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ABSTRACT

This paper describes the use of an optimization method to effectively reduce the required bathymetric

sampling for forcing a numerical forecast model by using the model’s sensitivity to this input. A genetic

algorithm is developed to gradually evolve the survey path for a ship, autonomous underwater vehicle

(AUV), or other measurement platform to an optimum, with the resulting effect of the corresponding

measured bathymetry on the model used as a metric. Starting from an initial simulated set of possible random

or heuristic sampling paths over the given bathymetry using certain constraints like limited length of track, the

algorithm can be used to arrive at the path that would provide the best possible input to the model under those

constraints. This suitability is tested by a comparison of the model results obtained by using these new sim-

ulated observations, with the results obtained using the most recent and complete bathymetric data available.

Two test study areas were considered, and the algorithm was found to consistently converge to a sampling

pattern that best captured the bathymetric variability critical to the model prediction.

1. Introduction

a. Environmental variability at different scales

Ocean wave prediction models that operate on global

scales have reached sufficient maturity to allow for rou-

tine operational prediction. Various government agencies

worldwide such as the National Oceanic and Atmospheric

Administration (NOAA) and the European Centre for

Medium-Range Weather Forecasts (ECMWF) offer daily

predictions of wave properties (heights, periods, and di-

rections) around the globe, usually using various combi-

nations of wave models such as Wave Model (WAM;

Komen et al. 1994) or Wavewatch-III (Tolman 1991) with

global wind models. Closer to shore, however, the efficacy

of forecasting becomes less clear primarily because of

the highly dynamic environment present in the near-

shore areas. This dynamism is caused by breaking waves

and hydrodynamic currents as well as more infrequent

events such as surge due to storms, hurricanes, and

tsunamis. The underlying bathymetry in the nearshore

areas has a strong effect on these processes, particularly

the occurrence of wave breaking. Information on the

nearshore bathymetry, therefore, is a primary consider-

ation for effective modeling of waves and currents in this

area.

b. Model sensitivity to bathymetric input

Predictive modeling of the coastal ocean has also been

on track toward routine operational use; these nearshore

models are of significant utility for many operations where

predictive knowledge of waves and currents in a region

near the coast is required. Among the inputs required

for these models are estimates of wind, incident wave

conditions at open boundaries, and sufficient bathymetric

data at the modeled locations. An example of the devel-

opment and use of a nearshore modeling system is dis-

cussed by Allard et al. (2008).

* Current affiliation: Department of Civil, Construction and En-

vironmental Engineering, North Carolina State University, Raleigh,

North Carolina.

Corresponding author address: James Kaihatu, Zachry Depart-

ment of Civil Engineering, Texas A&M University, 3136 TAMU,

College Station, TX 77843-3136.

E-mail: jkaihatu@civil.tamu.edu

464 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 29

DOI: 10.1175/JTECH-D-11-00051.1

� 2012 American Meteorological Society



However, prior to a modeling exercise, the degree to

which one can consider the bathymetry sufficient for

a particular model is not clear. Phase-resolving wave

models, for example, simulate the evolution of surface

waves on a subwavelength scale, and thus may need

higher-resolution bathymetry (capturing bathymetric

variations at subwavelength scale) than would be re-

quired by a phase-averaged wave model. This potential

constraint is also affected by the degree to which high-

resolution coastal bathymetry databases exist; signifi-

cant knowledge gaps exist in the bathymetric record in

many areas in the coastal and nearshore ocean. Fur-

thermore, bathymetric records required for modeling

are often created by melding and interpolating survey

measurements of varying accuracy taken at different

times, the results of which are dependent on the inter-

polation method used or the quality of the data (Plant

et al. 2002). Thus, additional field surveys may be re-

quired to supplement existing databases, particularly if

the areas in question were undersampled or have under-

gone an anticipated degree of bathymetric change. Under

these circumstances, where timely information is required

and highly valued, determination of the amount of in-

formation absolutely necessary for useful model pre-

diction becomes important. Other constraints affecting

the efficacy of measurement pertain to the platforms

(boat, jet ski, etc.) and their power requirements. For

example, autonomous underwater vehicles (AUVs)

have been shown to be a tenable platform for bathy-

metric data collection in such situations (Bourgeois et al.

2005); however, they generally have a fixed operational

time because of battery life. Thus, for optimal manage-

ment of resources and data, techniques that make use of

existing datasets to optimize the application of such

platforms toward a particular end use would be beneficial.

There has been some related prior work on the sen-

sitivity of bathymetric information on the results of pre-

dictive numerical models. Kaihatu and O’Reilly (2002)

investigated the effect of updated bathymetric surveys

of Scripps Canyon, California (CA) on the results of the

Simulating Waves Nearshore (SWAN; Booij et al. 1999).

