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ABSTRACT

Three types of breakdown of Langmuir circulation (Lc) are observed, two of which are represented in large-

eddy simulation (LES) models, but the third, vacillation, is not. The stability of Lc can be examined by

representing the downwind-aligned vortices by line vortices that are subjected to perturbations. Earlier

conclusions relating to stability in homogeneous water of infinite depth are found to be in error because no

stationary unperturbed state exists. The motion of vortices is examined and shown to be consistent with an

explanation of Lc devised byCsanady.Motion of line vortices in water of limited depth or bounded below by a

thermocline is examined. The motion replicates some of the features of vacillation observed by Smith in deep

water bounded by a thermocline, including its periodicity and fluctuations in the formation of bubble bands.

Vortices describe closed orbits within the Langmuir cells. Particlemotions in the vacillating Lc pattern exhibit

trapping close to the line vortices or near the cell boundaries. Vacillation appears not to have been observed in

water of limited depth. Here, the vacillation period is predicted to be longer than the deep-water equivalent

and may be too long for vacillations to be detected.

1. Introduction

Langmuir circulation (Lc) is reviewed by Leibovich

(1983), Pollard (1977), and Thorpe (2004). It is now rec-

ognized as a major contributor to turbulence and dis-

persion in the upper layers of lakes, coastal seas, and the

ocean. Instability of the flow driven by wind and waves

beneath a water surface results in the formation of a

regular array of counterrotating vortices within ‘‘Lang-

muir cells’’ with axes directed downwind. Following

earlier analysis by Thorpe (1992) and Csanady (1994) the

vortices are represented here by line vortices. These lead

to lines of convergence on the sea surface, producing the

commonly observed rows of flotsamorwindrows, aligned

in the wind direction and first studied by Langmuir

(1938). Convergence also leads to the accumulation of

subsurface bubbles produced by breaking surface waves.

The resulting ‘‘bubble bands’’ can be detected acousti-

cally (Thorpe and Hall 1983; Farmer and Li 1995; Smith

1998; Gemmrich and Farmer 1999).

The stable circulation tends to constrain the ‘‘trans-

verse’’ dispersion of floating particles or chemical films

in a direction normal to the wind; buoyant particles or oil

accumulates in the windrows. Transverse dispersion at

scales exceeding the distance between windrows occurs

when Langmuir cells break down as a consequence of

the instability of the Lc pattern (Thorpe et al. 1994;

Thorpe 2009); dispersion is largely controlled by the

instability, the main topic of this paper. We draw at-

tention to the present lack of observational information

regarding the instability of Langmuir cells and propose a

novel explanation for their vacillation, as observed by

Smith (1998).

The paper is arranged as follows: Observations of the

spatial irregularity of Langmuir cells are described in

section 2. Three types of irregularity are found. Ana-

lytical and numerical models of Lc are described in

section 3, and the results are compared with observa-

tions. The use of line vortexmodels is briefly reviewed in

section 4. An error in the earlier results for the stability

of Lc in a homogeneous ocean of infinite depth by

Thorpe is reported in section 5. A study is made of how

vortices move. This relates to Csanady’s (1994) proposal

for the generation of Lc. Section 6 describes results in
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which motion is constrained by finite depth or an under-

lying thermocline, collectively referred to as ‘‘finite-depth’’

fluids. A general solution is first presented (section 6a)

before the effect of a small-amplitude perturbation is

examined (one that leads to the motion of vortices in

closed orbits; section 6b), followed by the effect of a

finite perturbation (section 6c). The latter includes

the study of vortices that are unequally spaced and of

the oscillatory motion or vacillations that develop.

The main conclusions are presented and discussed in

section 7.

2. Photographic and acoustic observations of the
stability of Langmuir bands

Still photographs of the distribution of material

floating on the sea or a lake surface provide some limited

information about the continuity of windrows and hence

of Lc. The buoyant material may consist of algae or

floating bubbles (i.e., foam) generated by breaking

waves (e.g., Thorpe 2004), oil following its accidental or

deliberate release (e.g., Faller 1971; Thorpe 2004, seen

in an infrared image in his Fig. 5), or computer cards

scattered to make convergence bands visible (e.g.,

Weller and Price 1988). Several photographs showing

extensive areas of a water surface and numerous wind-

rows have been published. Stommel (1951) shows aerial

images of the signature parallel streaks [reproduced by

Faller andAuer (1988) in theGreat Salt Lake and on the

Banana River, Florida]. Kenney (1977) has several

photographs of foam bands in the Lake of the Woods

(498010N, 948300W). Bands are generally continuous for

distances of typically 8 times their separation before

merging with neighboring bands or losing their identity.

This may, however, represent an overestimate of the

mean length of Langmuir cells because of a tendency to

select photographs that emphasize the regularity and

extent of the windrows and therefore contain bias to

longer floating bands. Furthermore the existence of a

band does not necessarily imply the presence of active

convergent motion; it may be a ‘‘fossil’’ remaining from

previous motion. More photographs, particularly time-

lapse images recording the time history of windrows,

would be useful in establishing the scale and mechanism

of band disruption. Three apparently distinct types of

breakdown of the linear pattern of parallel windrows or

bubble clouds have been observed acoustically.

a. Interruptions to bands

The first is simply interruptions in the continuity of

bands. Although there are numerous sonograph images

of the bubble bands as they drift through a single, fixed,

side-scan sonar beam pointing across the wind direction

(e.g., Thorpe 1992), so producing a range versus time

record of the bands, these contain no information in the

along-band direction and therefore do not resolve or

identify the nature of the spatial instability of the bands

unambiguously. Images of bubble clouds obtained by a

100-kHz 3608 scanning sonar with a range of about 300m
deployed by Gemmrich and Farmer (1999) west of

Monterey Bay, California, and drifting with the mean

flow aremore useful. These show the spatial distribution

of near-surface bubble bands, typically extending down

to a depth of 1–4m (Zedel and Farmer 1991). An image

reproduced as Fig. 4 inGemmrich and Farmer (1999; see

also Fig. 4 in Thorpe 2004) show that the lengthL0 of the

bands is typically about 260m before bifurcating or be-

ing interrupted by a band with a different orientation,

and their separation s is about 50m: L0/s ’ 5.2. The

larger bands persist for up to 25min as they are advected

by the mean flow. Rather than being continuous, they

are composed of linear patches of bubbles typically of

length L1 ; 100m: L1/s ’ 2.0. While the patchy nature

of the bands may indicate the instability of Lc, it is im-

possible to tell unequivocally whether this is so. Gaps

in a band of bubbles may be a consequence of the local

absence of convergence (since without the downward

motion located beneath the lines of convergent flow,

bubbles will rise to the surface and the bands will disap-

pear). The supply of bubbles into the surface convergence

zones is, however, itself intermittent, coming from the

spatially and temporally variable injection from breaking

waves or wave groups and leading to a variable concen-

tration of bubbles in the convergence bands.

b. Y junctions

Amalgamation of two neighboring rows at an angle of

about 308 in downwind-pointing ‘‘Y junctions’’ is ob-

served by Farmer and Li (1995) in the Strait of Georgia,

using a 100-kHz 908 sector-scanning sonar system with a

range of about 270m. Bubble bands are typically 60m

long, about 3 times their spacing, before combining to-

gether. The instability leading to the junction of bands is

ascribed to that described by Thorpe (1992) in a study of

the instability of vortex lines (see sections 5, 6a, and 6b)

and is illustrated schematically by Farmer and Li as

being similar to the vortex connection described by

Crow (1970) for a parallel vortex pair.

c. Vacillations

Finally, ‘‘vacillation’’ is reported by Smith (1998, his

sections 4.3 and 5.3) using measurements from a 195-kHz

phase-locked acoustic Doppler sonar (PADS) some

100km off Point Arguello, California. This system oper-

ates with a beam-formed system to produce images of the

motion of bubble clouds in a 258-wide sector lying
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horizontally across the sea surface with a range from 190

to 450m. Because the mean volume of bubbles decays

rapidly with depth, their scattering cross section decay-

ing exponentially over distances of about 1m, the

dominant sampling depths are typically 1 to 2m below

the wave troughs. Smith observes downwind-aligned

bands of bubbles with a mean separation of about

50m, roughly twice the depth of the mixed layer, so that

the Langmuir cells are approximately square. [These

contrast with the size of Langmuir supercells observed

by Gargett and Wells (2007), which in a water depth of

about 15m reach the seabed and have a width of 3–6

times their vertical scale.] The extent of the area covered

by the sonar is insufficient to judge the length L0 of

bands with confidence; comparison ofL0/swith Gemmrich

and Farmer’s observations is not possible but L1/s is

about 2, in accord with Gemmrich and Farmer. Root-

mean-square (rms) velocity fluctuations are about 3.5cms21.

