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[1] In two-dimensional oscillatory flow above steep ripples, momentum transfer in the
near-bed layer is dominated by the process of vortex formation and shedding. Here results
from a cloud-in-cell (CIC) discrete-vortex model representing this phenomenon are
horizontally averaged and then used to infer the behavior of a one-dimensional vertical
(1DV) “convective eddy viscosity.” For symmetric waves, this eddy viscosity has a mean
value that is consistent with empirically derived formulae based on laboratory
measurements, and a second harmonic that decreases in amplitude from 3 times that of the
mean value down to the size of the mean, as the ratio of orbital excursion amplitude to
ripple wavelength increases. The peak value of this strongly time-varying eddy viscosity

occurs at about the time of flow reversal in the free-stream, revealing the qualitatively
different nature of the momentum transfer above rippled and flat beds. The general
behavior of the eddy viscosity is explored, for ripples of different shape and steepness,
through the vortex parameter range, and rules are proposed that allow the behavior of the
new eddy viscosity to be extrapolated beyond this range toward the classical flat
rough-bed limit. The simple, 1DV, convective eddy viscosity derived here may be used to
represent the vortex-shedding process in large-scale practical formulations, and should
lead to an improved representation of sediment transport in the rippled-bed

regime.
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1. Introduction

[2] Vortex ripples that form on sandy beds in response to
the oscillatory motion induced by surface waves are com-
mon features in coastal areas and shallow continental shelf
seas. The near-bed hydrodynamics are completely dominated
by the vortices shed from the steep ripple profiles, resulting
in flow behavior that is qualitatively different from that
above a flat bed. The vortex-shedding regime is delineated
approximately by 0.5 < Ay/x < 2 and 0.13 < /X < 0.2,
where A is the near-bed orbital excursion amplitude, and
X and m) are the ripple wavelength and height, respectively.
While the vortex-shedding process has been extensively
modeled and measured in the two-dimensional horizontal-
vertical plane [see, e.g., Sato et al., 1984, Lewis et al.,
1995 and Fredsoe et al., 1999], little emphasis has been
placed to date on the development of simplified, one-
dimensional formulations that may be used in practical
applications, for example, larger coastal scale models. For
their part, one-dimensional models have taken little
account of rippled-bed effects, other than by inclusion of
a ripple-enhanced equivalent bed roughness k; (typically
ky = 4n [Fredsoe et al., 1999]) within an otherwise flat-bed
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modeling scheme, which necessarily fails to represent the
fundamentally different processes occurring above vortex
ripples. Sleath [1991], Nielsen [1992], and Ranasoma and
Sleath [1992] inferred from measurements a mean eddy
viscosity for very rough and rippled beds that is height
invariant, and thereby markedly different from the usual
linearly increasing eddy viscosity used above flat beds
[see, e.g., Trowbridge and Madsen, 1984]. Nielsen and
Sleath pointed out that in the near-bed layer in oscillating
flow above large roughness elements or steep ripples,
momentum transfer is dominated by the vortex-shedding
process rather than by random turbulence.

[3] In order to help bridge this gap, Davies and Villaret
[1997] developed the concept of a “convective eddy vis-
cosity,” based on two-dimensional intrawave measure-
ments, and also model results, for symmetric waves. After
having taken horizontal (ripple) averages of the respective
results, they showed that the vortex-shedding process could
be interpreted in terms of a “convective” stress, and hence
represented by a strongly time-varying, height-invariant,
eddy viscosity. Davies and Villaret [1997] showed that
based on this picture, the classical forward Eulerian drift
predicted by Longuet-Higgins [1953] at the edge of the
boundary layer beneath (symmetric) progressive waves was
reduced in the presence of ripples. Davies and Villaret
[1999] went on to investigate the observed reversal in
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Eulerian drift at the edge of the boundary layer beneath
weakly asymmetric progressive waves, this being an effect
with potentially important consequences for net sediment
transport and grain size sorting. They also suggested how
the convective eddy viscosity might behave as a result of
wave asymmetry over the full range of conditions of
practical importance. More recently, Davies and Thorne
[2002] have shown how a near-bed, convective eddy
viscosity submodel can be interfaced with a traditional
1DV flat-bed Reynolds-averaged sediment transport model.

[4] The purpose of this paper is to test the convective
eddy viscosity approach over a more complete range of
symmetric-wave conditions in the vortex-ripple regime than
investigated by Davies and Villaret [1997]. The model used
for this purpose is a cloud-in-cell discrete vortex (CIC)
model, which has been used to represent successfully the
process of vortex shedding in oscillatory flow above ripples
[see, e.g., Perrier et al., 1995; Malarkey and Davies, 2002].
Malarkey and Davies [2002] showed that as Ay/\ increases,
the CIC model is able to represent the first stages of the
breakdown of coherent vortices into the more horizontally
homogeneous turbulence that is expected under flat-bed
conditions, both by comparisons with the two-dimensional
experimental data of Earnshaw [1996] and also by exam-
ination of the behavior of the form drag on the ripple.

