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Abstract Based on a decomposition of the velocity into
mean flow, turbulent and wave components, momentum
and hereafter a wave-energy equation is derived. It
contains a turbulent energy dissipation term which is
closed by applying a wave-related mixing length model
and linear wave theory solutions. This closure produces
a non-linear turbulent wave-energy dissipation including
the wave energy in a 5/2 power law. The theory is able to
predict correctly the shape of deep-water wave spectra
according to Phillips’ similarity law.

Keywords Wave energy spectrum � Wave energy
dissipation � Reynolds decomposition

1 Introduction

Wave energy defined as the square of the wave height H
or amplitude A is advected by the mean flow and the
group velocity. It radiates energy to shear flows and is
dissipated by bottom shear stresses, viscous and turbu-
lent damping. Wave energy is lost also through breaking
in shallow and white capping in deep water. When the
wave-energy spectrum is regarded, it is believed that
quadruplet non-linear interactions transfer energy
within the spectrum.

For the description of these processes several wave
energy equations have been derived. Initially, it was
assumed that the observed changes in amplitude are
mainly related to refraction and shoaling and the wave
energy is obeying the law

div ð�uuþ cgÞE
� �

¼ 0 ;

where �uu is the mean flow and cg the group velocity. E is
the wave energy defined as

E ¼ 1

2
.gA2 ¼ 1

T

ZT

0

ZzS

zB

1

2
.uwuw þ .gz

� �
dz dt ;

representing the kinetic and potential energy of Airy
waves integrated over the wave period T and water
depth. Here zB and zS are the vertical coordinates of the
bottom and the free surface, respectively, and uw is the
orbital wave velocity.

Longuet–Higgins and Steward (1961a,b, 1962)
proved for several flow situations that there is an ex-
change of energy between the mean flow and the waves,
and that the resulting wave amplitude behaviour can be
reproduced by:

oE
ot
þ div ð�uuþ cgÞE

� �
þ 1

2
Sij

oui

oxj
þ @uj

@xi

� �
¼ 0 ;

where Sij is the so-called radiation stress. Because their
approach was based on second-order Stokes theory, i.e.
non-viscous flows, no mechanism for the dissipation of
wave energy was found.

This changed in the derivation presented by Phillips
in his text book on the dynamics of the upper ocean
(Phillips 1966). He derived the total energy equation for
the combined wave and mean flow by multiplying the
Navier–Stokes equations with the velocity and adding
the potential energy. The integration over the water
depth was done without neglecting dispersion effects.
After subtracting the depth-integrated energy equation
for the mean flow, the wave energy no longer contains a
potential energy component, i.e.

E ¼ 1

4
.gA2 ¼ 1

T

ZT

0

ZzS

zB

1

2
.uwuw dz dt

for related Airy waves. This change in the wave-energy
definition is not dramatic unless the wave-energy equa-
tion is linear in the wave energy itself. Again, Phillips’
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derivation did not include viscosity, but he included
viscous dissipation as a supplement.

Further improvements to this derivation refined the
integration over the water depth introducing the
boundary conditions at the bottom and the free surface
whereby wind and bottom shear stresses as source and
sink terms can be introduced straightforward (Mei 1989;
Johnson 1997). Milbradt (1995) also added a sink term
for wave breaking and showed that the resulting model
is able to cope with large-scale coastal wave modelling.

Spectral wave-energy models start from the conser-
vation of wave-action density N ¼ 2jAj2=x given as:

oN
ot
þ div ð�uuþ cgÞN

� �
¼ 0 ;