Vacillation occurs during a spell of relatively constant

winds of about 15ms21 and of steady direction, until

terminated apparently by a reduction in wind speed

and a change in its direction. Vacillation is characterized

by variations between relatively disorganized weaker

flows, where the acoustic reflections from bands are

relatively small and consequently the bands themselves

are poorly defined, and more intense and regular-

banded features. Four such vacillations are observed

with a mean period of about 30min. Variations are also

seen in the rms surface velocity of amplitude of about

0.25 cms21, out of phase with the strength of acoustic

scattering, so that the maximum scattering intensity

corresponds to the rms velocity minimum. The maxi-

mum speed of the converging motion toward windrows

in this period is about 0.2m s21 (J. A. Smith 2015, per-

sonal communication). There are also accompanying

changes in the spacing of bands of order 4m (i.e.,;8%),

with slightly smaller scales coinciding with strong scat-

tering, low velocity levels, and vice versa, but no changes

in the orientation of the bands. The observed vacillation

is not correlated with changes in mixed layer depth (e.g.,

caused by internal waves), changes in wind speed and

direction, or the magnitude of vertical straining by the

flow field. No other reports of vacillation appear to be

available, perhaps because of the lack of observations at

relatively high wind speeds.

3. Analytical and LES models of Langmuir
circulation and its breakdown

a. Analytical models based on Craik and Leibovich

Much theoretical study of Lc is made using equations

devised by Craik and Leibovich (e.g., the CL2 model;

Craik and Leibovich 1976) including the ‘‘vortex force’’

and Stokes drift. The dimensional quantities governing

the flow are the friction velocity u* on the water side of

the sea surface, the magnitude of the Stokes drift US0

at the surface, the eddy viscosity nT, and vertical e-folding

decay length scale b21 of the Stokes drift. One objective

of research has been to identify the bifurcations or

instabilities that occur as parameters such as the in-

verse Langmuir number

La21 5 (U
S0
/u*)

1/2(u*/vTb)
3/2 , (1)

describing the strength of the forcing change (e.g., Li and

Garrett 1993). The primary instability as La21 increases

beyond a critical value Lac
21 is the set of counterrotating

vortices resembling the observed cell structure of Lc.

Further increase in La21 leads to vacillating waves and

‘‘traveling defects’’ (Tandon and Leibovich 1995). The

term vacillation is taken from that used in a similar anal-

ysis applied to thermal convection by Clever and Busse

(1992). The vacillating motion described by Tandon and

Leibovich alternates between a highly distorted roll

state and a nearly two-dimensional roll state but with a

periodicity of tens of hours and is therefore dis-

counted by Smith as an explanation for his observed

30-min vacillation. Smith is unable to reconcile ob-

servations and the stability theory of Tandon and

Leibovich (1995). His suggestion that buoyancy forc-

ing by bubbles may lead to the observed vacillation is

refuted by Farmer et al. (2001).

By comparing Eulerian and Lagrangian fields,

Bhaskaran and Leibovich (2002) devise a model for

downwind-pointing Y junctions but do not make a pre-

diction of their periodicity.

b. LES models

Recognition of its variability and contribution to tur-

bulence in the upper-ocean mixed layer has led to the

study of ‘‘Langmuir turbulence’’ using large-eddy sim-

ulation (LES) models (see, e.g., Skyllingstad and Denbo

1995; McWilliams et al. 1997; Noh et al. 2004; Sullivan

et al. 2007; Noh et al. 2011; McWilliams et al. 2012).

These studies provide some guidance to the possible

nature of the breakdown of regular Langmuir cells.

Rather than using the parameter La depending on an

assumed constant nT (in reality a function of the

turbulence and variable in depth), the turbulent

Langmuir number

La
t
5 (u*/US0

)1/2 (2)

is generally adopted to characterize the flow, plus aReynolds

number, and (if the buoyancy flux through thewater surface
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is nonzero) the Hoenikker number. Oceanic values

of Lat when Lc is observed are typically about 0.3.

Favorable comparisons with observations are found

only in LES models that account for the processes

(e.g., Stokes drift) through which Lc is forced. Com-

pared features include (i) the development of the linear

downwind structure characteristic of Lc [McWilliams

et al. (1997, their Fig. 12) and Kukulka et al. (2010, see

their Fig. 9); both figures compare Langmuir turbulence

with shear turbulence], (ii) the evolution of crosswind

velocity variance and mixed layer deepening (Kukulka

et al. 2010), and (iii) the ratio of crosswind velocity

variance to the friction velocity (Li et al. 2005). The

construction of regime diagrams by Li et al. (2005) and

Belcher et al. [2012; although challenged by Sutherland

and Melville (2015)] have provided a basis for under-

standing and demonstrating the importance of Lc in

driving ocean turbulence.

The downward vertical velocity w at a fixed depth

near the surface serves as a useful surrogate for the

convergence, and its banded structure is shown by sev-

eral authors. Like the bubble bands detected acousti-

cally, the structure of convergence bands is patchy. We

characterize the structures by estimates of the typical

band separations s, lengths L0, and patch lengths L1 (all

in meters) at given values of Lat, specifying values of R,

whereR5 (s,L0,L1; Lat). From Skyllingstad andDenbo

(1995, their Fig. 5), we find R 5 (25, 70, 40; 0.26) when

forcing is by wind stress and vortex force only.

McWilliams et al. (1997, their Fig. 12) has R 5 (17, 120,

30; 0.3); they remark that the patterns of bands are about

as well organized as those observed and find many ex-

amples of Y junctions in the models’ near-surface flow

field. Skyllingstad et al. (1999, their Fig. 5a) has R5 (20,

130, 30; 0.3), Noh et al. (2004, their Figs. 1 b and d) have

R 5 (50, 180, 50; 0.45), and Y junctions are observed,

while Kukulka et al. (2010, their Fig. 9) have R 5 (35,

200, 70; 0.3–0.6). Values of L0/s range from 2.8 to 7.1

with an average of 5.2 6 1.7 (plus or minus one stan-

dard deviation), the mean coinciding (probably coin-

cidently) with that found in Gemmrich and Farmer’s

(1999) observations described in section 2a. The aver-

age value of L1/s is 1.6 6 0.4, smaller than Gemmrich

and Farmer’s 2.0. The length of bands of particles ad-

vected by the flow modeled by Skyllingstad and Denbo

(1995, their Fig. 8) are generally longer than the length

over which the vertical velocity w remains coherent so

that L1 may be underestimated from the bands of high

w in the model.

Although LES models demonstrate the first two types

of the observed breakdown of linear bands (sections 2a

and 2b), there is no clear evidence of vacillation

(section 2c).

4. Line vortex models

For over a hundred years line vortices have proved

useful in understanding and predicting the development

of flows and instabilities that occur in transitions from

laminar flows to turbulence. The stability of two-

dimensional perturbations to the wake in the lee of a

cylinder, composed of two lines of vortices of opposite

signs and now known as a Kármán vortex street, is

studied by von Kármán (1911, 1912) and is described by

Lamb (1932, section 156). Rosenhead (1929) examines

the effects of adding plane boundaries. The three-

dimensional instability of a pair of vortices of oppo-

site sign, Crow instability, is described using line

vortices but with finite cores (Crow 1970). Multi-

vortex models are used to describe flow separation

over steep, two-dimensional sand ripples (Longuet-

Higgins 1981; Malarkey and Davies 2002). Vortex

generation by deep-water breakers is discussed by

Pizzo and Melville (2013), referring to Csanady’s

(1994) description of how a pair of horizontal vortices

of opposite signs produced by a breaking wave in-

teract with each other and with their images in the sea

surface; the vortices approach one another and move

downward from the sea surface. Both two- and three-

dimensional instability of vortex arrays are studied by

Robinson and Saffman (1982). Their methodology is

used by Deloncle et al. (2011) to investigate the onset

of zigzag instability and by Thorpe (1992) to in-

vestigate the stability of Lc.