Plant et al. (2002) developed an interpolation technique

using Gaussian-shaped smoothing windows for bathy-

metric data processing, which allowed for control of the

spatial scale of various bottom features in the inter-

polated result. The resulting technique was also useful

in determining the relative amount of smoothing any

small-scale features in the measured bathymetry un-

dergo when interpolated to a model grid. The effect of

this smoothing on wave and wave-averaged hydrody-

namic models was analyzed by Plant et al. (2009). They

determined that the wave and wave-averaged hydro-

dynamic models had different sensitivities to changes in

the bathymetry. Use of these aspects of the sensitivity to

bathymetric variability scales would thus be useful for

designing survey routing and sampling such that the col-

lected bathymetry would have the most influence upon

the response of the model.

c. Nearshore numerical wave model

The model under consideration here is SWAN (Booij

et al. 1999), which has been used for routine forecasting

for regional and coastal domains. It is the default wave

driver for the Delft3D model (Lesser et al. 2004)—a

hydrodynamic software package widely used in many

engineering and defense applications for simulations of

waves, flow, sediment transport, and morphology. This

study explores the behavior of the SWAN model and its

sensitivity to bathymetric input and develops a method

to optimize the required data collection.

To develop a feasible way to determine an optimal

sampling for use as a model input to Delft3D, the spatial

variation in the sensitivity of model-predicted wave

heights and currents to bathymetry particular to a given

study area needs to be examined. The goal of this study

is to identify the critical bottom features that must be

captured in sampling and to obtain an interpolated ba-

thymetry that enables the model in generating the most

accurate results of wave heights and currents. The use of

a global optimization scheme for this purpose is pro-

posed in section 2, which compares different approaches

to the sampling problem. Computer-generated random

survey paths are evaluated for their ability to capture the

areas critical to the model function, and a genetic algo-

rithm is developed and applied to evolve the fittest

possible path. The sampled bathymetry along this path is

interpolated to the model grid using inverse distance-

weighted triangular interpolation. The fitness is ascer-

tained by evaluating the differences between the model

results produced from the path-interpolated bathymetry

and those from the best available bathymetry. A general

background of the concept of genetic algorithms is laid

out in section 2, and section 3 describes the procedure

followed to adapt and apply this technique to the present

problem. Sections 4 and 5 present the results and con-

clusions, respectively, along with possible improvements

and alternatives to the present approach.

The work presented here establishes a new method-

ology based on genetic algorithms (GAs) to identify op-

timal bathymetric survey paths for fitting predictive

nearshore models. Specifically, new operators are nec-

essary to facilitate the use of a genetic-algorithm-based

search for bathymetric survey paths. Three new problem

representations, or encodings, are developed and tested

here to enable an efficient search for a survey path that will

maximize the quality of new data. The specific application

MARCH 2012 M A N I A N E T A L . 465



in this study requires a priori knowledge of the high-

resolution bathymetry, since the model results over this

bathymetry are being used as the comparison metric.

However, in the present context, the GA-driven survey

path is optimized in the sense that the bathymetry so

measured exerts the greatest influence on the wave field

in a particular region. Thus, should resampling of the

bathymetry (often performed to help improve simula-

tions and forecasts) become necessary, this algorithm

can be implemented and extended to advise where the

available measurement resources should be concentrated.

Additionally, if high-resolution measurements of the free

surface properties are available, the algorithm may be

altered to provide optimal estimates of the bathymetry

with no further a priori knowledge.

The development outlined here is not intended for

general utility at this stage. The optimum path calcula-

tions are sensitive to the incident wave environment, as

will be shown. To increase the applicability of the algo-

rithm would involve calculation of a large number of

optimum paths, corresponding to the relevant wave con-

ditions for a given area. Some aspect of this is envisioned

for future development using the present work as a basis.

2. Genetic algorithms

a. Approaches to the bathymetric sampling problem

If we assume that the objective of the bathymetric

sampling is defined as the generation of the most cost

effective input for the SWAN model, one possible method

of determining the sampling strategy could be by studying

the theoretical sensitivity of the predicted wave heights

and currents at the required location(s) to the bathym-

etry. This would generally be done by performing a per-

turbation expansion on one of the dependent variables

and one of the inputs; the input perturbations represent

input errors, and the resulting analysis would determine

the growth or decay of the model errors as a function of

the input errors. As an example, this was performed by

Chen and Svendsen (2003) to evaluate the sensitivity of

modeled nearshore currents on errors along the lateral

boundaries. If one focused on the sensitivity to bottom

depth, this sensitivity would vary in space, and a high

sensitivity at any given set of locations would indicate

that greater importance must be given to capturing those

locations during sampling. However, the ubiquity of

depth-dependent terms in the governing equations of

wave and hydrodynamic models, and the nonlinear de-

pendence of predicted waves and currents on depth,

precludes this in anything other than the simplest con-

ditions. Therefore, any effort to quantify the effect of

the input local bathymetry on the model results would

have to use nonlinear or stochastic methods. Rather than

an analytic approach, these methods make use of random

simulations from a physics-based model to deduce the

appropriate sensitivities.

