundary forcing terms and thus the
model can drift from the external field. The surface
elevation anomaly �
 eventually contains a part of the
general circulation and the last term on the right-hand
side of (20) is no longer negligible when integrated over
time. This means that the Flather condition in (15) is
likely to lead to erroneous potential energy fluxes in
cases of outward propagation. Actually, adaptative ver-
sions of characteristic propagation methods, omitting
external forcing terms when the latter correspond to an
outgoing regime (i.e., when we have g�FUF · n � 0), are
eventually chosen, especially in the case of tidal mod-
eling since the propagation properties of the tidal forc-
ing can be rather simple and reliable (Ruddick et al.
1994). Generally, the greatest difficulty comes from the
impossibility of distinguishing between active and pas-
sive OBCs. Indeed, realistic situations are rather a com-
plex mixture of incoming and outgoing waves and, in
most cases in (15), ends up being applied, just as it is,

FIG. 2. Mean sea surface elevation computed during an 8-h barotropic run initialized at rest and forced
at open boundaries by a sea surface elevation of 0.001 m and zero current (solid line), and corresponding
analytical solution computed from Eq. (19) using a domain-averaged value of the barotropic wave
celerity (dotted line). The insert presents the domain modeled in the northwestern Mediterranean.
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whatever the boundary grid node. Nevertheless, poten-
tial energy fluxes can be balanced if necessary, by using
methods similar to those controlling the mass budget
for instance. A first estimate of the sea surface eleva-

tion �* provided by (15) can indeed be adjusted in
order to keep the global boundary potential energy flux
(GBPEF) under a threshold value, namely, the GBPEF
calculated with the corresponding external variables:

� � �* � �U · n

� � �

�
L

��FUF � �*U� · n dl

�
L

�U · n�2dl

if �g�
L

�*U · ndl � �g�
L

�FUF · n dl

� � 0 if �g�
L

�*U · n dl 	 �g�
L

�FUF · n dl,

�22�

where � can be seen as a Lagrangian multiplier (Arfken
1985) providing optimal perturbations of sea surface
elevation such that the computed GBPEF never ex-
ceeds the corresponding external GBPEF.

6. Boundary conditions on baroclinic velocities

As far as baroclinic velocities are concerned, radia-
tive conditions based on the wave propagation equation
are often used. However, the methods used to deal with
propagation or to introduce external forcing terms dif-
fer somewhat in the literature. We show in the present
section that the external solution needs to be specified
with care.

Propagation is most often assumed to be unidirec-
tional (Palma and Matano 2000):

�


�t
� c

�


�n
� 0, �23�

where � is any of the two horizontal components of the
baroclinic velocities, c is now the phase speed of inter-
nal waves, and n refers to the outward direction normal
to the boundary. Propagation can, however, be treated
in a multidirectional way (Raymond and Kuo 1984),
but some cases of numerical instabilities have been re-
ported and possible compromises like the normal pro-
jection of oblique (NPO) radiation scheme are there-
fore proposed (Marchesiello et al. 2001; Barnier et al.
1998). Phase speed is often deduced from the inner
solution itself by using (23) over grid nodes located next
to the boundary points considered (Orlanski 1976),
that is,

c � �
�
��t

�
��n
. �24�

Some authors consider a constant phase speed instead
of Eq. (24) (Blumberg and Kantha 1985; Kourafalou et
al. 1996). Although their choice may seem rough, it
could also be considered as a rational way of avoiding
obvious shortcomings of (24). Indeed Eq. (24) is not
well suited to multiwave propagation patterns nor to
the dispersion effects that are to be expected in 3D
realistic situations. Moreover (24) clearly shows a sin-
gularity when 	�/	n � 0. The latter, generally avoided
by some Courant–Friedrichs–Levy (CFL)-type con-
straints (Orlanski 1976), should be regarded as a pos-
sible source of errors or numerical instabilities. Unfor-
tunately, this unfavorable case is highly probable since
it occurs every time (24) is computed on wave crests.
Nevertheless, the sign of phase speed computed from
(24) may be helpful to determine whether boundaries
are passive (outgoing waves) or active (incoming
waves). In the latter case, it is usually assumed that
open boundaries should be largely driven by external
incoming waves and thus a restoring term toward a
forcing variable may be added to OBC (23); that is,

�


�t
� c

�


�n
� �


F � 


�R
, �25�

with �R a restoring time scale. The forcing term �F is
generally set equal to �ext, the corresponding value in
the external field. This choice is somewhat question-
able. Indeed, since model solutions should be close to
external fields in the vicinity of active boundaries, ex-
ternal fields should also balance OBC equations. This
means that �F should in fact be related to �ext accord-
ing to


F � 
ext � �R��
ext

�t
� c

�
ext

�n �, �26�
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or, since most Orlanski-type schemes (Orlanski 1976)
set c � 0 in case of incoming waves:


F � 
ext � �R

�
ext

�t
. �27�

According to (27), the assumption �F � �ext is not
correct unless the temporal variability of the external
fields is weak enough for the second term of the right-
hand side of (27) to be neglected. Actually, a judicious
way to ensure the compatibility of the external fields
with OBCs, as stressed by Blayo and Debreu (2005), is
to apply OBCs to perturbations of variables from the
external field rather than to absolute variables. Indeed,
�ext is a trivial solution of B� � B�ext, where B is the
following boundary operator:

B �
�.
�t

� c
�.
�n

�
.