where �uu is the mean flow and cg the group velocity. This
equation is derived from the classical kinematic wave
theory, which analyzes the behaviour of a harmonic
function dependent on an arbitrary phase function
(Whitham 1965; Bretherton and Garrett 1969; Hayes
1970). The same derivation process leads to the spectral
wave-energy equation when the wave-action density is
assumed to be also a function of the wave number
(Willebrand 1975). The main characteristic of this ap-
proach is the fact that it is originally a kinematic and not
a hydrodynamic approach. Therefore sources and sinks
for the energy of surface waves do not appear in the
derivation of the wave-action density equation and have
to be taken into account empirically. These were ob-
tained from the JONSWAP dataset, whereby Hassel-
mann et al. (1973) concluded that turbulent energy
dissipation is a minor important process while surface
effects like white capping are main dissipation source of
waves in deep water. This kind of model is one of the
most successful approaches for ocean wave modelling.
The WAM model as it is presented by Komen et al.
(1994) did not contain a mechanism for wave-energy
dissipation due to turbulence. Further developments of
the model included a quadratic dissipation mechanism
(Schneggenburger 1999) which was attributed to the
dissipation related with the eddy viscosity (Rosenthal
1989).

Independently of wave-energy modelling, several at-
tempts were made to study wave dynamics using a
decomposition of the flow field into a mean flow, the
periodic wave motion and turbulent fluctuations. For
the separation of the three kinds of motions two differ-
ent averaging processes have to be performed. Svendsen
and Lorenz (1989) used this decomposition to improve
the theory of undertow and long-shore currents
neglecting viscous effects. They started their decompo-
sition with an ensemble averaging for the turbulence and
continued with an averaging over a wave period. You
et al. (1991) studied in this way the vertical velocity
distribution in a combined flow of waves and mean
currents. They separated mean and wave motions by
time and phase averaging; but none of them proceeded
to a wave-energy equation. Also very often a decom-
position into the mean and the turbulent components is

found whereby the mean flow is identified with the wave
motion. In this way, Teixeira and Belcher (2002) for
example, showed how kinetic wave energy is trans-
formed into turbulent kinetic energy as the wave prop-
agates.

In this paper a new approach to derive the wave-
energy equation is presented. First, the flow field is
decomposed into three components i.e. mean, turbulent
and wave motions (Malcherek 2001). Second, the
Navier–Stokes equations are split into three sets of
momentum equations for the three kinds of movements
using a long- and a short-term time-averaging process. It
will be shown that the decomposition is consistent with
the original equations, i.e. when adding the resulting
momentum equations for the three components the
original Navier–Stokes equations are reobtained. From
the momentum equations of the wave field three-
dimensional kinetic wave-energy equations can be de-
rived straightforwardly. Double averaging over the wave
period and water depth leads to an equation for the
wave energy with some unknown correlation terms.
These terms are closed using linear wave theory and a
new mixing length model for the wave-induced turbu-
lence. Finally, a wave-energy equation is obtained where
the energy is propagated in a velocity field, being the
sum of mean and group velocity. Energy dissipation
processes due to viscosity, turbulence and bottom shear
stress as well as wind input are clearly identified in this
derivation.

The presented theory states that wave-energy dissi-
pation related to wave-induced turbulence is the most
important process which is able to explain correctly the
shape of the spectrum according to Phillips’ similarity
law (Phillips 1978).

2 Consistent Reynolds decomposition of the velocity
field in mean flow, waves and turbulence

For the following derivation the Navier–Stokes equa-
tions are written in their conservative form

ou

ot
þ div u� uð Þ ¼ � 1

.
grad p þ div P þ f ;

where u is the combined flow velocity, . is the fluid
density, P is the viscous tensor

P ¼ m
oui

oxj
þ ouj

oxi

� �

and m the molecular viscosity. The tensor product � is
given as:

u� v ¼ uivj
� �

i;j¼1;3

and the divergence of a tensor produces the vector:

div P ¼
X3

i¼1
Pij

 !

j¼1;3

:
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The mean flow velocity is defined as a time average of
the actual velocity of a time scale Dtl, which is longer
than the wave periods. For wind-generated waves this
time scale lies in the range of 1 min:

�uuðx; y; z; tÞ ¼ 1

Dtl

ZtþDtl

t

uðx; y; z; tÞdt :

Surface waves and turbulent fluctuations are superim-
posed on the mean flow whereby the turbulent fluctua-
tions are assumed to occur on a shorter time scale, Dts,
than the wave motions. In this case

uwðx; y; z; tÞ ¼ 1

Dts

ZtþDts

t

uðx; y; z; tÞdt � �uuðx; y; z; tÞ

is a good definition for the wave-velocity components. It
should be pointed out that uw up to now contains the full
spectrum of wave frequencies.