In Thorpe’s vortex model the circulation pattern in an

array of Langmuir cells is represented by a horizontal set

of parallel equally spaced (separation l) line vortices of

equal circulation G but of signs alternating in the hori-

zontal x direction. The vortices located at horizontal

positions x 5 (m 1 1/2)l have circulations (21)m11G,
wherem is an integer ranging from2‘ to ‘ and positive

circulations are clockwise. The cell boundaries where

the horizontal velocity is zero are at horizontal positions

x 5 ml (two cell widths or the spacing between like-

signed vortices are equivalent to the separation of

bubble bands referred to in sections 2 and 3; s5 2l). It is

implicit in this representation that the processes forcing

the Lc are no longer active or, at least, that the forcing is

significantly less than that of any process that leads to

the perturbation of the cell pattern. Thorpe considers

two cases in which the vortex lines are perturbed from

given initial states. The small perturbation stability

analysis assumes that the initial state is static or at least

steady with the whole array moving at a uniform speed

[e.g., as in the analysis of the stability of a symmetrical

double row of vortices described by Lamb (1932, sec-

tion 156)].
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5. A vortex model of Langmuir cells in
infinite depth

In Thorpe’s first case, the vortices are at a level,

z 5 2z0, below a horizontal surface at z 5 0 in ho-

mogenous water of infinite depth, as shown in Fig. 1a.

We examine in this section how vortices will move, ap-

plying results to earlier studies of Thorpe and Csanady.

The vertical motion at the surface is constrained to be

zero by a set of image vortices with circulations of (21)mG
at the samehorizontal positions x5 (m1 1/2)lbut at a level

of z 5 z0. In anticipation of the fact that the vortices may

not be equally spaced in the horizontal, the real and image

arrays of vortices can each be subdivided into arrays of

like-signed circulations: two arrays of real vortices, 2G at

(2ml1 x0,2z0) andG at (2ml2 x0,2z0), and twoof image

vortices,G at (2ml1 x0, z0) and2G at (2ml2 x0, z0), where

x0 is the horizontal distance of the vortex to the nearest

point of convergence at the edge of the cell (see Fig. 1a).

Thorpe’s equal spacing then corresponds to the special

case where x0 5 l/2. Regardless of the value of x0, the cell

boundaries remain fixed at x 5 ml. To facilitate the anal-

ysis, the coordinate system can be nondimensionalized by

the horizontal spacing wavenumber 2p/2l5 p/l (where 2l

corresponds to the spacing between like signed vortices).

Thus, if j 5 px/l, x 5 pz/l, then Lc can be represented in

the cross section in the complex z plane, where z 5 j 1 ix

and i 5 (21)1/2 as shown in Fig. 1b. The configuration

comprises four infinite arrays of vortices each with spacing

of 2p located at z 5 2z0 1 2mp, z
0
*1 2mp,2z

0
*1 2mp,

and z0 1 2mp, with circulations G, 2G, 2G, and G, re-
spectively, where z0 5 j0 1 ix0, j0 5 px0/l, x0 5 pz0/l,

and the * represents the complex conjugate (j0 5 p/2

for equal spacing).

In the complex z plane, an isolated line vortex at z5 z0
with a circulation G has a complex potential given

by V5 i(G/2p) log(z2 z0); when z 6¼ z0, the horizontal

and vertical velocity u and w are given by u 2 iw 5
(p/l)dV/dz, which is

u2 iw5
iU

z2 z
0

, (3)

where U is a characteristic velocity (5G/2l). The velocity

of a vortex at z 5 z0 is calculated by removing the self-

potential before the derivative of V is calculated (Milne-

Thomson 1962, section 13.22). In the case of an isolated

vortex, the self-potential isV so the vortex velocity is zero,

but this will not always be the case for multiple vortices. If

the vortices are being perturbed from their regularly

spaced positions, the effect of all the other vortices on the

vortex located at z 5 z0 can be determined by summing

up the contributions using Eq. (3). However, if vor-

tices are unperturbed and their array spacing is being

maintained, advantage can be taken of the expression

for the complex potential of an infinite array of equally

spaced vortices (Lamb 1932, section 156) such that for

line vortices located at z0 1 2mp:

�
‘

m52‘
i
G

2p
log[z2 (z

0
1 2mp)]5 i

G

2p
log
�
sin1/2 (z2 z

0
)
�
.

(4)

Treating the vortices as infinite arrays aids the analysis

of regularly spaced modes since behavior of the four

central vortices in each array at z52z
0
, z

0
*, 2z

0
*, and z0

then represents all the vortices. The complex po-

tential for this configuration of vortices is then simply

V5 i
G

2p
log

"
sin1/2(z1 z

0
)

sin1/2(z2 z
0
*)

#
1 i

G

2p
log

"
sin1/2(z2 z

0
)

sin1/2(z1 z
0
*)

#
,

(5)

where the first and second terms are the complex po-

tentials of all the vortices at2ix0 and their images at ix0,

respectively. The velocity is

FIG. 1. Definition sketches of infinite-depth Langmuir circulation for equal spacing (a) dimensional and

(b) nondimensional in the complex z plane. The notation, using x0 and j0, anticipates unequal spacing (equal hori-

zontal spacing is given by x0 5 l/2 and j0 5 p/2).
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u2 iw5
1

2
U3

8<
:
i cot1/2(z1 z

0
)2 i cot1/2(z2 z

0
*)1 i cot1/2(z2 z

0
)2 i cot1/2(z1 z

0
*) , z 6¼ z

0
*,2z

0
,

i cotj
0
2 cothx

0
2 i cotz

0
*, z5 z

0
*,

i cotj
0
1 cothx

0
2 i cotz

0
, z52z

0
,

(6)

where U5 G/2l. Here, in the calculation of u–iw at z 5 z
0
*

and 2z0, corresponding to the advection velocity of the

vortices, the self-potential has first been removed as

explained above. Figure 2 shows the horizontal and

vertical velocity and streamlines based on contours of

the streamfunction c [5Im(V), where Im is the imagi-

nary part] determined from Eqs. (6) and (5) with j0 5
p/2 and x05p/2, that is, for vortices at a depth l/2, which

are equally spaced by a distance l in the horizontal.

Evaluating Eq. (6) at the water surface, z 5 j with j0 5
p/2, results in a horizontal velocity given by

u(j)52
2U sinhx

0
sinj

cosh2x
0
2 sin2j

, (7)

so that u(6p/2) 5 72U/sinhx0, and there are surface

convergences at j 5 2mp and divergences at j 5 (2m1
1)p, wherem is any integer (see Fig. 2). FromEq. (6) it is

evident that the vortices located at z5 z
0
* and 2z0 are

not stationary. When j0 5 p/2, the vortices have hori-

zontal velocities given by

u(6p/22 ix
0
)5 7

1

2
U(cothx

0
2 tanhx

0
)5 7

U

sinh2x
0

,

(8)

so the two vortices shown in Fig. 2c move toward one

another. An equally spaced row of vortices cannot

induce a velocity in itself; thus, the horizontal compo-

nent of velocity given by Eq. (8) is the result of the image

vortices only. The assumption that the state illustrated in

Fig. 1 is static with stationary vortices is therefore in-

correct, and the basis of Thorpe’s stability analysis is

in error.