[5] In section 2 a brief description of the discrete vortex
model and solution domain is given, along with some two-
dimensional results. In section 3 the concept of a convective
eddy viscosity is introduced for symmetric wave oscilla-
tions, together with a method for its determination, with
particular reference to the data of Ranasoma [1992]. The
model results are then compared with Ranasoma’s data
before the more general dependence of the convective eddy
viscosity on Ay/X and 1/\ is considered. In sections 4 and 5,
the discussion and conclusions are presented.

2. CIC Model Description and 2-D Model Results

[6] Discrete vortex models, such as the present and
Perrier et al. [1995] CIC models, constitute the simplest
and most direct way to represent vorticity transport (see
review of Sarpkaya [1989]). In situations where there are
sharp gradients in vorticity, discrete vortex models are better
suited than Reynolds-averaged models, because they do not
suffer from numerical diffusion associated with advection,
and vortices can be concentrated where there is most
vorticity. They do not require any turbulence closure
assumptions and consequently do not produce any Rey-
nolds-averaged turbulent quantities.

[7] The present CIC model [see Malarkey and Davies,
2002] seeks to solve the vorticity transport equation above
one ripple by representing the vorticity field as a sum of
discrete point vortices. The model uses the operator splitting
method of Chorin [1973] whereby vortices are alternately
diffused (by applying a random-walk jump to their position)
and advected. The advection velocity is calculated on a grid
using the cloud-in-cell method of Christiansen [1973]. All
flow quantities are assumed to be periodic in the ripple
wavelength (i.e., at x = £X/2), and the boundary conditions
on the velocity are that it tends to the free-stream value far
away from the ripple surface and also that there is no slip on
the ripple surface. In order to maintain the no-slip condition,
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Figure 1. Definition sketch of the modeling domain for

sharp-crested ripples (equation (1)).

new vortices are continually created along the ripple surface
at each model time step. Because of the random-walk
element, the final converged solutions considered later have
been obtained by phase ensembling over a number (usually
about 30) of wave periods. A more complete description of
the model has been given by Malarkey and Davies [2002].

[8] Figure 1 shows a definition sketch of the solution
domain for the CIC model, wherein X\ is the ripple wave-
length, m) is the ripple height, and x and X and y and y are the
horizontal and vertical co-ordinates and unit vectors, re-
spectively. Thus the phase-ensembled velocity u is given by
ux + vy, where u and v are the horizontal and vertical
components of the velocity. In the case of Figure 1, the
ripple is sharp-crested and given by

2.\ N
=n{l—— <—. 1
y=n(1=3h) . bl<3 (1

However, the present model makes use of a general
mapping function which allows any realistic ripple, such
as the round-crested ripple shape of Ranasoma [1992]
shown in Figure 2, to be represented. A description of this
mapping function together with the procedure for fitting it
to a particular ripple shape has been given by Malarkey
[2001].

[v] Figure 2 shows the vorticity w (= Ov/Ox — Ou/dy)
from the CIC model in response to a symmetric, spatially
uniform, horizontal, free-stream oscillation, used here and
elsewhere, given by

s = Upcosat, (2)

where Uy is the free-stream velocity amplitude, o is the
wave angular frequency (= 2w/T), T is the wave period, and
¢t is the time. In the example shown, the wave orbital
amplitude 4o (= Uy/o) is based on the parameter settings of
Ranasoma’s [1992] test 2a. Malarkey [2001] showed that
these contours agree quite well with the results from
Ranasoma’s experiment and also with equivalent results
from Perrier et al.’s [1995] CIC model. Here the ejected
vortex, E, formed in the previous half cycle begins to move
off as the flow reverses at —90°. Also visible is the very
weak relict vortex, R, from the previous wave half cycle. By
—45° a growing vortex, G, is clearly visible on the (now)
lee-side of the ripple; this continues to grow until the flow
reverses at 90°. Meanwhile the ejected vortex loses strength
(see phases 0° and 45°) until it, too, becomes insignificant.
Once ejected, the vortex moves a distance approximately
equal to 24,, corresponding to the expected free-stream
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Figure 2. Nondimensional vorticity contours, w\/U,, (anticlockwise is positive, spacing = 2) from the
present model in response to an oscillating free-stream velocity given by equation (2), for Ranasoma’s
[1992] test 2a where Aog/x = 0.78, T'=2.41 s, /X = 0.184 and X\ = 10 cm, for various phases (degrees). E
denotes a newly ejected vortex, G denotes the growing vortex on the lee side of the ripple, and R denotes
the relict vortex from the previous wave half cycle.

advection during one wave half cycle. The flow then
reverses and the process repeats itself, as described in more
detail by Malarkey and Davies [2002]. All phase instants
show that the vorticity is largely contained within the
vertical region depicted, i.e., two ripple heights from the
crest, and this region is termed the convective layer.