Finally, the short-scale turbulent fluctuations are
given as:

u0 ¼ u� �uu� uw :

It should be mentioned that this approach does not ex-
clude the existence of an overlap between the higher
wave and lower turbulence frequencies, but it treats
modes with periods larger than ts and shorter than tl as
gravity wave-like motions. In the same way, the pressure
p is decomposed into mean, wave and turbulent fluctu-
ations. After inserting the decompositions

u ¼ �uuþ u0 þ uw

p ¼ �pp þ p0 þ pw

into the Navier–Stokes equations and time averaging
over the long-term period, the following equations for
the dynamics of the mean currents are obtained:

o�uu

ot
þ div �uu� �uuð Þ ¼ � 1

.
grad �pp þ div ð �PP þ Tl þ Rþ SÞ þ f:

ð1Þ
They contain the molecular viscosity tensor of the
average flow field

�PP ¼ m
o�uiui

oxj
þ o �ujuj

oxi

� �
;

the long-term Reynolds stress tensor

Tl ¼ �u0 � u0 ;

the radiation stress tensor

S ¼ �uw � uw

and another nameless tensor

R ¼ �u0 � uw � uw � u0 ;

which describes the reaction on the interaction between
turbulence and waves. Therefore the average flow field is
affected by what turbulence and waves do with each other
and the tensor R can be characterized as a jealous one.

Subtracting the average flow field from the Navier–
Stokes equations leads to dynamic equations for the
turbulent and wave-induced fluctuations:

ou0 þ uw

ot
þ div u� u� �uu� �uuð Þ

¼ � 1

.
grad p0 þ pwð Þ

þ div m grad u� �PP � Tl � R� Sð Þ :
It is assumed that the turbulent time scales are much
smaller than the wave periods. Therefore an equation for
the wave momentum can be obtained by an averaging
over the turbulent time scales:

ouw

ot
þ div uw � �uuþ uwð Þ½ � ¼ � 1

.
grad pw

þ div P w � R� S � Tl þ Ts � �uu� uwð � ð2Þ
with

P w ¼ m
ouw

i

oxj
þ

ouw
j

oxi

� �

and the Reynolds stress tensor Ts related to the short-
term averaging of the non-linear advection terms:

Ts ¼ �
1

Dts

ZtþDts

t

u0ðx; y; z; tÞ � u0ðx; y; z; tÞ dt :

When this distinction between a long- and a short-term
averaging is not made, i.e. Tl ¼ Ts, the wave-energy
equation will not contain a mechanism for the dissipa-
tion of wave energy by turbulence.

The momentum due to waves is advected with the
average and the wave velocity field itself. Otherwise,
there is no advection due to turbulence as expected be-
cause turbulence is a smaller-scale motion.

When the wave-momentum equation is subtracted
from the equation for wave and turbulent fluctuations,
an equation for the turbulent fluctuations is left:

ou0

ot
þ div u0 � uð Þ

¼ � 1

.
grad p0 þ div P 0 � Ts � �uu� u0 � uw � u0ð Þ : ð3Þ

Turbulent fluctuations are advectedwith the total velocity
consisting of average, wave and turbulent components.
The last two terms on the right-hand side describe tur-
bulence production by currents and waves, respectively.

When the three dynamic Eqs. (1), (2) and (3) are
added together, the initial Navier–Stokes equations are
obtained. Therefore, these equations form a consistent
decomposition of the flow field in average, periodic and
turbulent components.