For vortices that are not equally spaced, j0 6¼ p/2, the

velocity at the water surface, z 5 j, from Eq. (6) is

u(j)52
2U sinhx

0
sinj sinj

0

cosh2x
0
2 2 coshx

0
cosj cosj

0
1 cos2j

0
2 sin2j

,

(9)

so that u(6j0) 5 72Usinhx0 sin
2j0/(cosh

2x0 2
2coshx0 cos

2j0 1 cos2j0). When j0 5 p/2, Eq. (9)

simplifies to Eq. (7). Figure 3 shows the horizontal and

vertical velocity and streamlines for the case where the

vortex is centered at (0.37l, 2l/2), j0 5 0.37p, and x0 5
p/2. It can be seen that surface convergences at x 5 2ml

and divergences at x5 (2m1 1)l aremaintained (this will

in general be the case even though the vortices are

moving). The vertical velocities at x 5 2l and 0 are no

long mirror images of one another; the vertical velocity

associated with the convergence at x 5 0 is far stronger

because the vortex is closer to it.

In this infinite-depth case when the vortices are not

equally spaced (j0 6¼ p/2), the initial vortex velocity will

not be horizontal (see dotted line in Fig. 3b) and the

vortices will trace out a curved path. The path that a

vortex, initially located at z5 z
0
*, follows can be de-

termined from the vortex streamfunction c(z
0
*);c(z

0
*)5

Im[V(z
0
*)], where V(z

0
*) is given by Eq. (5) evaluated

at z
0
*, with the self-potential removed V(z0*) 5

i(G/2p)log(2i sinhx0 sinj0/sinz0*). The termc(z0*) is then

FIG. 2. Shows (a) u at z5 0 (solid),2l/2 (dashed),2l (dashed–dotted), and23l/2 (dotted), (b) w at x52l (solid),

2x0 (dashed), 0 (dashed–dotted), and x0 (dotted), where w at x 5 6x0 lie on top of one another, and (c) the

streamlines for infinite-depth Lc for a vortex centered at (x0,2l/2), where x0 5 l/2, determined from Eqs. (6) and (5)

with j0 5 p/2 and x0 5 p/2 (Co indicates convergence and Di indicates divergence).
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c(z
0
*)52

G

4p
log(cot2j

0
1 coth2x

0
) . (10)

Streamlines associated with Eq. (10) correspond to the

path followed by a vortex. Thus, if R1 is a constant de-

fined by R1
2 5 cot2j0 1 coth2x0, corresponding to the

starting position (j0, 2x0), then subsequent positions

along a streamline (j, x) are given byx52arccoth[(R1
22

cot2j)1/2]. In the case when j0 5 p/2, R1
2 5 coth2x0. Some

examples of paths followed for a selection of starting

positions are shown in Fig. 4. The vortex is movedmainly

under the influence of the nearest neighbor vortex in an

anticlockwise sense around its cell, and the nearest point to

the surface at z5 0 always occurs at x5 l/2 (equal spacing,

j 5 p/2), where the induced vertical velocity is zero. The

vortex in the adjoining Langmuir cell (2l# x# 0,2‘ #

z# 0) will have paths that are themirror image of those in

Fig. 4, circulating clockwise around the cell.

In a study of the formation of vortex pairs by wind

gusts or breaking waves, Csanady (1994) used a four-

vortex model composed of two real and two image

vortices to show a similar effect. The paths deter-

mined from this four-vortexmodelx52R1j/(j
22R1

2)1/2

(see appendix A) are also shown in Fig. 4. It can be

seen that provided that the influence from the vor-

tex at (2l2 x0,2z0) is small (which is equivalent to x0#

l/2 and is the most likely scenario), the paths are very

similar. In all cases the end result is the same, whether

equally spaced or not. The vortices do not remain sta-

tionary but move away from their initial positions; any

initial distribution consistent with that chosen is, in this

sense, unstable. Thus, in the absence of continuous forc-

ing or of dissipation that maintains their position near

the water surface, a regular array or pair of vortices

will migrate downward until their motion is impeded

by the presence of the sea or lake bed or by their en-

counter with a thermocline as considered in the fol-

lowing sections.

6. A vortex model of Langmuir cells in finite depth

a. The general equations

The second case considered by Thorpe (1992) is

shown in Fig. 5a. It has horizontal boundaries at z52h

and 0 above and below the vortex array, the upper

representing the water surface and the lower either a flat

bottom or a thermocline (supposed rigid). The cell

boundaries are still at horizontal positions x 5 ml, and

there is convergence on the water surface (z 5 0),

leading to windrows at x 5 2ml; the corresponding

separation of windrows is 2l. In this case, a doubly in-

finite array of image vortices is required to make the

vertical velocity zero at the two boundaries; in addition

to the array of equally spaced ‘‘real’’ vortices of circulation

FIG. 3. As in Fig. 2, but where x0 5 0.37l, determined from Eqs. (6) and (5) with j0 5 0.37p and x0 5 p/2.

FIG. 4. Shows the paths followed by a vortex located at various

starting positions (x0, 2z0), z0 5 x0, where x0 5 0.2l, 0.35l, 0.5l,

0.65l, and 0.8l, calculated according to Eq. (10). The isolated four-

vortex solution is also shown as a dotted line calculated according

to Eq. (A3), where j 5 px/l and x 5 pz/l.
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(21)m11G at x 5 (m 1 1/2)l, z 5 2h/2, image vortices of

circulation (21)(m1n11)G are required at x5 (m1 1/2)l, z5
(n2 1/2)h, wherem is an integer and n is an integer ranging

from 2‘ to 21 and from 1 to ‘ to make the vertical

velocity zero at the boundaries: z52h and 0. Following

the same procedure as in section 5 (anticipating unequal

spacing and nondimensionalization), all the vortices

may be separated into four groups of arrays of like-

signed circulations: G at (2ml 2 x0, 2nh 2 z0), 2G at

(2ml1 x0, 2nh2 z0), 2G at (2ml2 x0, 2nh1 z0), and G
at (2ml 1 x0, 2nh 1 z0), where n is an integer, or in

the nondimensional z plane by z 5 2z0 1 2mp 1 nppi,

z
0
*1 2mp 1 nppi,2z

0
*1 2mp 1 nppi, and z0 1 2mp 1

nppi, with circulations G, 2G, 2G, and G (as shown in

Fig. 5b), where p 5 h/l. Each bounded cell has di-

mensions l3 h (p3 pp) regardless of the spacing of the

vortices. The Thorpe case of equal spacing, both hori-

zontally and vertically, then corresponds to the special case

when x0 5 l/2 and z0 5 h/2 (j0 5 p/2 and x0 5 pp/2).

Anexpression for the horizontal velocity at z
0
* and2z0 in

this finite-depth, equally spaced case can be inferred

from generalizing Eq. (8) by realizing that the advective

contribution from each array of image vortices is given

by 6(21)nU/sinhnpp, such that

u(6p/22 ipp/2)56U �
‘

n52‘

n 6¼0

(21)n

sinhnpp
, (11)

where the sum can be separated into sums from 2‘ to 21

and 1 to ‘, which exactly cancel one another, so that the

vortices are indeed stationary in this case. By a similar

argument Eq. (7) evaluated at j 5 p/2 can be general-

ized to determine the surface velocity at j 5 p/2 by

recognizing that the contribution from all the vortices

at 6(n 1 1/2)ppi is (21)n112U/sinh(n 1 1/2)pp, where n

is an integer (0 # n # ‘) such that

u(p/2)522U �
‘

n50

(21)n

sinh(n1 1/2)pp
. (12)

This expression for u(p/2) was used by Thorpe

(1992) for scaling purposes to determine the strength

of the circulation for comparison with observations.

In general, for unequally spaced vortices in the hori-

zontal and vertical j0 6¼ p/2 and x0 6¼ pp/2 (x0 6¼ l/2 and

z0 6¼ h/2), the four groups of infinite arrays, with circu-

lations G, 2G, 2G, and G, centered at z 5 2z0 1 i2npp,

z
0
*1 i2npp, 2z

0
*1 i2npp, and z0 1 i2npp, together

have a complex potential given by

V5 i
G

2p
�
N

n52N

log

"
sin1/2(z1 z

0
2 i2npp)

sin1/2(z2 z
0
*2 i2npp)

#

1 i
G

2p
�
N21

n52N

log

"
sin1/2(z2 z

0
2 i2npp)

sin1/2(z1 z
0
*2 i2npp)

#
, (13)

where N / ‘. Here, the n 5 0 terms in the two sums

correspond to the potential in the infinite-depth case Eq.