3. Convective Eddy Viscosity
3.1. Introduction

[10] The two-dimensional, Reynolds-averaged momen-
tum equation, ignoring the viscous term, can be expressed as

Ou 1
A uVu=—-Vp+R
8t+u u ; p+R, (3)

where V =X 0/0x +y /0y, p is the nonhydrostatic pressure,
p is the density, and R is the Reynolds stress term given by
[07./Ox + O7,,/Oy] X + [O07,,/0x + 8Ty/8y] y (where 7., =
—(U)y, Ty = Ty = =@V, T, = —(?),,, 4’ and V' are the
horizontal and vertical turbulent fluctuations in velocity, and
(), represents a phase ensemble over a representative
number of wave cycles). Now subject to the constraint that
the flow is periodic over a ripple, and the assumption that
the flow is incompressible (V.u = 0), the ripple-averaged
horizontal component of equation (3) is given by

Oty _ _1/%p\ , 9r)

o p<8x>+ ay ' “)
where () represents the horizontal (ripple) average and
(Te) = —(uv) — ((W"V'),). Here, since the advective term is

included in (7.) and the free-steam velocity is spatially
uniform (see equation (2)), it follows that (t.) =0 asy — oo
and, from the boundary layer approximation, that (Jp/0x) =
—pOu.,/0t. By analogy with the gradient diffusion assump-
tion, Davies and Villaret [1997] suggested that (t.) could be
represented by a convective eddy viscosity v,. defined with
respect to the gradient of the horizontally averaged velocity,
such that (1.) = v,.0(u)/0y.

[11] Equation (4) for the rippled-bed case can be com-
pared with the equivalent, one-dimensional (1DV), flat-bed
equation in which there are no appreciable advective terms,

ot ot Oy

(5)

However the solutions arising from equations (4) and (5) for
oscillatory flow above rippled and flat beds, respectively,
are strikingly different. This can be illustrated by comparing
the two main quantities of interest: the horizontally
averaged velocity, (1), and convective shear stress, —(uv),
above ripples, with their flat-bed equivalents, u and — (1),
respectively. A comparison between the present CIC model
results for (u) and —(uv) and results for u and — (1), from
a flat-bed, 1DV k- model [see Malarkey et al., 2003] is
presented in Figure 3. The two cases depicted correspond to
the same Reynolds numbers, Re, (Re = UyAy/v, where v is
the kinematic viscosity) but different bed configurations
(ky = 4m, for the rippled bed [Fredsoe et al., 1999], and k; =
2.5d where d is the grain diameter, for the flat rough bed)
and different relative roughnesses, Ay/k,. However, they
allow a useful qualitative comparison. In the rippled-bed

30of 13



C12016

MALARKEY AND DAVIES: EDDY VISCOSITY OVER VORTEX RIPPLES

C12016

150 120 90 60 30 0O
T :

0.5

0.6 T
< b P
z - T
L . =
~ : |
0.3 by 0.25
b
I
/ |
/' /
ol—s 0.0
-1 0 1
a (u)/U0
0.1
j)
<
-~
0.05
0
0.01
7 2
c d —(uv)p/UO

Figure 3. Vertical profiles, for various phase instants (given in Figure 3a in degrees) during the wave
cycle of (a) (u) and (b) —(uv) over a sharp-crested ripple from the present CIC model, with 4y/k; = 1.25
(/X =0.16 and A¢/X = 0.8), and (c) u and (d) —(u"'), over a flat rough bed from a 1DV, k-e model, with
Ag/k, = 180. (In both cases, Re = 2.3 x 107, 49 = 17.6 cm and T = 8.46 s.)

case, the horizontal averaging is only taken down to the
crest level (y = m) below which —(uv) is increasingly
replaced by form drag. In the flat rough-bed case this
distinction is not explicit in the model solution, in which
form drag is included but only occurs very close to the bed.
To allow direct comparisons between the models, the
vertical axes in Figure 3 are all scaled by the wave
amplitude (4g). Ao is commonly used as a length scale for
flat beds because the roughness elements are comparatively
small. However, the more usual length scale to use for
rippled beds, and that which is used in the rest of the paper,
is the ripple wavelength (\); therefore a secondary vertical
axis scaled by X is also included in Figure 3b.

[12] It can be seen that while the behavior of (u) and u,
and —(uv) and —(u"'),, is broadly similar, there are also
some marked differences. In both cases an overshoot in
the velocity occurs (when 0 < (y — 1)/4y < 0.13, in the
rippled-bed case, and 0.02 < y/4y < 0.06, in the flat-bed
case). This is the result of the gradient of the stress having a
different phase relationship with height in respect of the
acceleration term, such that in a certain height range the
peak velocity becomes larger than that in the free-stream
flow. The overshoot is much larger in the rippled-bed case
(20% of Uy) than in the flat-bed case (6% of U,). Also, the
boundary layer is much thicker in the rippled-bed case than
in the flat-bed case. Finally, near the lower limit of the
profiles, the difference in the phase behavior of the stresses
in the rippled- and flat-bed cases is particularly noticeable.

This behavior is accounted for later by use of a convective
eddy viscosity. It is important to point out that the velocity
profiles in Figure 3a and the stresses in Figure 3b are well
behaved and coherent in space and time. Hence, even
though this might seem rather surprising, there is some a
priori reason to attempt to relate the velocity gradients to the
shear stresses via an eddy viscosity in the rippled-bed case.