3 The kinetic wave energy equation

Because the kinetic energy of the wave field is defined as

kw ¼ 1

2
uwuw ;
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Eq. (2) will be multiplied with the wave velocity and
averaged over the wave period. The terms with the
tensors R, S and Tl are cancelled because they are con-
stant on the wave time scale:

okw

ot
þ div �uukw þ uwkw þ uw

.
pw

� �

¼ uw div P w þ Ts � �uu� uwð Þ :
For ideal Airy as well as Stokes waves the viscous term
uw div P w vanishes. Therefore, it will be neglected. We
will see later that even if it is not zero it will be over-
whelmed by turbulent viscosity. The last term can be
written as:

uw div �uu� uwð Þ ¼ uw � uw : grad �uu ¼ �grad �uu : S

Whereby : denotes the scalar product of two tensors A
and B;

A:B ¼
Xn

i¼1

Xn

j¼1
aij bji

The short-term turbulence term is split into flux and
source/sink contingents creating the wave-energy equa-
tion:

okw

@t
þ div Ukw ¼ �grad uw : Ts þ grad �uu : S ð4Þ

with the kinetic wave energy flux:

Ukw ¼ �uukw þ uwkw þ 1

.
uwpw � uwTs :

As distinct from the kinetic wave-energy equation as
it is derived, for example, by Phillips, two additional
terms appear in Eq. (4). First of all, the wave energy
is also transported through short-term turbulent fluctu-
ations (�uwTs), second waves exchange (i.e. they
produce) turbulent kinetic energy through the term
grad uw: Ts.

4 Derivation of the wave energy equation

The integral of the wave energy—however it is defi-
ned—over the water depth is for Airy waves propor-
tional to the square of wave height or amplitude and
therefore a very easily measurable quantity. In this paper
the term wave energy is defined as the average kinetic
energy integrated over the water depth:

ew ¼
ZzS

zB

kw dz ¼ 1

4
gA2 :

The dynamics of this quantity is obtained by the inte-
gration of Eq. (4) over the water depth. Here, the fol-
lowing integration formula for the wave-energy fluxes
(Malcherek 2001) is very helpful

ZzS

zB

divU dz ¼ div

ZzS

zB

U dzþ US � UB ;

where US and UB are the respective fluxes through the
free surface and the bottom and the divergence on the
right-hand side is meant to be a two-dimensional
divergence. The advective flux of the kinetic wave energy
with the mean flow can be integrated as

ZzS

zB

div �uukw dz ¼ div

ZzS

zB

�uukw dz ’ div �uu

ZzS

zB

kw dz ¼ div �uu ew:

The second equality stems from the fact that there exists
no advective flux of kinetic wave energy through the
bottom and the free surface. The third equality assumes
a constant flow velocity over the depth. This approxi-
mation has to be improved when the influence of mean
currents on waves is investigated.

Additionally, the relationship

ZzS

zB

uwkw þ 1

.
uwpw

� �
dz ¼ cgew ;

which holds true for linear waves, can be applied. Using
all these relations, we end up with the wave-energy
equation:

oew

ot
þ div ð�uuþ cgÞew �

ZzS

zB

uwTs dz

0

@

1

A

¼ �US þ UB �
ZzS

zB

grad uw : Ts dzþ
ZzS

zB

grad uu : S dz :

This describes on the left-hand side the transport of wave
energy by mean and group velocity. It further contains a
wave-energy turbulent diffusion term. The first two terms
on the right-hand side are the energy fluxes through the
bottom and the free surface. They are used to model en-
ergy input by wind and its dissipation by the bottom shear
stress. The last two terms are turbulent dissipation and
energy radiation to the mean flow.

5 Turbulent wave energy diffusion and dissipation

For the application of the wave-energy equation the
closure of the short-term Reynolds stress tensor Ts is
crucial. It consists of the turbulent fluctuations on a time
scale which is shorter than the wave period. Therefore,
we assume that it can be modelled applying an eddy
viscosity principle whereby the turbulent fluctuations are
induced by the wave orbital motions:

Ts ¼ mt
ouw

i

oxj
þ

ouw
j

oxi

� �
:

Now the closure of the last flux term can be carried
out:
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ZzS

zB

uwTs dz ¼
ZzS

zB

mt grad kwdz ’ mt grad ew ;

which can therefore be identified as turbulent diffusion
of kinetic wave energy by a depth-averaged diffusion
coefficient mt.