b. Genetic algorithms

We wish to investigate the tenability of GAs for this

application. GAs are widely used to solve problems

in optimization and machine learning. A GA-based ap-

proach evolves a set of candidate solutions for an optimi-

zation model using operators inspired by natural selection

and genetic variation.

The stochastic approach of GA-based approaches

overcomes some limitations of traditional methods of

optimization, especially for multimodal problems, which

are characterized by more than one solution that satisfy

system objectives to a similar degree. While traditional

methods such as gradient descent may converge to locally

optimal solution, a GA samples a better representation

of the entire search space, increasing the probability of

convergence to a global extremum. The idea of evolu-

tionary computation, of which genetic algorithms are

a subclass, came about as a result of efforts to emulate

nature to solve optimization problems (Holland 1975).

In nature, there exist variations within species that are

brought about by reproduction. Of the many offspring

produced by the individuals of a population, only a few

survive to adulthood and reproduce in turn. This is known

as ‘‘natural selection,’’ where the survival of an offspring

is dependent on its suitability and adaptability to its

environmental conditions. Similarly, a genetic algorithm

maintains a population of possible solutions to the given

problem, to which the concept of ‘‘survival of the fittest’’

is applied. Reproduction is achieved by the ‘‘crossover’’

of parent chromosomes, and the mutation operator is

responsible for introducing diversity by randomly chang-

ing some genes. Holland (1975) was the first to success-

fully model the mixing of chromosomes that occurs in

nature to create a functioning genetic algorithm, and

Goldberg (1989) formally developed the GA method-

ology in the context of solving optimization models. The

following section further describes this method, and brings

out the meaning of a few of these technical terms in the

context of the optimization problem.

c. Method outline

A basic genetic algorithm has the following steps

(Goldberg 1989):

1) problem representation,

2) problem initialization,

3) fitness evaluation,

4) selection of individuals to produce new offspring,
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5) reproduction of new individuals using crossover and

mutation,

6) reinsertion of new solutions to the population using

elitism, and

7) repeat steps 3 to 6 till convergence.

The following is a brief general description of each of

these steps.

1) PROBLEM REPRESENTATION

A set of candidate solutions to the problem as main-

tained by the GA is referred to as a population. Each

individual of the population is called a chromosome, which

is composed of a string of genes. Genes can be binary,

integer, or real-valued numbers.

2) POPULATION INITIALIZATION

To produce the initial population, random number

generators are typically used to produce the gene values

for each individual to ensure sufficient spread over the

entire search space. The size of the population depends

on the nature of the problem or (more specifically) the

nature of the search space. A larger population size re-

quires a larger number of computations to produce off-

spring, but allows greater diversity of solution values

in the population, which can contribute to efficient con-

vergence to global optima.

3) FITNESS EVALUATION

The suitability of a particular solution is characterized

by computing the ‘‘fitness value.’’ This fitness corre-

sponding to the specified optimization criterion is cal-

culated for each individual, and the objective of the

algorithm is to maximize this in subsequent generations.

4) SELECTION OF INDIVIDUALS TO PRODUCE

NEW OFFSPRING

In the genetic algorithm framework, individuals are

selected to survive to the next generation based on fit-

ness values, which ensures that individuals with higher

fitness values have a greater effect on the properties of

the next generation of solutions.

5) REPRODUCTION OF NEW INDIVIDUALS USING

CROSSOVER AND MUTATION

New individuals are produced from the selected pairs

in each generation using the genetic operations of cross-

over and mutation. The crossover operation combines

the characteristics of the two parent chromosomes to

form new offspring. The probability of a crossover op-

eration is specified by the crossover rate. Similarly, the

probability of mutation of a gene is specified by the

mutation rate, and mutation is executed by inserting

a new randomly created gene in place of the selected

gene.

6) REINSERTION OF NEW SOLUTIONS INTO

POPULATION USING ELITISM

At the end of each generation, the best offspring are

inserted into the population in place of the least fit in-

dividuals, which are discarded. Elitism ensures that the

best-performing individuals are always retained and can

increase the speed of convergence.