[13] By the nature of the CIC model, the comparison
depicted in Figure 3 ignores the Reynolds-stress contribu-
tion, —((u"/),), to the convective stress, (t.). While the
model produces a Reynolds-stress-like contribution as a
result of variability from cycle to cycle, this does not
represent the physically based turbulent Reynolds stress.
However, in practice, the Reynolds-stress contribution to
(T.) is a small one, as found by Sleath [1987] experimen-
tally and by Perrier et al. [1995] using a Reynolds-stress,
turbulence-closure model, which includes the contribution.
Hereafter, in the discussion of the CIC model results, the
Reynolds-stress contribution is neglected and the convec-
tive stress will be written simply as —(uv).

3.2. Calculating the Convective Eddy Viscosity Using
Ranasoma’s Measurements

[14] In this section the method of calculation of the mean
and second harmonic of the eddy viscosity is outlined
following the approach of Davies and Villaret [1997], and
also the specific case of Ranasoma’s [1992] test 2a, used in
that study, is reconstructed. This serves as a useful means of
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Figure 4. [Illustration of the convective eddy viscosity approach in comparison with the data from

Ranasoma’s [1992] test 2a at a height of (y — n)/\ = 0.04. Time series of the nondimensional (a) O{u)/0y
with an harmonic fit using equation (7), (b) —(uv) with an harmonic fit using equation (6) and v,.0(u)/dy,
and (c) free-stream velocity and convective eddy viscosity from equation (8).

illustration and also allows comparison with this earlier work
when analyzing the present CIC model results. Ranasoma
[1992] used Laser Doppler Anemometry to measure the
velocity at 10 points in the horizontal and 4 points in the
vertical above a fixed ripple in sinusoidally oscillating flow.
The experimental conditions of test 2a were as follows: 7 =
2.41s, x =10 cm, 7/Xx = 0.184 and Ay/\ = 0.78. The (fixed)
ripple shape was round-crested as shown in Figure 2.

[15] For symmetric wave oscillations, Davies and Villaret
[1997] represented the convective shear stress and horizon-
tally averaged velocity shear as power series of odd har-
monics up to the fifth and third harmonics, respectively, and
the convective eddy viscosity, v,., as a mean and second
harmonic,

—<MV> — Re{T1 eim +T3 el3<71 +T5 ei5<$l +. ”}7 (6)

0 ) .

Ou) =Re{S; ¢ + 53 et 4 . 3 (7)
dy
Vie = Vieo + Re{v,cz el 4 .. .}, (8)

where i = /(—1), Re denotes the real part, and the
quantities are related by —(uv) = v,.0(u)/0y. Using this
definition and equations (65)—(8) and then equating

iot = i3ot

coefficients of €', ¢’ and e~ results in
(U
Ti = vieoS1 + EVICZSI + 5”!62S37 )
1
T3 = vi0S3 + EVILQSI: (10)
1
Ts :EU:QSL (11)

where an asterisk denotes a complex conjugate. Since
equations (9)—(11) are complex, they represent six
equations in the three unknowns: v,,, Re{v,,} and
Im{v,,} (Im denotes the imaginary part). The unknowns
in this overprescribed system of equations were estimated
by Davies and Villaret [1997] using a least squares-fit
method, and the same approach is adopted here.

[16] The behavior of the convective eddy viscosity
is illustrated initially for the case of Ranasoma’s [1992]
test 2a. The nature of the data, and the analysis of that data,
have been discussed by Davies and Villaret [1997].
Figures 4a and 4b show the (nondimensional) horizontally
averaged velocity shear and convective shear stress, respec-
tively. In each case the solid line corresponds to the best
harmonic fit involving the terms in equations (7) and (6). In
Figure 4b the solid line for the shear stress has a substantial
third harmonic component, which is not found in flat-bed
cases such as that depicted in Figure 3d. An explanation for
this convective shear stress behavior is given in the next
section in terms of the vortex dynamics. The dashed line in
Figure 4b corresponds to the reconstruction of the convec-
tive shear stress based on the product of the horizontally
averaged velocity shear (solid line in Figure 4a) and the
convective eddy viscosity (dashed line) shown in Figure 4c,
obtained from the least squares procedure. Broad agreement
is evident between the solid and dashed lines in Figure 4b. It
can be seen in Figure 4c that the time variation in the eddy
viscosity dominates over its mean value, and also that the
eddy viscosity has its peak values at times of reversal in the
free-stream flow (u,). This is consistent with the domi-
nance of the vortex-shedding process above a rippled bed. It
may be noted also that at times of maximum free-stream
velocity, the eddy viscosity actually becomes negative. (For
a discussion of negative eddy viscosity including some
previous examples from the literature, see Davies and
Villaret [1999].) In the present case, v,.o/AU; = 0.0026,
[Viea|Vio = 2.5 and arg(v,») = 3.2 (~180°), as obtained
previously by Davies and Villaret [1997]. The method used
to calculate the mean and second harmonic of the convec-
tive eddy viscosity having been established, the present CIC
model results are next analyzed in the same way and
compared with Ranasoma’s data.