A scalar multiplication of the short term turbulence
tensor and the wave velocity gradient tensor gives a
positive scalar. Therefore the term

�w ¼
ZzS

zB

grad uw : Ts dz ¼
ZzS

zB

mt

X

i;j

ouw
i

oxj

ouw
i

oxj
þ

ouw
j

oxi

� �
dz

can be interpreted as the turbulent wave-energy dissi-
pation. For its explicit calculation the turbulent viscosity
profile has to be known.

We assume the correctness of the mixing length
model in its general form and set

mt ¼ l2m 2
ouw

ox

� �2

þ2 ovw

oy

� �2

þ2 oww

oz

� �2
ovw

ox
ouw

oy

� �2
"

þ oww

ox
þ ouw

oz

� �2

þ oww

oy
þ ovw

oz

� �2
#1=2

:

For the analytical quantification of the wave-related
turbulent viscosity the deep-water approximation
(kh� 1) of the orbital velocities

uw ¼ Axekðz�hÞ sin kx� xtð Þ
vw ¼ 0

ww ¼ �Axekðz�hÞ cos kx� xtð Þ

are used. It is postulated that the mixing length is pro-
portional to the wave orbital radius:

lm ¼ jwAekðz�hÞ

Here a ‘‘wave-related Karman constant’’, jw, is intro-
duced which will be specified later. Now the eddy vis-
cosity profile can be determined as:

mt ¼ 2ðjwÞ2A3kxe3kðz�hÞ: ð5Þ
The turbulent viscosity is proportional to the wave
amplitude and increases with decreasing wave length
and period. Coming to the free surface, the viscosity
increases rapidly. The shape of this profile is qualita-
tively confirmed by velocity field measurements under
breaking waves (Melville et al. 2002).

Using this result for the turbulent wave-energy dis-
sipation the three-dimensional turbulent deep-water
wave-energy dissipation can be calculated as:

grad uw : Ts ¼ 8ðjwÞ2A5k3x3e5kðz�hÞ :

The integration over the depth leads to a new for-
mulation for the wave-energy dissipation rate:

�w ¼ 8

5
ðjwÞ2A5 1� e�5kh

� �
k2x3

¼ 256

5
ðjwÞ2 ew

g

� �5=2

1� e�5kh
� �

k2x3

’ 256

5
ðjwÞ2 ew

g

� �5=2

k2x3

¼ 256

5
ðjwÞ2 ew

g

� �5=2

g�2x7 : ð6Þ

This is proportional to the power of 5/2 of the wave
energy or to the fifth power of the wave amplitude.
Viscous wave energy dissipation is therefore a highly
non-linear process. With this expression, the final wave-
energy equation gets the form:

oew

ot
þ div ðuuþ cgÞew � mt grad ew

h i

¼ �US þ UB � �w þ
ZzS

zB

grad uu : S dz :

This equation states that there exists a diffusion process
for wave energy and that turbulent dissipation can damp
wave energy significantly. The latter process should play
a dominant role, especially in deep waters, where the
bottom friction does not anticipate the dissipation pro-
cess.

Actually, the expression for the viscous wave-energy
dissipation was obtained using a single monochromatic
wave. Therefore, it is straightforward to test it in a
spectral wave-energy model. This will be done in the
next section for the deep-water equilibrium wave-energy
spectrum.

6 The deep-water equilibrium wave-energy spectrum

The new theory on the interactions between mean flow,
turbulence and waves leads to the hypothesis that the
turbulent energy dissipation should not be neglected in
the wave-energy equation. This hypothesis will be veri-
fied in this section, presenting a new formulation for the
deep-water wave-energy spectrum under equilibrium
conditions.