3. Methodology

Genetic algorithms have been used as a global opti-

mization scheme in a variety of applications, includ-

ing oceanography. They were first used in the area of

oceanographic experiment design by Barth (1992), who

considered a time-dependent design problem for an

idealized experiment. Baehr et al. (2004) first employed

it for predeployment array design in optimizing an ob-

serving system for the North Atlantic meridional over-

turning circulation. They compared this technique with

both the simulated annealing method and a heuristic ap-

proach, and found genetic algorithms to be a signifi-

cantly faster method than simulated annealing (Barth

and Wunsch 1990) and at the same time more successful in

finding the optimum solution than the heuristic approach.

In terms of nonsynoptic measurements using moving

platforms, Bellingham and Wilcox (1996) described a

method to determine the optimum resolution and extent

of survey that would minimize the energy cost and the

total error for oceanographic AUV deployment. This was

an attempt to accommodate the temporal variation of

the ocean environment during AUV deployments using

the physical limitations of the vehicle as a constraint.

However, no investigations of methods to increase the

efficiency of temporally static, spatially nonuniform

oceanographic surveys could be found in the scientific

literature, particularly with the overall goal of input into

predictive models. The parameter to be optimized in such

surveys would be the path of motion of the survey ve-

hicle, rather than a distribution of single-point measure-

ment sensors. The problem thus becomes one of path

planning to minimize the total survey error at an ac-

ceptable energy cost. The problem of path planning in

general and for AUVs in particular has been quite ex-

tensively studied before in the context of ocean navi-

gation with a given current field at minimum energy cost

(Alvarez et al. 2004; Fox et al. 1999). However, the

survey path planning problem has somewhat conflicting

requirements of maximizing survey extent to achieve

minimum survey error, and doing so with minimum path

distance, which calls for a different GA scheme.
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a. Objective

The broad objective of this study is to estimate the

required amount of bathymetric information for the hy-

drodynamic model and the sampling strategy needed to

minimize this amount. This is done by setting ourselves

two goals.

The first goal is to estimate the spatial variation in the

optimum cross-shore and longshore resolution require-

ments of bathymetry for the model for a given study

area. This is hence referred to as the ‘‘optimum resolu-

tion problem.’’ This is equivalent to the problem of de-

signing the spatial distribution of parallel longshore or

cross-shore bathymetry survey tracks for best possible

bathymetric input to the model.

The next goal is to design an optimum continuous path

for a bathymetric survey vessel such as an AUV, fo-

cusing on the utility of the thus-sampled, model–grid

interpolated data as a model input for Delft3D (hence

referred to as the ‘‘survey design problem’’). Two dif-

ferent encoding schemes for the survey design problem

are developed and evaluated. Under the first scheme

(scheme 1), the problem is somewhat simplified by con-

straining the number of degrees of freedom of the path

such that it can only take perpendicular turns, and is of

the form of a line-by-line sweep of the coverage area as

shown in Fig. 1. The sweep direction shown in the figure

is long shore. This approach ensures at the outset a more

or less uniform coverage of the area of interest. How-

ever, in this case, the basic structure of the path to be

followed is predetermined. With the second approach

(scheme 2), the GA is freer to decide the structure of the

path to be followed by using a strategy that only sets an

upper limit of the length of the path, and allows it to

move in any of eight possible directions (sectors of 458

each around a circle starting from due north). Starting

from an initial randomly chosen point, the step length is

chosen as the minimum unit of distance that must be

traveled in a straight line before changing direction.

Thus, the path has to pass through adjacent points on

a grid of resolution equal to the step length. Though

a smaller step length might be desirable in order to make

the algorithm select and converge on the best possible

path (i.e., one that would lead to an interpolated ba-

thymetry and model results with smallest deviation to

those using the high-resolution bathymetry), the step

length must be set high enough so that there is no ex-

cessive concentration of measurements or looping of the

path in a small area at the expense of wider coverage of

the complete area of interest. For each of the encoding

schemes, we make no a priori assumptions concerning

the endpoints of the AUV’s path. Constraints on the

AUV pathlength involve assumptions concerning power

consumption. In a field situation, however, the AUV path

endpoints can become important because of their prox-

imity (or lack thereof) to land or infrastructure (boats,

batteries, etc.). Incorporation of these endpoint effects

can take the form of additional constraints for the GA

optimization; this is not pursued here.

b. Application of the GA

The general blueprint of the GA followed in both

these problems mentioned in the objective remains the

same as described in the previous chapter. However, the

problem representation schemes and implementations

vary. The following subsections provide a detailed de-

scription of the implementation of these steps for the

stated problems in the previous section.

1) OPTIMUM SPATIAL RESOLUTION PROBLEM

(i) Encoding scheme

The ‘‘encoding scheme,’’ which describes how each

individual solution is encoded as a chromosome, needs to

be carefully selected, as it determines the effectiveness of

the genetic operations performed on the chromosomes.