3.3. Comparison Between CIC Model Results and
Ranasoma’s Data

[17] This comparison was first performed by Perrier et al.
[1995] using a CIC model and, initially, their results are
discussed in relation to those obtained from the present CIC
model. This is a useful exercise since Ranasoma’s data
contained too few points in the vertical to allow a full model
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Figure 5. Vertical profiles of the first and third harmonics
of horizontally averaged velocity (U, and U,3) for
Ranasoma’s [1992] test 2a from the present model and
the data.

validation; an intercomparison of models allows at least
some bounds to be put on the inferred convective eddy
viscosity.

[18] The horizontally averaged velocity, (u), consistent
with equation (7) may be written as

(u) :Re{Uh1 eiot+Uh3 eBUt—l-...}. (12)
In Figure 5, a comparison is made between the first and
third harmonics of the horizontally averaged velocity for
Ranasoma’s [1992] test 2a using a round-crested ripple
shape (see Figure 2). The model agrees quite well with the
data in terms of both amplitude and phase, though it seems
to overpredict the overshoot of the amplitude of the first
harmonic. The phase angle of the first harmonic is
particularly well predicted, suggesting a lead of about 17°
at the crest level, which decreases to zero at a height of 0.1X
above the crest. In the case of the third harmonic, the
present CIC model captures the maximum in the amplitude
away from the crest level (at a height of 0.1\) and the
associated phase behavior. Overall, the behavior of these
harmonics is qualitatively similar to their flat-bed equiva-
lents [see Trowbridge and Madsen, 1984].

[19] In Figure 6, a comparison of time series of —(uv) at
three different heights is made between the data and the
present model. The comparison is for the positive wave half
cycle (—90° < of < 90°). It can be seen that there is broad
agreement in behavior between the model and the data,
though the results differ quite significantly in magnitude.
The reason for this discrepancy is unclear, since Perrier’s
CIC model produced values of —(uv) that were more
closely comparable with the data. The slightly anomalous
behavior of the present CIC model does seem to be peculiar
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to Ranasoma’s settings, as seen later (Figure 9 in section 3.4)
when the closely similar case of 4p/\ = 0.8 is discussed. The
present model does produce the maximum and minimum at
B and C. However, it appears that the first predicted
minimum at A actually occurs in the data in the previous
wave half cycle, though the data should be interpreted with
some caution since —(uv)|_gpe # (Uv)|ooe.

[20] The positions of the maxima and minima in the
—(uv) time series were explained by Perrier [1996] in
terms of “bursts” and “sweeps.” The first minimum, A,
occurs when the newly ejected vortex passes over its
“parent” crest; the maximum, B, occurs as a result of the
next growing vortex in the trough; and the second mini-
mum, C, occurs because the negative effect of the ejected
vortex being forced upward as it passes over a neighboring
crest momentarily outweighs the continuing positive effect
of the growing vortex (for vortex positions, see Figure 2).
This sequence of events is necessarily particular to the value
of A¢/X\ in Ranasoma’s test. The effect of the ejected and
growing vortex on —(uv) is shown schematically in Figure 7
for a free-stream flow that is positive. This shows that when
the vortex generated in the previous wave half cycle is
ejected by the positive flow, and is subsequently forced over
neighboring crests, the “crest constriction” of the flow
together with the vortex circulation means that faster
moving fluid is circulated upward and slower moving
fluid is circulated downward and therefore —(uv) <0 when
(u) >0, as in the case of the minima at A and C in Figure 6b.
On the other hand, the effect of the growing vortex results in
a combined bursting and sweeping effect on the flow; slower
moving fluid is circulated upward and faster moving fluid is
circulated downward, giving —(uv) > 0 when (u) > 0, as in
the case of the maximum at B in Figure 6b.

[21] Figures 8a and 8b show the eddy viscosity coeffi-
cients in equation (8) for Ranasoma’s case (test 2a) inferred
from the present CIC model. The overall structure of the
two coefficients v, and v,., is quite similar to that obtained

0.1
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2 B
I || ——— === S
& [z
i 005 C | — (ym)/A=0.04 |
e (y-m)/A = 0.09
~0.1 ‘ - - (y-m)/A=0.20 ||
a —025 0 T 0.25
0.1
005 B
2
S OfF==— A== —
3 e .
|
-0.05 c
-0.1 A ) |
p 025 0 T 0.25

Figure 6. Time series of —(uv) for Ranasoma’s [1992]
test 2a at different (y — m)/\ for (a) the data and (b) the
present model. The two minima and the maximum are
labeled A, C, and B, respectively (/X = 0.184 and Ay/\ =
0.78).
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Figure 7. Sketch showing the ejected and growing vortex contribution to —(uv) based on an analogy
with turbulent “bursts” and “sweeps” for positive free-stream flow where (u). is the horizontally

averaged velocity through the center of the vortex.