�R
. �28�

7. Boundary conditions for temperature and
salinity

Radiative conditions for both temperature and salin-
ity remain popular even though they can lead to serious
discrepancies as far as the horizontal pressure gradient
is concerned.

The OBCs for temperature and salinity are often
given by

�


�t
� u

�


�n
� 0, �29�

where u is the current in the direction normal to the
boundary. In some cases, u is also chosen as a combi-
nation of this current with a wave phase speed (Palma
and Matano 2000). In such cases, an upstream scheme is
used allowing external temperature and salinity to en-
ter under inflowing conditions. In sigma coordinate
models, it could be tempting to replace horizontal gra-
dient operators by their sigma counterpart (Mellor and
Blumberg 1985). The reduction of computing costs or
C-grid numerical convenience may motivate this ap-
proximation. In the case of (29), this gives

�


�t
� u

�


�n*
� 0, �30�

where 	./	n* is the counterpart of 	./	n in the sigma
coordinate system. The case of the stationary regime
(implying 	�/	n* � 0 since u has no special reasons to
be zero) deserves particular here attention since it
should have severe repercussions on the computation
of the pressure gradient. This is eventually given by

�p

�n
�

�p

�n*
� �g

�z

�n*
. �31�

Without going into detail (see, e.g., Haney 1991 for
further details) we recall here that a weak horizontal
pressure gradient may possibly correspond to the bal-
ance of two large terms in the right-hand side of (31).
Using (30) and at the same time considering a station-
ary state is somehow equivalent to strongly modifying
the first term of the right-hand side of (31) without
considering the second. This breaks the equilibrium
and thus generates errors on the pressure gradient. A
tangential geostrophic current is likely to occur at open
boundaries and, in extreme cases [i.e., when Eq. (31) is
strongly unbalanced], the model can blow up. We can
see nevertheless that a well-adjusted equilibrium on the
right-hand side of (31) can be recovered if 	z/	n* � 0 is
imposed locally. In sigma coordinate models this is
equivalent to setting a zero gradient condition on the
bathymetry at the open boundaries. This condition is
known to improve OBC robustness (Marchesiello et al.
2001) but misrepresents the major effects of bathym-
etry on local vorticity balance. A second solution to
restore equilibrium in (31) is to apply (30) to perturba-
tions rather than to absolute variables, namely, B� �
B�ext with B � 	./	t � u	./	n*. This recalls the removal
of a reference state from the density field before com-
puting pressure gradients in order to reduce the hori-
zontal pressure gradient truncation errors (Mellor et al.
1994). If neither of these two methods is chosen, (29)
should clearly use a rigorous horizontal gradient opera-
tor, practically

�


�t
� u� �


�n*
�

�z

�n*
�


�z� � 0, �32�

but it should be kept in mind that the staggered C grid,
mostly used in coastal modeling, is not optimal for the
finite-difference form of the last term of (32), notably
because the vertical gradient operator cannot have a
centered form on the vertical levels contiguous to sur-
face or bottom boundaries.

It is, however, tempting to use genuine tracer Eqs. (6)
and (7), instead of (32), as OBCs, since, on the one
hand, the finite-difference form of a fully 3D advection
scheme is well suited to the staggered C grid and, on the
other hand, vertical fluxes of temperature and salinity
induced by internal wave propagation are explicitly
represented by vertical advection. The horizontal ad-
vection scheme must eventually be locally adapted to
OBC requirements; namely, a finite-difference up-
stream form is likely to be preferred at open boundaries
in order to make external water masses enter the do-
main under inflow conditions. Obviously, a condition
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for (6) and (7) to remain reliable is that OBC on ve-
locities themselves perform well since, because of the
C-grid geometry, boundary currents will be involved in
the computation of tracer fluxes. It is also important
that the vertical velocity, related to boundary horizon-
tal current through continuity Eq. (3), be relevant. Sur-
prisingly, Orlanski conditions are rarely applied to ver-
tical currents despite their reliable representation of
internal waves, the horizontal currents indeed being
eventually dominated by geostrophic currents and/or
wind-driven motions. Such a condition could be easily
completed by some radiative conditions on the tangen-
tial velocities and by normal velocities deduced from
the inversion of continuity equation (3) in order to re-
spect conservation properties of advection in (6) and
(7). Finally, another advantage associated with the use
of Eqs. (6) and (7) as OBCs is to include turbulence
mixing effects, which may be dominant in shallow
coastal areas subjected to intense atmospheric forcing
(Estournel et al. 2003).