(5). The difference between the lower and upper limits

in the second sum is required in anticipation of the finite

FIG. 5. Definition sketch of finite-depth Langmuir circulation for equal spacing (a) dimensional and

(b) nondimensional in the complex z plane (solid horizontal lines at x 5 0 and2pp correspond to the water surface

and base of mixed layer). The notation, using x0, z0, j0, and x0, anticipates unequal spacing (equal spacing in the

horizontal is given by x0 5 l/2 and j0 5 p/2, and equal spacing in the vertical is given by z0 5 h/2 and x0 5 pp/2).
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sum approximations in the vertical, such that image rows

above and below the domain must balance. From Eq.

(13) and u 2 iw 5 (p/l)dV/dz, the velocity in the finite-

depth case may be expressed as

u2 iw5
1

2
U3

8>>>>>>>>>>>><
>>>>>>>>>>>>:

i �
N

n52N

cot1/2(z1 z
0
2 i2npp)2 cot1/2(z2 z

0
*2 i2npp)

1i �
N21

n52N

cot1/2(z2 z
0
2 i2npp)2 cot1/2(z1 z

0
*2 i2npp) , z 6¼ z

0
*,2z

0
,

�
N

n52N

i cot(j
0
2 inpp)2 �

N21

n52N

coth(x
0
1 npp)1 i cot(z

0
*2 inpp) , z5 z

0
*,

�
N

n52N

i cot(j
0
1 inpp)1 �

N21

n52N

coth(x
0
1 npp)2 i cot(z

0
1 inpp) , z52z

0
,

(14)

whereU5 G/2l. Figure 6 shows the horizontal and vertical

velocity and streamlines for the stationary case, with j0 5
p/2, x0 5 pp/2, and p5 1, determined from Eqs. (14) and

(13). Figure 6 can be compared to the infinite-depth case

(Fig. 2). In addition to the flow being depth limited, it is also

symmetric about the line z 5 2l/2 (x 5 2p/2), in such a

way that when the cell edge on the upper surface has a

convergence, the lower surface has an equal and opposite

divergence and vice versa. It can be shown that whenN/
‘ in Eq. (14), the velocity evaluated at the surface, z 5 j,

u(j), is given by

u(j)522U sinj
0

 
C

10

B2
101C2

10

1 �
‘

n51

C
1n

B2
1n1C2

1n

2
C

2n

B2
2n1C2

2n

!
,

(15)

whereB1n and B2n 5 cosj02 cosj cosh(2npp6 x0), and

C1n and C2n 5 sinj sinh(2npp 6 x0). Here, the first term

is the result of the infinite-depth solution [Eq. (9)].

When j 5 j0 5 p/2, Eq. (15) reduces to

u(p/2)522U

"
1

sinhx
0

1 �
‘

n51

1

sinh(2npp1 x
0
)

2
1

sinh(2npp2 x
0
)

#
, (16)

and when x05 pp/2, by separating the sum into odd and

even terms in n, Eq. (16) reduces to Eq. (12).

b. Small-amplitude perturbations

The Thorpe case of equal spacing, both horizontally

and vertically, is given by x0 5 l/2 and z0 5 h/2 (j0 5
p/2 and x0 5 pp/2). Thorpe (1992) considers spatially

periodic perturbations to the real array of line vortices

(with reciprocal perturbations in their images to

maintain zero vertical velocity at x 5 2pp and 0) in

both the z plane and in the along-vortex line direction

y, when vortices are represented with finite cores (as

in Crow 1970). Two modes of instability of the vortex

lines are favored, having the greatest growth rates.

When p � 1 (p 5 h/l), vortices oscillate collectively

with the nonzero along-axis wavenumber. When p is

large vortices are involved in ‘‘pairing.’’ The latter

generally has the greater growth rates with the most

rapid growth corresponding to a disturbance with an

along-vortex (or downwind) scale of about 4.6 to 8.1

times the windrow separation; rates increase as the

windrow spacing decreases in comparison with the

depth h. Although broadly consistent to the ratiosL0/s

for the downwind length of cells found in the observa-

tions and LES models, these exceed the ratios L1/s

FIG. 6. Shows (a) u at z5 0 (solid),2l/2 (dashed), and2l (dashed–dotted), (b) w at x52l (solid),2x0 (dashed),

0 (dashed–dotted), and x0 (dotted), where w at x 5 6x0 lie on top of one another, and (c) the streamlines for

stationary finite-depth Lc with square cells (h5 l) for a vortex centered at (x0,2l/2), where x05 l/2, determined from

Eqs. (14) and (13) with j0 5 p/2, x0 5 p/2, and p 5 1.
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for the length of continuous patches to which they might

be expected to be more closely related.

A further infinitesimal, two-dimensional perturbation,

one independent of y, can be examined by supposing that

vortices of circulation (21)(m1n11)G are moved symmet-

rically within the fixed boundaries of a set of Langmuir cells

to nondimensional positions j 5 (m1 1/2)p 1 (21)ma and

x 5 (n 2 1/2)pp 1 (21)nb, where a and b are small.

Summing over the vortex array, using Eq. (3) to find the

velocity induced at the vortex withm5 n5 0 located at

(p/2 1 a, 2pp/2 1 b), and neglecting terms of order a2

and b2, the horizontal and vertical velocities da/dt and

db/dt, where t is the nondimensional time (5pUt/l), are

found to be (see appendix B)

da

dt
52

Ab

2p2
,

db

dt
5

Ba

2
, (17a,b)

where A and B are

A5 11 2 �
‘

m51

(21)m sech2(mp/2p), and (18a)

B5 11 2 �
‘

n51

(21)n sech2(npp/2) . (18b)

Solutions for a and b are proportional to est, where

s2 52
AB

4p2
. (19)

It may be shown that s2 , 0 for all p (5h/l). [Although

the sum terms in Eqs. (18a) and (18b) are negative for all

p, they asymptote to a minimum of 21.0 from above as

p/ 0 and p/ ‘, where consequently s tends to zero.]

The growth rate of perturbations s is therefore imagi-

nary. Solutions are periodic corresponding to neutrally

stable modes in which vortices move steadily around

closed elliptical orbits with a b/a aspect ratio of p(B/A)1/2

(circular if p 5 1) circumscribed in a time of tp 5
2p/jsj5 4pp/(AB)1/2. Thus, the period of oscillation

T is given by

T5

�
l

pU

�
4ppffiffiffiffiffiffiffiffi
AB

p . (20)

Summing the rapidly converging series in Eqs. (18a) and

(18b) numerically, this period of a vortex perturbed

from a position in the center of a cell is found to be equal

to 18.04(l/pU) when p5 l, that is, for the roughly square

cells observed by Smith (1998). This can be compared

with the period of a particle to orbit around a stationary

vortex To, starting at a distance r away from the vortex.

It can be anticipated that r , l/2, for example, when

r 5 0.47l, To 5 1.339(p15/16)2l2/G (see appendix C), so

thatTo/T5 1.339p(p15/16)2/36.085 1.01; 1 or To,T.

For r� l,To; (2pr)2/G (see appendix C), so thatTo/T5
(4p3/36.08)(r/l)2, such that, for example, if r 5 l/10, the

particle period is To/T ; 0.034. The displaced vortices

therefore move relatively much less rapidly around

the center of a Langmuir cell than do particles close

to a stationary vortex at the cell center. Thus, a par-

ticle’s motion consists of loops around the vortex’s

circular path.