Assuming that there is a homogeneous and stationary
wave-energy distribution over deep waters and that
there are no mean currents, the wave-energy equation
simplifies to:

�US � �w ¼ 0 :

The energy input at the free surface by wind is usually
modelled as (Komen et al. 1994):

�US :¼ FW xew ;

where FW is a dimensionless wind input function
depending on the wind shear stress and the wave’s
phase speed. Introducing both relations and using the
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deep-water dispersion relation, the wave energy turns
out to be:

ew
eq ¼

5

256

� �2=3

ðjwÞ�4=3F 2=3
W 1� e�5kh
� ��2=3

g3x�4

’ 5

256

� �2=3

ðjwÞ�4=3F 2=3
W g3x�4 :

The wave energy as it is defined here contains the
gravitation acceleration. The wave action density can be
obtained as:

Neq ¼
8ew

gx
¼ 8

5

256

� �2=3

ðjwÞ�4=3F 2=3
W g2x�5 ð7Þ

and Phillips’ similarity law (Phillips 1978) is confirmed
stating that the wave action density is proportional to g2

and inversely proportional to the fifth power of the
frequency.

For a quantitative evaluation of the theory the
Snyder–Cox wind input function FW is chosen (Komen
et al. 1994):

FW ¼ 0:0003max 28
ffiffiffiffiffiffi
CD

p u10
c
� 1; 0

� 	
; ð8Þ

where u10 is the wind speed 10 m above the water sur-
face, c ¼ gx is the phase velocity of the deep-water
waves and the wind and wave directions are identical.
For the following the drag coefficient CD is calculated
according to Smith and Banke (1975).

The last coefficient which has to be calibrated is the
wave related Karman constant, jw. This can be done by
comparing the resulting peak energy densities with the
corresponding values from the Pierson–Moskowitz
spectrum (Pierson and Moskowitz 1964). It turns out
that jw ’ 0:108 is a good choice. Figure 1 presents the
resulting equilibrium deep-water wave-energy spectra
for some wind speeds. The dependency of the peak fre-

quency mp ¼ xp=2p of the wind shear stress velocity
u� ¼

ffiffiffiffiffiffi
CD
p

u10 can be calculated analytically as:

mp ¼
1

152

g
u�

: ð9Þ

The proportionality constant 1=152 in not unrealistic; it
lies in between the values 1=239:8 for the fully developed
spectrum proposed by the Coastal Engineering Manual
(2001) and the value 1=127 derived by Günther and
Rosenthal (1995).

Figure 1 also shows a comparison of the resulting
equilibrium spectra with the Pierson–Moskowitz spectra
using the peak frequencies according to Eq. (9). It can be
seen that the agreement is excellent in the higher fre-
quency tail and in the absolute values of the peak
energies. The latter result indicates that the wave-related
Karman constant does not depend on the peak fre-
quency, i.e. it seems to be in fact a constant.

Otherwise, the comparison is poor in the low-fre-
quency range. As Günther and Rosenthal (1995) point
out, this is due to the sharp cut in the wind input
function which does not allow the growth of waves
with phase velocities higher than the surface wind
speed. They showed that the application of a Gaussian
distribution for the fluctuations of the wind speed
significantly increases the width of the peak to the low-
frequency end.

7 Conclusions

A consistent Reynolds decomposition of the Navier–
Stokes equations to obtain dynamic equations for the
mean, wave and turbulent components of the velocity
field is presented. These equations are used to derive the
kinetic energy equations of the mean and turbulent and
wave components. The derivation emphasizes the role of

Fig. 1 Equilibrium fre-
quency spectra for the wind
speeds 14, 16, 18 and
20 m s�1. Solid lines:
Calculations according to
(7) and (8), dashed lines:
Pierson-Moskowitz Spectra
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turbulent diffusion and dissipation of wave energy.
Using a wave related mixing length model, the turbulent
wave-energy dissipation turns out to be a non-linear
mechanism which is able to generate a wave-energy
spectrum as the most important counterpart to wind-
energy input when breaking is excluded. The resulting
wave-energy equation is able to predict the shape of the
equilibrium deep water wave-energy spectrum according
to Phillips’ similarity law as well as the decrease of the
peak frequency with increasing wind shear.
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