In this case, each individual solution was encoded as a

string of a fixed number of real-valued numbers (genes)

that correspond to the y coordinates of the longshore

tracks, or x coordinates of the cross-shore tracks. The

positive x direction was assumed to point toward the

shoreline. The number of genes in the encoded solution

varied according to the number of tracks desired.

(ii) Initial population generation

The individuals of the initial population were randomly

generated to simulate a real numbered value (x or y co-

ordinate in the given domain) corresponding to each gene.

Preliminary studies tested different population sizes to

determine the effect on the performance of the GA. The

population size leading to the best convergence char-

acteristics was identified for use in further analysis.

(iii) Fitness calculation

The wave model was first run with the best available,

highest-resolved bathymetry and the results thus obtained

FIG. 1. A typical path for bathymetric sampling as modeled in the

study (scheme 1).
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were used as the standard of comparison (a so-called

‘‘golden standard’’) for evaluating the fitness of the sub-

sampling schemes. The inverse of the mean absolute dif-

ference between the golden standard results and the

individual results over the entire area of interest was then

defined as the fitness parameter of that individual.

(iv) Selection and replacement

There are various methods of selection documented in

the literature (Goldberg and Deb 1991). The ‘‘Roulette

selection’’ method was implemented, in which the prob-

ability of a member being selected to reproduce is directly

proportional to its calculated fitness value relative to the

other members. Elitism was executed at every generation.

(v) Genetic operations

Single-point crossover was used, which means that the

parent chromosomes were truncated at a single ran-

domly selected gene before being recombined to form

new offspring. A 100% crossover rate was used so that

this operation is always performed to create new indi-

viduals. A mutation operation was used in order to in-

troduce new properties (random genes) to the offspring

solution at a specified mutation rate, which was selected

for best convergence on the basis of the results of the

application of the GA to a test problem (not shown).

2) SURVEY DESIGN PROBLEM: SCHEME 1

(i) Encoding scheme

In this case, each individual is a random path of fixed

length. Since spatial location is the primary property

characteristic of these various alternate solutions, the

encoding scheme must be such that each gene has a

uniquely identifiable geographical area associated with

it. Only then can crossover and other genetic operations

be used to create progressively better solutions. There-

fore, the path (chromosome) was divided into sections

(genes) of equal length, and the study area divided along

the y axis (see Fig. 1) at equal distances, so that each cross-

shore strip of area had just one associated gene.

The structure of the solution is constrained to repre-

sent a path in the form of a line-by-line sweep, where the

distance between sweeps in the y direction is fixed. For

this representation, each gene is encoded as a string of

numbers representing the starting x coordinates and the

direction of the lines associated with a gene. To ensure

that the length of the section of path corresponding to

each gene is a constant l, each section was divided into

n subsections. These subsections consisted of parallel

tracks oriented perpendicular to the sweep direction

(see Fig. 1), and which were created by selecting n 2 1

random points between 0 and l, where n is the number of

equidistant parallel tracks (either long shore or cross-

shore) associated with that gene. This produced a set of

n real numbers di, obeying the following constraint:

�
n

1
di 5 l. (1)

The x coordinate of the starting point of the section was

set equal to the x coordinate of the end point of the

previous adjacent section, and the x coordinate of the

start of each new subsection was decided by

xj,i 5 xj,i21 1 ki21di21, (2)

where ki 5 61 is a random number, j is the gene index,

and i is the allele index.

The next step was to check whether the path thus

described obeys the constraints of the given boundary

and thus remains in the domain. If not, the current se-

quence was discarded and a new one created until the

constraints were met. The number of such iterations

required was found not to be large enough to significantly

increase computational costs. Thus the encoded solution

was of the form

[(x1,1, . . . , x1,n), (x2,1, . . . , x2,n), . . . , (xm,n, . . . , xm,n)],

where m is the number of genes and n the number of

alleles of a gene.

(ii) Initial population generation

The genes of all the chromosomes of the initial pop-

ulation were randomly initialized and then checked to

ensure that each chromosome satisfied the set constraints

of the domain boundaries and the constant length.

(iii) Fitness calculation

The fitness parameter was calculated in the exact same

manner as in the ‘‘optimum spatial resolution problem’’

(section 3a). Also, the Roulette selection method was

similarly used to select parents for reproduction.