But what of vortices subjected to finite perturbations

from the center of the Langmuir cells?

c. Nonstationary vortices: Vacillation

The infinitesimal perturbation approach used in

section 6b demonstrated that vortices could undergo

repeatable orbits around the stationary center. The equiv-

alent can be demonstrated for finite perturbations by

calculating the vortex streamfunction, as in the infinite-

depth case. This has been done in appendix D, where it

is shown that c(z
0
*) can be approximated by

c(z
0
*)52

G

4p
log

"
(cot2j

0
1 coth2x

0
)P

2

n51

P2
n 1Q2

n

R2
1nR

2
2n

#
,

(21)

wherePn52(12 coth2npp coth2x0)2R2n cot
2j0,Qn5

2(12 coth2npp) cotj0 cothx0,R1n5 (coth2npp1 cot2j0),

and R2n 5 (coth2npp2 coth2x0). Thus, as with Eq. (10),

if c(z0*) and hence the square-bracketed term remains

constant from a starting position (j0, 2x0) to all sub-

sequent positions (j,x) then the resulting curve corre-

sponds to the path of the vortex. Figure 7a shows orbits

based on the contours of Eq. (21) for a square cell: h/l5
p 5 1. The vortex circulates anticlockwise around the

cell (0 # x # l, 2l # z # 0) in closed orbits that are

centered about (l/2, 2l/2), the stationary center corre-

sponding to Thorpe’s (1992) equal spacing. The vortex

in the (2l # x # 0, 2l # z# 0) cell will have paths that

are the mirror image of those in Fig. 7a, circulating

clockwise. Thus, depending on where the vortex is rel-

ative to its nearest neighbor will determine whether the

convergence is stronger, the divergence is stronger, or

the convergence and divergence are of equal strength.

Therefore, unlike the infinite-depth case, in the finite-

depth case, a dynamic Lc pattern can persist.

More generally when h/l 6¼ 1, the orbit of the vortex

can be described by its quadrants: it starts at (l/2,2z0) at

908, then on to (xmin, 2h/2) at 1808 (xmin corresponds

to half the closest horizontal distance that a vortex in

the real array comes to its nearest neighbor, as

defined in Fig. 7a), (l/2, z0 2 h) at 2708, and (l 2 xmin,

2h/2) at 3608 (or 08) before returning to (l/2, 2z0)
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(see Fig. 7a). Thus, xmin and z0 can be used to define a

box xmin # x # l 2 xmin, z0 2 h # z # 2z0 within the

cell that contains the vortex path. The variation in

xmin with z0 is shown in Fig. 7b for h/l 5 1/6, 1/2, 1, 11/2,

and 2 (h/l 5 p). It can be seen that xmin depends on

both z0 and h/l. Notice that only in the h/l 5 1 case

does xmin 5 z0 (as shown in Fig. 7a) because of the

symmetry of this particular setting (when h/l, 1, xmin. z0
and when h/l . 1, xmin , z0).

Using the velocity inEq. (14) approximated by taking a

finite number of terms, N 5 10 or 100, and a small ad-

vective time step, it is possible to calculate the time taken

for one-quarter of a revolution of the vortex T1/4 from a

starting point at (l/2, 2z0) or 908 around to a finishing

FIG. 7. (a) Shows the possible paths followed by a vortex for finite-depth Lc with a square cell (h/l5 1). The paths

correspond to the vortex starting at (l/2, 2z0), where z0 5 0.08l, 0.16l, 0.24l, and 0.32l, as determined from Eq. (21)

with j 5 px/l, x 5 pz/l, j0 5 p/2, x0 5 pz0/l, and p5 1. Half the closest horizontal distance that a vortex comes to its

nearest (real) neighbor xmin is marked for the outmost path (for which xmin 5 0.08l, since xmin 5 z0 when h/l 5 1).

(b) Shows the variation xmin with the z0, for h/l 5 1/6, 1/2, 1, 11/2, and 2.

FIG. 8. Variation in (a) the nondimensional period pUT/l and (b) the dimensional period T for a vortex to un-

dertake a complete revolution around its path with the perturbation amplitude z* for h/l5 1/6, 1/2, 1, 11/2, and 2 (the

finite calculation; section 6c). Solid circles show the infinitesimal perturbation analysis period (section 6b). For

clarity, no results for z* , 0.05h are shown for the h/l 5 1/6 case. The shaded regions corresponds to the allowable

values of z0, whereT is in the range 24# T# 36min, using a scaling based on ju(p/2)j5 0.2m s21 and l5 25m in Eq.

(16). The solid triangle corresponds to the example case shown in Figs. 9 and 10.
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point (xmin, 2h/2) or 1808. The period of revolution is

then simply T 5 4T1/4. Figure 8a shows pUT/l versus

the perturbation amplitude z* 5 h/2 2z0 for the same

values of h/l shown in Fig. 7b (1/6, 1/2, 1, 11/2, and 2). For

clarity, because the period rises rapidly to pUT/l 5
1081 at z* 5 0 (section 6b), the h/l 5 1/6 case is not

shown for z* , 0.05h. The maxima in pUT/l as z* /
0 are 1079, 18.20, 18.08, 34.28, and 73.06 for these

values of h/l. This is very close to the T calculated from

the infinitesimal perturbation analyses [Eq. (20)] pUT/

l 5 1081, 18.31, 18.04, 34.36, and 73.24, which, except

for the h/l 5 1/6 case, are shown in Fig. 8a by solid cir-

cles. The fact that the nondimensional period appears

very similar for h/l 5 1/2 and 1 is an artifact of the

scaling as will be seen next.

We interpret the fluctuations caused as a vortexmoves

around its orbit as the source of vacillations. The peak

convergence velocity in vacillations of Smith (1998) was

0.2m s21 (section 2c), which corresponds to ju(p/2)j 5
0.2m s21 in Eq. (16). [Although in the model with p5 1

the maximum vertical and horizontal velocities are

equal, this speed exceeds the vertical downwelling speed

of 0.006–0.01 times the 10-mwind speed found by Li and

Garrett (1993) in the absence of vacillations.] Together

with l ; 25m, knowledge of the convergence speed al-

lows U to be determined in terms of z0 (x0) resulting in

the period T, shown in Fig. 8b. For a fixed ju(p/2)j in Eq.

(16), the strong decrease inUwith increasing z*5 h/22
z0 causes T to increase when h/l . 1/2. Bearing in mind

Smith’s (1998) observed vacillations of period T ;
30min, a shaded region corresponding to T being in

the range of uncertainty 24 # T # 36min and allow-

able values of z* are also shown in Figs. 8a and 8b. It

can be seen that this range of periods for the vacilla-

tion and maximum velocity is only achieved when the

vortex perturbation is greater than half the distance

between the stationary center and the surface z0, h/4,

except in the case of h/l 5 1/2, which has an additional

region close to the stationary center and the h/l 5 1/6

case, which only has a region close to the stationary

center. The h/l 5 1/6 case is included because it rep-

resents the smallest aspect ratio of shallow-water

Langmuir supercells (LSC), which extend over the full-

water depth (Gargett and Wells 2007). Assuming p 5 1/6

and a vacillation with ju(p/2)j5 0.1ms21 in Eq. (16), and

l 5 90m (6 times the water depth in Gargett and Wells

study and their maximum size of Langmuir cells), the

vacillation period is much longer varying from 140min

when the perturbation amplitude z* ; h/2 to 358min

when z* 5 0.05h. The range in vacillation periods in

water of 15-m depth, for ju(p/2)j 5 0.1 and 0.2m s21

and p 5 1/6 and 1/3, is given in Table 1. It can be seen

that this period is always greater than 30min.

Figures 9a–f show an example case of the instanta-

neous streamlines for a square cell (h/l 5 1) where the

vortex starts at (l/2,2l/5), which is in the allowable range

according to Figs. 8a and 8b and rotates one-quarter of a

cycle, passing one corner of the Langmuir cell. Similar

orbits will be found in the other corners. Based on the

values of t/T for each vortex position (stated in the figure

caption), it can be seen that the vortex slows down as it

passes the corner. This is because the vortex responds

mainly to its nearest neighbor and control is changing

from the image vortex above the surface at (x0, z0) to the

real vortex in the neighboring cell at (2x0, 2z0). The

most likely position for a vortex to be observed is where

it moves most slowly, that is, near the corner of a

Langmuir cell. The instantaneous streamlines are cen-

tered on the local position of the vortex. This would

suggest that fluid particles move along these streamlines

in an anticlockwise sense. However, as will be seen in the

next figure, the particle motions are more complex

than this.