by Perrier et al. [1995], but the magnitudes are rather
different, as discussed later. Both v, and v, have their
largest values in a layer of thickness equal to about 2 ripple
heights above the mean bed level (i.e., up to y — n = 1.51).
Both terms exhibit a complicated vertical structure in
this layer, with maxima at comparatively small distances
(= 0.57) above the crest. One crucial feature of the results is
the phase of the second harmonic. This is centered around
180° in the lower part of the flow, as found in the Ranasoma
[1992] data, indicating that peak values of eddy viscosity
occur at around times of reversal in the free-stream flow.
Immediately above the crest level, however, in a layer of
thickness 0.03X\ = 0.16m, there is a sharp phase lag in the
second harmonic of the eddy viscosity. Here the behavior of
the eddy viscosity should be interpreted with some caution
since it is also characterized by a strongly negative mean
and a noisy second harmonic amplitude that are again
peculiar to the Ranasoma settings. Above this, however,
in the remainder of the vortex layer (0.16m up to about
1.5m), a fairly systematic phase lead develops, suggesting
that momentum transfer in the upper part of the layer occurs
slightly ahead of that in the middle and lower parts of the
layer. This behavior is qualitatively quite different from that
which would be expected above a flat bed.

[22] Davies and Villaret [1997] used the eddy viscosity
interpreted from both Ranasoma’s [1992] data and also
Perrier et al.’s [1995] CIC model results to confirm their
simplified approach of assuming that in the near-bed layer,
the eddy viscosity could be considered constant with
height, with a second harmonic having a fixed magnitude
and phase angle. Davies and Villaret took an average of the
Perrier model results for the eddy viscosity in the height
range 0.04 < (y — n)/\ < 0.2, where arg(v,,) =~ 180° to
quantify the mean and second harmonic of the eddy
viscosity. A vertical average over a comparable height
range, 0.03 < (y — n)/X < 0.2, was used for the results
from the present model. These averages together with
results obtained at the bottom of this convective layer from
Ranasoma’s data, at (v — m)/X\ = 0.04, are given in Table 1.
The vertical averages, over the heights where arg(v,.») ~
180°, of the mean and the second harmonic in the eddy
viscosity are referred to hereafter as K, and K, to distin-
guish them from v, and v,.,, and the vertically averaged
eddy viscosity, K, is thus given by K, + Re{K,e2°’}. It can
be seen that while both models predict similar magnitudes
and phase angles for the second harmonic, in reasonable

agreement with the data (the magnitudes being about
1.4 times that of the data), Perrier’s model produces a mean
value that agrees more closely with the data than the present
CIC model (1.7 times larger compared to 3 times larger than
the data). As shown later, however, the value of |K,|/K, =
1.1 in Table 1 is atypical when compared with other results
from the present model. For example, the values of v, and
Vsen, for a sharp-crested ripple with 4¢/X = 0.8 and n/X\ =
0.16 (see Figures 8c and 8d, where arg(v,.,) ~ 180° when
0.01 < (y — m)/\) < 0.15), which are roughly comparable
with Ranasoma’s settings, result in Ko/A\U, = 0.0040 and
|K>|/Ky = 1.6. These values are more in keeping with the
other values in Table 1. The reason for the anomalous
behavior of the present model in this particular case remains
unclear. However, it is likely that the contrasting vertical
scaling of the convective layer in Figures 8a and 8b and
Figures 8c and 8d probably relates to the different ripple
shapes considered, since Perrier et al. [1995] also found

0.4
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Figure 8. Profiles of the mean and second harmonic of the
convective eddy viscosity above the crest level from the
present model: (a, b) for Ranasoma’s [1992] test 2a
(a round-crested ripple with /X = 0.184, 4o/X\ = 0.78), and
(c, d) for a sharp-crested ripple with 7/x = 0.16, 4¢/Xx =0.8.
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Table 1. Values of K, and |K;| Derived From the Data, Perrier et
al’s [1995] CIC model, and the Present CIC Model, for
Ranasoma’s [1992] Test 2a

Origin Ko/\Uj, |KS|[/NUy |K>|/Ky arg(K,), Radians
Data 0.0026 0.0065 2.5 3.1
Perrier model 0.0043 0.0095 2.2 2.7
Present model 0.0082 0.0090 1.1 2.9

similar vertical scaling to that shown in Figures 8a and 8b. It
should be stressed also that the values in Table 1 for the data
are based on only one level and that the profiles of v,.o and v,
from both CIC models, over the vortex-shedding height
range, show rapid changes with height. Above the vortex-
shedding range the magnitudes of v, and |v,,| are much
smaller (in Figure 8c, v, actually becomes negative). This
reflects the fact that random turbulence (not included in the
model) becomes increasingly important with height, and the
neglect of the —((/),) term in (1) can probably no longer
be justified. The convective eddy viscosity from the present
model having been tested against available data and a
previous CIC model, its dependence on other parameters is
considered in the next section.