(iv) Genetic operations

The crossover rate used here was 100%, and a single-

point crossover at a randomly selected rth gene was

performed. However, a simple crossover would not

produce a feasible offspring solution as the resultant path

would most likely be discontinuous. Therefore, while the

remaining genes of either parent were carried over to the

offspring during the crossover in a typical fashion, a ran-

dom mutated gene was inserted in place of the rth gene to

create a feasible individual, enforce conditions of conti-

nuity, and maintain the pathlength.
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To further ensure that the length of the section of path

corresponding to each gene is constant at l, and at the

same time continuous with the adjacent sections, n 2 2

subsections of the form [(0, l1), (l1, l2), . . . , (ln23, ln22)]

were created by selecting n 2 2 random points between

0 and l. The first n 2 2 alleles were then encoded and

tested as described in the encoding scheme. The (n 2 1)th

allele was chosen to satisfy

dn21 1 dnl2 5 �
(n22)

i
di, and

kn21dn21 1 kndn 5 xj,n 2 xj,n22. (3)

In the absence of real positive solutions for dn21 and

dn22, the procedure was repeated until one was found.

The new chromosome was then inserted into the pop-

ulation in place of the least fit member.

3) SURVEY DESIGN PROBLEM: SCHEME 2

The following steps in this scheme differ from those

in scheme 1.

(i) Encoding scheme

A grid of a specified step length was defined. The start

point of the vehicle path was picked at random from the

nodes of the defined grid. The integer index numbers of

this grid point constituted the first two genes of the

candidate solution. One of the adjacent grid points was

picked as the next decision point on the path. The rel-

ative position of these grid points to the current location

was encoded according to the numbering convention

shown in Fig. 2, where the center represents the current

location. This string of relative directions encoded as in-

tegers formed the remaining genes of the individual.

(ii) Genetic operations

A single-point crossover was used at a rate of 100%,

and mutation of individual genes carried out at different

rates. Thus in this case, the geographic location infor-

mation of one of the two parent paths was lost, and only

its structure passed on to the offspring.

4. Results

a. Study area descriptions

We chose two field sites to test the GA implementa-

tion for bathymetric surveys. A geographic reference

map of the sites is shown in Fig. 3. For each test site, we

used measured bathymetry and wave forcing measured

at a nearby wave buoy. Each site has unique bathy-

metric characteristics that test the robustness of the GA

implementation.

The first site is the area offshore of La Jolla, CA. This

site is marked by two large undersea canyons (Scripps

Canyon and La Jolla Canyon) and relatively smooth,

featureless bathymetry near shore of the canyon heads

(Fig. 4a). This area was the site of the Nearshore

Canyon Experiment (NCEX) in 2003 (Elgar 2003). The

steep topography at the canyons could be expected to

cause significant changes in wave energy in the long

shore.

The incident wave forcing for this site was obtained

from a wave buoy operated by the Coastal Data Infor-

mation Program (CDIP) at Scripps Institution of Ocean-

ography (Coastal Data Information Program 2009).

This buoy (station identifier: 100) is presently located

at 32855.849N, 117823.549W (approximately 12 km off-

shore) at a water depth of approximately 550 m. The

incident wave condition used had a significant wave height

of 1.16 m, a peak period of 9.09 s, and a peak approach

direction of 108 south of due east. To avoid multiple it-

erative model runs over a large domain, we employed a

nested model approach. The SWAN model was first run

over a larger domain (shown in Fig. 4a), and the re-

sulting wave spectra along the offshore boundary of an

approximately 3 3 3 km2 grid (shown in Fig. 4b) was

written out to be used as the boundary condition for the

SWAN runs over this smaller area of interest. Since

the focus is on the bathymetry—a static quantity—the

SWAN model was run as a time-stationary model; thus

these boundary spectra remain constant over the GA it-

erations, and there is no consideration of computational

time step. A computational grid resolution of 40 m both

in the cross-shore and long shore was used for the smaller

domain. This resolution was used to ensure sufficient

numerical accuracy for this analysis.

A second study site was selected off the coast of Camp

Lejeune, North Carolina (NC). This area of about 22 3

18 km2 has a higher degree of small-scale irregularity in

the bathymetry (Fig. 5) relative to the La Jolla region.

Therefore, one might expect a significant difference in

FIG. 2. Relative direction encoding scheme.
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the product bathymetry and thereby model results de-

pending on where the sampling is done. This might pro-

vide a greater incentive for performing the optimization

and would be a test of the usefulness of the method. The

golden standard model wave heights corresponding to

the best bathymetric input are also shown in Fig. 5. This

served as a benchmark for comparing the model results

from sparsely sampled input. The typical wave boundary

conditions for this region were obtained from a National

Data Buoy Center (NDBC) buoy located at 34.4768N,

77.2808W (station 41035, Onslow Bay, NC). The wave

condition used for this had a significant wave height of

0.79 m, a peak period of 5 s, and was oriented normal to

the shoreline.

b. Results for optimum spatial resolution

The performance of the method was measured in terms

of the relative percentage mean absolute difference be-

tween the computed wave heights (with subsampled ba-

thymetry as input) over the entire study area and the

expected wave heights—predicted using all available

bathymetric data as input. Figures 6a–c show the results

for the case when the longshore and cross-shore sampling

were optimized to a minimum cost of 5.5% and 3% er-

ror, respectively.