8. Nudging boundary layers

Although applying OBCs on the difference between
model variables and their forcing counterparts possibly
avoids some incompatibilities, it does not ensure that
model solutions will be correctly constrained by exter-
nal information. If we had chosen B� � B�ext, where B
is, for instance, the simple zero gradient operator (16),
it is obvious that an infinity of model solutions � can
satisfy the boundary conditions without being close to
�ext. The drift that is likely to grow between modeled
and forcing fields can nevertheless be corrected by add-
ing a nudging layer in the vicinity of open boundaries.
In this layer, a restoring term � (�F � �)/�R is added to
the right-hand side of the model equations. The restor-
ing time scale �R is such that this additional term pro-
gressively vanishes with the distance to the open
boundaries. Ideally, the nudging term should act only in
situations of inward propagation. Under outward
propagation, a frontal zone of temperature and salinity
can be formed if the restored field is significantly dif-
ferent from the advected one. A consequence may be
an erroneous tangential geostrophic current. However,
determining whether propagations are outward or in-
ward is all the more difficult when the nudging layer is
large and dynamical patterns inside are complex. A
possible compromise, proposed by Marchesiello et al.
(2001), is to apply the restoring term in the whole nudg-
ing layer but with �R large enough so that incompat-
ibilities with local circulation patterns remain limited.
But doing so somehow counteracts the primary purpose
of a nudging layer, which is to control the modeled
solution using external information.

9. Conclusions and perspectives

The present paper revisits a set of OBCs that is now
widely used in sigma coordinate free surface models
using finite-difference methods on a staggered C grid.
The aforementioned OBC consists of a Flather condi-
tion for barotropic variables, an Orlanski-type OBC for
baroclinic velocities, and an upstream advection OBC
for tracers. The OBCs are generally constrained by ex-
ternal forcing terms. Control of the inner solution may
be reinforced by means of a nudging layer.

Concerning the Flather condition, the proposed form
is not exactly the same as what is apparently used in
most studies. Actually, considerations on potential en-
ergy fluxes at open boundaries strongly suggest that the
Flather condition should be applied to sea surface el-
evation rather than to the normal current. In the par-
ticular case of no external forcing, our scheme leads the
boundary potential energy fluxes to be systematically
negative, a property increasing numerical stability. In
general, sea surface elevation is a powerful variable for
controlling the global energy balance, a first OBC guess
being easily adjusted by a Lagrangian multiplier
method. We propose to complete our scheme with one
radiative condition on the tangential transport (using a
perturbation form rather than absolute variables) and a
mass conservation condition (i.e., inversion of the con-
tinuity equation) to obtain the normal transport. Fi-
nally, we have discussed the global mass conservation
properties of the Flather condition and shown that the
constant S/Lc (where S, L, and c are the area of the
domain, the length of the open boundaries, and the
mean barotropic phase speed, respectively) is a time-
scale representative of mass adjustment transient pro-
cesses.

Concerning the baroclinic velocities, we suggested
that the usual restoring term added to right-hand side
of the Orlanski-type OBC be handled with great care.
Indeed it is not correct to assign the forcing variable
directly to its external counterpart when short time-
scale variability dominates the external signal. A better
compatibility between modeled and forcing fields is ob-
tained if these OBC are applied to the “modeled-
external” difference rather than to absolute variables.

For tracers, we showed that a horizontal advection
scheme should avoid oversimplifications on sigma gra-
dient operators and so avoid errors on the pressure
gradient term. We recommend the use of the actual
temperature and salinity equations, but under the con-
dition that boundary baroclinic velocities are them-
selves reliable.

Nudging boundary layers can help to control model
with external fields but, under outward propagation,
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frontal conflicts may appear if tracers are strongly re-
stored toward external information.

All these recommendations were used in our recent
studies of the Mediterranean Sea (Estournel et al. 2005;
Ulses et al. 2005; Petrenko et al. 2005; Dufau-Julliand et
al. 2004) and helped us to build OBCs for an opera-
tional model of the northwestern Mediterranean Sea
(details given in the acknowledgments section).

Open boundary conditions are likely to remain a
challenging question for coastal modelers. OBCs
should make progress based on adaptativity methods
(Marchesiello et al. 2001), that is, when OBCs can
adapt themselves to local dynamics. Although widely
used, methods based on the inversion of the wave
propagation equations (e.g., the Orlanski-type OBC)
nevertheless lead to an overly simple classification: grid
nodes are under either the inward or outward regime.
More complex situations, namely, wave packets propa-
gating in all directions, are not taken into account. Pro-
jection of the current on the principal barotropic and
baroclinic propagation modes is a possible answer to
this limitation. It is to be noted that Blayo and Debreu’s
(2005) conclusions mention the development of the
baroclinic Flather OBC based on a spectral method.
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