3.4. Dependence of the Convective Eddy Viscosity on
Ag/\ and m/X

[23] In this section the dependence of the eddy viscosity
on Ay/X and m/\, as characterized by the height-averaged
values K and K,, is investigated. However, it is instructive
to first examine the nature of the horizontal averages used
to determine K, and K,. For this purpose, attention is
focused on sharp-crested ripples (see equation (1)) having
wavelength X\ = 22 cm, and waves having period 7= 8.46 s,
including /X = 0.16 and 4¢/X\ = 0.8, 1.2, and 1.8. These
settings correspond to the experimental conditions of
Earnshaw [1996] that were the subject of an earlier
comparison with the present model [see Malarkey and
Davies, 2002].

[24] Though the behavior of (u) is broadly similar to
that depicted in Figure 5 as the value of Ao/ is varied,
pronounced changes occur in the time series of —(uv). In
Figure 9 it can be seen that, for 4o/\ = 0.8, the time series
of —(uv) is much the same as that shown in Figure 6b
though, interestingly, the position of the first maximum
appears to be closer to that seen in Ranasoma’s data
(Figure 6a). However, as 4o/ increases, while the basic
structure of —(uv) remains the same, it is apparent that
more and more secondary maxima and minima occur. This
is because larger values of Ay/\ result in more instances
where ejected vortices are forced over successive ripple
crests. As a result of this, higher harmonics in —(uv)
become more important as Ay/\ increases. However, no
corresponding higher harmonics are apparent in O(u)/dy;
in fact, the time series of J(u)/0y continue to look much
the same as in Figure 4a. This means that the procedure
outlined in section 3.2 to calculate v, and v,, remains
valid even though the first harmonic in —(uv), namely T7,
becomes weaker as Ay/\ increases. It should also be
emphasized that using only a mean and a second harmonic
to describe the eddy viscosity, while not representing the
eddy viscosity fully, nevertheless gives a lowest order
approximation to its time variation.
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[25] For very rough beds, when vortex shedding is
expected to be the dominant process, Sleath [1991] and
also Nielsen [1992] proposed that the eddy viscosity could
be considered constant in both height and time. They used
similar data sets to derive the following expressions:

Sleath [1991]

Ko [k,
=0.00253¢ /-, 1< Ao/k, < 120, 13
AU 4y o/ks < (13)
Nielsen [1992]
KO ks
=0.004->,  Ag/k, < 16, 14
AoUp Ay’ o/ks < (14)

where k; is the equivalent bed roughness. These formulae,
equations (13) and (14), have different dependencies
because Sleath used turbulence measurements above the
convective layer and Nielsen used measurements of the
phase-ensembled, horizontal defect velocity, both within
and above the convective layer, to represent the boundary
layer as a whole. However, Davies and Villaret [1997]
pointed out that in the rippled-bed regime 1 < Ay/k; < 4,
equations (13) and (14) give similar results and, at Ay/k, =
2.5, they give identical results. If it is assumed that &, = 41
[Fredsoe et al., 1999], equations (13) and (14) can be
expressed in terms of 4p/X\ and m/X\ as follows:

0.5 A/L=08
0
=y
T O SN, SR
\.:/ - -
I — (y-n)/A=0.04
(y=m)/A = 0.09
-0.05F - - (y-m)/A=020 {
-0.25 0 T 0.25
0.05¢ A/L=12
0
2 PR SR
S| S— - . — A
3 —
|
-0.05F
-0.25 0 T 0.25
0.5y A/A=18
0
NQO
S| DA N N -
2
|
-0.05} ‘
-0.25 0 . 0.25

Figure 9. Time series of —(uv) for various A¢/\ for a
sharp-crested ripple with /X = 0.16. The results correspond
to the same nondimensional heights as in Figure 6.
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Figure 10. Nondimensional convective eddy viscosity for sharp-crested ripples versus Ay/\, for
(@) /X =0.16 and (b) /X = 0.18. (¢) |K,|/Kp and (d) arg(K,) versus Ay/\, for both steepnesses, from the
present model. In Figures 10b, 10c, and 10d the symbols marked with P correspond to the values of
Perrier from Table 1. (e) |K>|/K, versus Ay/k,, where the flat rough-bed limit is 0.4, and (f) ¢o/d,/ versus

Aolks, where &, = arg(K>) — 360° and ¢,y = 60°.

Sleath [1991]

Ko ndo
20 . \/ 1
NI 0.00506 N (15)
Nielsen [1992]
K() _ H
U, = 16 (16)

Davies and Villaret [1997] compared these formulae with
the mean component of eddy viscosity obtained from
Ranasoma’s data. They concluded that the mean component
of eddy viscosity using the convective approach was “in
broad agreement with” that predicted by equations (15) and
(16), but was in “rather closer agreement with” Nielsen’s
[1992] equation (16), as expected since Nielsen’s [1992]
equation was restricted to rougher beds. Here, for

representative values of Ay/X\ and m/\, values of K, based
on the present model solution are compared with these
formulae. The dependence of the second harmonic in the
eddy viscosity (K;) on the same parameters is also
considered, though here there are no experimental values
for comparison other than those calculated for Ranasoma’s
data by Davies and Villaret [1997]. The eddy viscosity has
been calculated in the same way as described in sections
3.2 and 3.3. In each case the vertical averaging of v, and
[Viea| is restricted to the height range where arg(v,,) ~
180°. This region is quite distinct and corresponds typically
to m <y < 21 (i.e., a layer of thickness of n above the
ripple crest). Even though arg(v,.) is close to 180°, it is not
exactly equal to 180° and so a representative value of
arg(K>) has also been obtained over the same height range.