As can be seen from the figures, the resultant sampling

scheme is denser near the south canyon, near which the

wave-height gradient is also at its greatest (Fig. 6b).

FIG. 3. Geographic reference showing the study area (shaded gray) at (a) the site of NCEX,

La Jolla, CA, and (b) Camp Lejeune, NC.
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Also, the area closer to the shore seems to require greater

sampling (Fig. 6b), which is consistent with what one

might expect given the bathymetric complexity in this

area. Though the average discrepancy in the newly com-

puted wave height over the entire study area was used as

an indicator of the performance of the method, the per-

formance at any given location might be very different.

c. Results for survey design: Scheme 1

Figure 7a shows a 27-km length of survey track, op-

timized to serve the model to produce the best possible

wave heights over the selected study area. The corre-

sponding grid-interpolated bathymetry and the resultant

wave heights from the model are shown in Figs. 7b and

7c, respectively. The performance metric used was the

same as described in the previous section, and Fig. 7d

shows the convergence of the GA scheme. The com-

putation time was about 12 s per iteration of the GA on

a 2.66-GHz dual core processor of 2 GB memory. In-

creasing the extent of sampling has a definite but rela-

tively small effect in improving the performance of the

algorithm.

For different specified lengths of path and given input

wave spectrum, the optimized paths always converged

to a pattern that sampled the deep northwest canyon and

the trend line lying in the northwest–southeast direction,

so that the south canyon was also mostly captured. As

mentioned above, the peak wave approach direction on

the input wave spectrum was about 108 south of east. On

shifting the peak wave direction in the input wave spec-

trum more toward north, significant changes in the op-

timized survey path were observed as the trend line

of the path oriented itself roughly parallel to the wave

direction, resulting in a trend line more along the

northeast–southwest axis. This is probably indicative of

increased wave-height variability near the northern part

of the coastline, which would require a better repre-

sentation of the north canyon for the model to be able

to reproduce correctly. Figures 8a and 8b, respectively,

show the wave-height fields that would result from

changing the peak direction of the input wave spectrum

and the effect of this change on the optimized survey

tracks produced by the GA.

d. Results for survey design: Scheme 2

In this scheme, there are fewer constraints on the

structure of the desired path. In the study over the La Jolla

FIG. 4. The site of NCEX, La Jolla, CA: (a) large offshore wave model domain, and (b) bathymetry and modeled

significant wave heights over nearshore area of interest.

FIG. 5. Camp Lejeune, NC: bathymetric field contours and color

map of modeled significant wave heights.
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region, a relatively low maximum survey pathlength of

8 km was specified. An optimized solution path after 15

generations is shown in Fig. 9a, while the derived ba-

thymetry and wave heights and convergence are shown

in Figs. 9b, 9c, and 9d, respectively. The computation

time for this study region was of the order of 7 s per

iteration of the GA. A step length (see section 3b) of

400 m was used here, which means every decision

point on the path was followed by a straight line sec-

tion of at least 400 m. This was chosen such that ex-

cessive local looping that would impede possible wider

coverage is avoided, and at the same time enough de-

cision points are allowed to give room for the solution

path to evolve.

As model wave height is the only criterion considered

for optimization of the bottom sampling, the possibility

of many distinct bottom configurations producing simi-

lar looking wave-height fields arises, especially so when

the sampling extent is small. Also, since the cost function

used considers only the spatially averaged wave-height

errors with respect to the golden standard (see Fig. 4b),

there could be considerable difference in the actual

spatial variation of wave heights as seen in Fig. 9c. As

seen in the figure, the optimum path sampled the south

canyon well, while the north canyon was almost com-

pletely ignored. The effect of this is evident in the wave-

height fields produced, which show a better match with the

golden standard in the southern part of the modeled area.

The results of the study over the Camp Lejeune, NC

bathymetry—the optimized path and the derived ba-

thymetry and model wave heights—are shown in Figs.

10a,b. The upper limit used for the length of survey was

55 km on an area of about 18 km 3 20 km. This length

was chosen to be small relative to the bathymetric com-

plexity and the domain size in order to provide the al-

gorithm with a particularly strenuous test. A step length

of 10 times the computational grid resolution of 92.5 m

was used. In contrast with the study over the La Jolla

FIG. 6. Variation in wave model sensitivity to variations in the bathymetry, NCEX case: (a) varying longshore

resolution, (b) varying longshore resolution with increased sampling, (c) varying cross-shore resolution, and (d)

varying cross-shore resolution with increased sampling.
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region, the spatially averaged relative error in modeled

wave height for such a small length of survey path was

found to be relatively very high—of the order of 23%.