Also shown in Fig. 9g is the manifestation of the

vacillation associated with the movement of the vor-

tex around half its orbit (from 908 to 2708) as seen in

the surface velocity according to Eq. (15) (U 5
0.067m s21). The velocity is negative toward the near-

est windrow at x 5 0, and the minimum in the velocity

reflects the horizontal position within the cell (in the

other half of the orbit the profiles of the velocity at 3158,
3608, and 458will be the mirror images of the 2258, 1808,
and 1358 about the x 5 l/2 line). For comparison, the

dotted line corresponds to the surface velocity in the

case of the vortex at the stationary center [Eq. (15),

with j0 5 p/2, with x0 5 2pp/2]. The ratio of the

strongest velocity relative to the weakest velocity as

determined by the 908 and 2708 minima at x 5 l/2 is

2.973/0.234 ; 12.7 in this case [the minima can be de-

termined using Eq. (16) with x0 5 p/5 and 4p/5], so the

convergence velocity vacillates between 0.016 and

0.20m s21. FromEq. (12) the minimum surface velocity

in the stationary case is 0.8346U, which is equivalent to

0.056m s21. The convergence and divergence in the

surface velocity at x 5 0 and l can be determined from

the derivative of Eq. (15) evaluated at j 5 0 and p,

respectively:

TABLE 1. Vacillation period T in minutes for shallow water

h 5 15m.

ju(p/2)j 5 0.1m s21 ju(p/2)j 5 0.2m s21

l (m); p (2) z* ; h/2 z* 5 0.05h z* ; h/2 z* 5 0.05h

90; 1/6 140 358 70 179

45; 1/3 80 135 40 67
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FIG. 9. (a) Selection of vortex locations over a quarter of one revolution starting at (l/2, 2l/5) and (b)–(f) the

corresponding instantaneous streamlines for the flow (the angles around the path, given in the bottom right-hand

corner of each subplot correspond to t/T5 0, 0.0522, 0.1250, 0.1978, and 0.2500). (g) The horizontal surface velocity

over one-half of a revolution of the vortex, as determined by Eq. (15) with j5 px/l, j05 px0/l, x05 pz0/l, and p5 1.

The solid circles mark the minima for each case, and the dotted line corresponds to the surface velocity in the stationary

case, Eq. (15) with j05p/2, x05p/2, and p5 1. (h) The convergence and divergence at x5 0 and l based onEq. (22), the

minimum in the surface velocity umin, and the velocity at l/2, u(l/2), over a complete revolution of the vortex.
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du

dx
5

2pU

l
sinj

0

3

8>>>>><
>>>>>:

2
C0

10(0)

B2
10(0)

2 �
‘

n51

C0
1n(0)

B2
1n(0)

2
C0

2n(0)

B2
2n(0)

, j5 0,

C0
10(0)

B2
10(p)

1 �
‘

n51

C0
1n(0)

B2
1n(p)

2
C0

2n(0)

B2
2n(p)

, j5p ,

(22)

where B1n(0) and B2n(0) 5 cosj0 2 cosh(2npp 6 x0),

B1n(p) and B2n(p) 5 cosj0 1 cosh(2npp 6 x0), and

C0
1n(0) and C0

2n(0)5 sinh(2npp6 x0). The convergence

at x 5 0 and the divergence at x 5 l are shown in

Fig. 9h, together with the minimum in the surface

velocity and the surface velocity at x 5 l/2, versus the

vortex angle. It can be seen that convergence and di-

vergence are strongest when the vortex is closest to

the appropriate corner, at 458 and 1358, respectively.
The convergence is strongest at angles between 908
and 2708, when the vortex is closer to the x5 0 than the

x 5 l line, and the divergence is strongest at other

angles (the convergence and divergence are equal in

strength when the vortex is equidistant from the x 5
0 than the x 5 l lines, at 908 and 2708). Since the

Langmuir cell is square, the downwelling velocity at

(0,2l/2) will be the same as the surface velocity at x5
l/2, except that it will be delayed by 908, such that it is

strongest at 1808.
Figure 10 shows the same case depicted in Fig. 9,

where the vortex starts at (l/2, 2l/5) over a complete

cycle. The figure also shows the paths followed by 16

particles placed initially at different locations within

the cell. (The center of the vortex also delineates a

particle path.) A wide variety of particle paths is pos-

sible and most bear very little resemblance to the in-

stantaneous streamlines shown in Fig. 9. Particle paths

are generally not closed. They appear to be of sev-

eral types. If a particle starts from a location near a

vortex (e.g., Figs. 10f,j), it remains close to the vortex,

performing multiple loops around its (moving) posi-

tion. Such trapping may occur when the speed of the

particle ur at radius r from the vortex and driven by its

motion significantly exceeds the speed of the vortex;

for example, see the trapping within streamlines of a

vortex pair in a mean flow illustrated in Fig. 7.3.3 of

Batchelor (2000). The condition for trapping is ap-

proximately that the orbital period To , T. For a

given vortex track, the number of particle loops per

vortex orbit, about 16–17 in the examples in Figs. 10f

and 10j, will increase as the initial distance r of a

particle from the vortex decreases. In the case of

Figs. 10f and 10j, where r 5 l/10, To 5 1.37(p/5)2l2/G

(see appendix C), and from Fig. 8a, T 5 (28/p)l2/G
such that T/To 5 700/1.37p3 5 16.4 ; 16.5, the ob-

served number of orbits. Since the vortex speed is

smallest near the corners of the Langmuir cell, it is

here that escape from trapping is most likely to occur.

A second type of trapping is shown in Figs. 10a, 10b,

10m, and 10n, where particles are carried to the edges

of the cell. [Both types of trapping differ from that

discovered and described by Stommel (1949), in which

dense sinking particles can be maintained in suspension

by the circulation within a Langmuir cell.] In the ma-

jority of cases illustrated in Fig. 10, the particle paths

follow a single loop with dimensions comparable to

that of the vortex path.

7. Discussion

Three types of breakdown of Langmuir circulation

(Lc) have been observed (section 2). Two are identified

in large-eddy simulation (LES) models, but the third,

vacillation, is not (section 3). The vortex motion in

Langmuir cells is represented here by line vortices and

their images (section 4 onward).

The equally spaced line vortices in Thorpe’s (1992)

configuration chosen to represent Lc in the infinite-

depth case (section 5) are not stationary, and conse-

quently in this case his stability analysis is shown to be

invalid, although the motion of vortices is shown to be

similar to that examined by Csanady (1994) to explain

the formation of Lc.

In section 6, attention is focused on the develop-

ment of instability in Lc in water of limited depth. A

set of vortices of alternating sign but equal strength

at the center of cells of height h and width l is shown

to be stationary (section 6a). Vortices perturbed by a

small distance from their stationary locations move

around these locations in elliptical orbits (section 6b);

the configuration is neutrally stable. Finite-amplitude

perturbations result in vortices that follow repeat-

able orbits producing variable convergence at the water

surface (and hence variations of the efficiency of con-

vergent motion to generate and sustain bubble bands)

with a period equal to that of the vortices in their or-

bits, a process that we propose represents vacillation

(section 6c). This vortex-related vacillation is different

to the vacillation described by Tandon and Leibovich

(1995). The periodicity of vortices in these orbits is

found and is shown to be consistent with that during the

vacillation observed by Smith (1998). Particle motions

within Langmuir cells during vacillation are illustrated in

Fig. 10. They are of three types. Particles close to an

orbiting vortex are trapped and circle around it. Some

particles are trapped near the cell boundaries, but most

2136 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 46



particles follow loops of scale similar to the vortex’s

orbit.

Although the motion of vortices around their or-

bits results in perturbations similar to those observed

by Smith during vacillation, in particular fluctuations

in surface convergence that will result in stronger and

weaker bubble bands, so accounting for the varia-

tions from relatively disorganized to intense and

regular features, the 8% variation he reports in the

mean separation of bands is not explained nor has a

mechanism been found to explain the perturbation

of vortices from a stationary state. Some yet un-

identified process, such as the nearby breaking of a

rogue wave or some effect associated with the fall in

wind speed and change in its direction that followed

Smith’s observation of vacillation, is required to perturb

the vortex motion within the Langmuir cells. More ob-

servations are needed to establish the nature and onset of

vacillation.