Moreover, because of the large size of the study area, the

computation time required was of the order of 2 min per

iteration.

5. Conclusions

a. Overview

Bathymetric information for a particular region is a

vital input to coastal wave and hydrodynamic predictive

models. Direct measurement of bathymetry, however, is

laborious under the most favorable of circumstances. If

we take the view of the bathymetric field as an input to

the model, it is sensible to determine the spatial scales of

bathymetric variability to which the models will respond,

since most predictive nearshore models are averaged over

some length scale. This also has the effect of optimizing

a bathymetric survey, since only the bathymetry most

influential to the model response would be measured.

The genetic algorithm (GA) approach developed here

attempts to make more efficient use of bathymetric mea-

surement platforms for the specific task of providing better

hydrodynamic model input. As this is an initial proof-of-

concept study, we make no attempt at creating a utility

with general applicability, but instead explore the use of

GA in optimizing surveys with selected wave conditions.

A set of encodings for this type of problem are explored

here to allow higher degrees of freedom in the search for

an optimal path. Small inefficiencies in the paths that are

identified are noted; for example, a path that is identified

using these encodings can loop back or cross itself. The

GA-based search provides a flexible framework for in-

vestigating new representations to both improve conver-

gence and ensure that the entire decision space is explored.

To test the algorithm, two study areas were considered,

and the GA was then applied to determine the amount

and locations of bathymetric data that have the greatest

impact on model response. It was also shown that this

result changed as the incident wave condition changed.

In a practical application, a range of incident wave con-

ditions prevalent for a given region can be run with the

GA to ascertain all regions in the domain exerting high

influence on the model response.

FIG. 7. NCEX case: (a) an optimized survey

track length of 9 km using scheme 1, (b) ba-

thymetry interpolated from sampling along

optimum track and corresponding model

wave-height results, and (c) convergence plot

for track length of 9 km.
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The development detailed herein is an initial application

of GA toward addressing the issue of model sensitivity to

bathymetric variability and its potential influence on

sampling strategies. For this study we required a standard

to which ensuing model fields over iterative bathymetry

interpolations would be compared, which required know-

ing the entire high-resolution bathymetric field in ad-

vance. However, if wave-height data were available at

FIG. 8. Rotating original wave directional spectrum 308 toward the north: (a) wave heights and (b) optimal path.

FIG. 9. NCEX case: (a) optimized survey path for specified maximum survey length of 8 km using scheme 2, (b) bathymetry interpolated

from sampling along optimum path, (c) corresponding modeled wave heights, and (d) convergence plot for track length of 8 km.
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locations distributed throughout the domain, these could

be used to serve the same purpose. One extension of this

study would be to use data from the NCEX study and

assess the robustness of the algorithm; this will be pur-

sued in a future study.

b. Further improvements

One target of improvement is the interpolation scheme

used to arrive at the model input bathymetry from the

sampled one. The chosen scheme can have an impact

on the solution path and needs to be carefully selected.

However, the more important requirement in this case is

that a consistent form of interpolation be used to evaluate

all the different sampling strategies. Inverse-distance-

weighted triangular interpolation was used for the pur-

pose of this study; however, using some of the techniques

of Plant et al. (2009) could potentially help improve the

interpolation process used in this study.

Improvements can also be made in the error evalua-

tion. The objective of the optimization schemes used here

was to minimize the spatial average of the error in wave

height, which was effectively used as a cost function. This,

FIG. 10. Camp Lejeune case: (a) optimized survey path for maximum survey length of 55 km,

using scheme 2; (b) modeled wave heights shown over bathymetry interpolated from sampling

along path.
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however, may not always be a good measure of perfor-

mance for the model, and was used in this study only as

a rough indicator. The objective function can then be

easily redefined to be location specific, or to suit a dif-

ferent output parameter, or be more representative of

the spatial variance of the error.

One potential issue in the practical applicability of the

proposed methods is the possible redundancy in data

collection that would occur by not integrating and ac-

knowledging the acceptable data from previous surveys.

To this end, a future study could employ the sediment

and morphology modules of Delft3D to predict the

expected changes in bathymetry over the given area

during the interim period between surveys with the help

of an older bathymetric dataset and long-term model

forcing. This would make it possible to concentrate the

search for an optimal solution path in areas that are

classified as having high expected bathymetric change.

Another possible extension to this work involves calcu-

lating optimum paths for various relevant incident wave

conditions, then combining the ensemble of paths to de-

termine a mean optimum path for the general wave en-

vironment for an area. This would offer some general

guidance for surveys for different areas.
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