No vacillation appears to have been observed in

shallow water where p 5 h/l is substantially smaller

than the p ; 1 value found in deep water by Smith

(1998). The vacillation periods predicted in section

6c and given in Table 1 are longer than the 30-min

period observed by Smith. For example with p 5 1/6

and ju(p/2)j 5 0.1m s21, the vacillation period ex-

ceeds 2 h. It is rare that wind and wave forcing con-

ditions remain constant over long periods and unlikely

that the motion will then be independent of Earth’s

rotation. Vacillation in shallow water, detectable only

FIG. 10. (a)–(p) Selection of 16 particles placed at different starting locations within the cell (circled dot) and their

paths followed (solid line), to their final position at the dot, in response to one complete revolution of the vortex for

the case depicted in Fig. 9 stating at 908 (square on dot) around the path, shown as the dashed line. Both vortices and

particles circulate anticlockwise.
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if it continues over several periods, is therefore less

likely to be observed.

The representation of Lc by line vortices and their

images is an approximation and neglects, for exam-

ple, the effects of viscosity, small-scale turbulence

or the finite dimensions of vortices, but it does

provide ameans to examine the stability of regular arrays

of vortices and is a useful guide to further investigation.
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APPENDIX A

The Isolated Four-Vortex Model

The complex potential for the isolated four-vortex

model, as proposed by Csanady (1994), where the

vortices are centered at z52z0, z0*, 2z
0
*, and z0 with

circulations G, 2G, 2G, and G, respectively (see

Fig. A1), is

V5 i
G

2p
log

�
z1 z

0

z2 z
0
*

�
1 i

G

2p
log

�
z2 z

0

z1 z
0
*

�
. (A1)

The vortex streamfunction is c(z
0
*)5 Im[V(z

0
*)],

where V(z
0
*) is given by Eq. (A1) evaluated at z5 z

0
*,

with the self-potential removed. The term V(z
0
*)5

i(G/2p) log(2i2j0x0/z0*), so that c(z
0
*) is then

c(z
0
*)52

G

4p
log

 
j20 1 x2

0

4j20x
2
0

!
. (A2)

As with Eq. (10), if R1 5 j0x0/(j0
2 1 x0

2)1/2 [which is

equivalent to Csanady’s (1994) expression] corresponds

to the starting position (j0, 2x0), then subsequent po-

sitions (j, x) along a streamline are given by

x52
R

1
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2 2R2
1

q . (A3)

APPENDIX B

Determining A and B in Eqs. (18a) and (18b)

From Eq. (3), the contribution of the m, n vortex at

location j5 (m1 1/2)p1 (21)ma and x5 (n2 1/2)pp1
(21)nb, with circulation (21)(m1n11)G, to the m 5 n 5
0 vortex, located at (p/21 a,2pp/21 b), umn 2 iwmn is

u
mn

2 iw
mn

5
iU(21)n1m

p(m1 inp)1D
mn

’ iU(21)n1m

"
1

p(m1 inp)
2

D
mn

p2(m1 inp)2

#
,

(B1)

whereU5 G/2l and Dmn5 [(21)m2 1]a1 i[(21)n2 1]b.

Since da/dt and db/dt are the sums of umn/U and of

wnm/U, respectively, over allm and n from2‘ to ‘, only
terms involving even powers of n and m in Eq. (B1)

contribute to da/dt and db/dt:

da

dt
2 i

db

dt
52 �

‘

n52‘
�
‘

m52‘
iD

mn

(21)n1m[m2 2 (np)2]

p2[m2 1 (np)2]2
.

(B2)

Also, because these remaining terms in Eq. (B2) require

either n orm to be odd for the real or imaginary parts of

iDmn to be nonzero, da/dt and db/dt can be written in

terms of 2(n 1 1/2) and 2(m 1 1/2) as

da

dt
52

b

2p2 �
‘

m52‘
(21)m �

‘

n52‘

(n1 1/2)2 2 (m/2p)2

p2[(n1 1/2)2 1 (m/2p)2]2
,

(B3a)

and

db

dt
5

a

2
�
‘

n52‘
(21)n �

‘

m52‘

(m1 1/2)2 2 (np/2)2

p2[(m1 1/2)2 1 (np/2)2]2
.

(B3b)

The sums over n andm in Eqs. (B3a) and (B3b), which are

well known in stability analysis (see, e.g., Robinson and

Saffman1982), are given by sech2(mp/2p) and sech2(npp/2),

respectively. Thus, by defining Eqs. (B3a) and (B3b) as

da/dt 5 2Ab/2p2 and db/dt 5 Ba/2, A and B are

A5 11 2 �
‘

m51

(21)m sech2(mp/2p), and (B4a)FIG. A1. Definition sketch for isolated four-vortex model in the

nondimensional complex z plane.
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B5 11 2 �
‘

n51

(21)n sech2(npp/2) . (B4b)

APPENDIX C

Particle Periods around a Fixed Vortex in
Finite-Depth Lc

The period for one complete orbit To for a particle

placed at various starting positions (l/2, z) in a square Lc

cell (h 5 l) in response to a fixed vortex placed at (l/2,

2z0), where z0 5 l/2 (the true stationary position) and

z0 5 l/5 (the example starting position in Figs. 9 and 10),

are shown in Fig. C1 as a function of r 5 jz0 1 zj. The
term To is plotted relative to the period of a particle

circulating around an isolated vortex Tr [Tr 5 2pr/ur,

and from Eq. (3) ur5G/2pr, such that Tr5 (2pr)2/G]. In
both cases, z05 l/2 and l/5, when r/l� 1,To/Tr, so that

To; (2pr)2/G is a reasonable approximation. In the z05
l/2 case, when the r/l� 1 condition is not satisfied, To .
Tr, for example, when r5 15l/32; 0.47l, To/Tr 5 1.339,

so that To 5 1.339(p15/16)2l2/G. For the z0 5 l/5 case, it

can be seen that To , Tr, when z , 2l/5 and To . Tr,

when z.2l/5. In particular, when z523l/10 (r5 l/10)

To/Tr 5 0.793 and when z 5 2l/10 (r 5 l/10) To/Tr 5
1.96, thus for the special case of the trapped particles

in Figs. 10f and 10j, an effective To/Tr can be determined

by the mean of these two values so that To ; 1.37Tr 5
1.37(p/5)2l2/G.

APPENDIX D

Vortex Streamfunction in the Finite-Depth Case

Asbefore the vortex streamfunction isc(z
0
*)5 Im[V(z

0
*)],

whereV(z
0
*) is given byEq. (13) evaluated at z

0
*, with the self-

potential removed, which as N/ ‘ can be expressed as

V(z
0
*)5 i

G

2p
log

�
2i sinj

0
sinhx

0

sinz
0
*

�

1 i
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n51
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2 inpp) sinh(x

0
1 npp)

sinhnpp sin(z
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#

1 log
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2
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0
1 inpp) sinh(x

0
2 npp)

sinhnpp sin(z
0
*1 inpp)

#
.

(D1)

For the first term the argument can be expressed simply

as (cotj0 1 icothx0)
21. The first and second arguments

in the second term for each n can be expressed as

(6cothpnp 2 icotj0)/[coth(x06 pnp)2 icotj0]. Equation

(D1) can then be written

V(z
0
*)52i

G

2p
log(cotj

0
1 i cothx

0
)

2 i
G

2p
�
‘

n51

log

�
2
P
n
1 iQ

n

R
1n
R

2n

�
, (D2)

where Pn52(12 coth2nppcoth2x0)2R2n cot
2j0,Qn5

2(1 2 coth2npp)cotj0 cothx0, R1n 5 (coth2npp 1 cot2j0),

and R2n 5 (coth2npp 2 coth2x0). The vortex stream-

function c(z
0
*)5 Im[V(z

0
*)] is

c(z
0
*)52

G

4p
log

"
(cot2j

0
1 coth2x

0
)P

‘

n51

P2
n 1Q2

n

R2
1nR

2
2n

#
.

(D3)

As n / ‘, coth2npp 5 1, such that for large n, Pn 5
2R1nR2n, Qn 5 0, and therefore (Pn

2 1 Qn
2)/R1n

2 R2n
2 5 1,

resulting in a negligible contribution to c(z
0
*). Since

coth22p 5 1.000 014, c(z
0
*) can be expressed approxi-

mately by truncating the product at n5 2, provided that

p $ 1/2.
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