[26] Figures 10a and 10b show the dependence of K
and |K,| on Ay/\ for two different sharp-crested ripple
steepnesses (/A = 0.16 and 0.18). It can be seen that
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Perrier et al.’s [1995] results for the eddy viscosity from
Table 1, which are included in Figure 10b, are in good
agreement with those from the present model, despite the
fact that Perrier’s results were obtained for a different ripple
shape. This agreement suggests that the distinction of ripple
shape associated with vertical scaling (see Figure 8) is
removed by the vertical averaging process. For both ripple
steepnesses the mean eddy viscosity shows quite good
agreement with Sleath’s [1991] equation (15), but even
better agreement with Nielsen’s [1992] equation (16), as
found by Davies and Villaret [1997], and thus the latter can
be considered a suitable predictor for the mean value K.
[27] The behavior of the second harmonic, in Figures 10a
and 10b, is quite similar for both ripple steepnesses: |K;|
tends to decrease with increasing 4o/\, thus following the
behavior expected from Figure 9 based on the relative size
of the first harmonic of the shear stress. In Figure 10c, the
ratio |K5|/K, for the two different steepnesses shows little
consistent difference as A4¢/X\ is varied, and the value of
Perrier agrees quite well with the general trend for the
present model. For most values of Ag/\, |K»|/Ky tends to be
larger than the value of 1.3 used by Davies and Villaret
[1997]. However, even this value, which was limited by the
analytical nature of their solution, is significantly larger than
typical values used for flat beds (4o/k; > 30). (For example,
Trowbridge and Madsen [1984] obtained |K5|/Ky = 0.4 from
a truncated Fourier series based on K o< |T,,,/p|""> where
Twb 15 the bed shear stress, T,,/p o< cos(wt + ) and vy is the
phase lead of the bed shear stress over the free-stream
velocity.) Figure 10d shows that the phase of K, behaves
similarly for the two different steepnesses as Ay/\ varies;
there is a minimum in the middle of the range, and the phase
angle tends to increase on either side of this point. The value
of Perrier, also included in Figure 10d, is in keeping with
this general trend. Since a phase angle of 180° corresponds
to flow reversal, a phase of greater than 180° is ahead of
flow reversal. Thus the vortices are, for the most part, being
shed ahead of flow reversal in the present model solution.
All of the phase angles plotted in Figure 10d are very
different from typical values based on eddy viscosity for-
mulations for flat beds which yield values of about 60°.
Such values occur, in the flat-bed case, since the maximum
eddy viscosity coincides with maximum stress in the wave
cycle (see the explanation above for |K,|/Ky = 0.4). Since vy
is the phase lead of the bed shear stress over the free-stream
velocity, it can be expressed in terms of the phase angle of
the maximum value of K, in the wave cycle, as follows:

v = (ko). (17)

and since y & 30° in the flat-bed case (see, for example,
test 2 of Jonsson and Carlsen [1976], where Ay/k, = 28.4 for
a fixed rough bed), it follows that arg(K,) ~ 60°. Both the
phase angle and magnitude of the second harmonic in the
eddy viscosity above a rippled bed, while being different
from their flat-bed counterparts, nonetheless tend toward
them as Ay/\ increases, since this corresponds to the bed
becoming flatter (in the case of the phase angle this can be
seen by considering the variation in arg(K,;) — 360°).
Physically, this type of behavior has been explained by
Malarkey and Davies [2002] as the decay of coherent
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vorticity into more random turbulence as vortices pass over
successively more ripples as Ay/\ increases.

[28] Model results for oscillatory boundary layer flow
above flat beds in the rough turbulent regime are normally
interpreted in terms of the parameter Ay/k,. Thus it is of
interest to quantify the behavior seen in Figure 10c in terms
of Ay/k,. Since |K;|/Kq should tend to its flat-bed limit of
0.4, as Ay/k, becomes large, it seems reasonable to fit the
following type of variation:

1Ka|
Ko

A
=04+gexp {fgzk—o}, Ao/ks > 1.

s

(18)

Using a least squares-fit technique of the model results to
equation (18), including the value of Perrier, gives ¢; = 2.8
and ¢, = 0.36. This best fit is shown in Figure 10e.
Equation (18) predicts that |K,|/Ky is within 1% of its
flat-bed value (= 0.4) when Ay/k, ~ 18. Although a rather
smooth variation in Ay/k, has been assumed, the final
outcome is reasonably consistent with the flat-bed limit
being achieved at Ay/k, = 30. As Ao/k, increases and |K>|/K,
decreases, the phase intervals during the cycle when
K becomes negative decrease and, for Ag/k, > 4.3, they
disappear. Implementation of the present rule (equation (18))
within a numerical model requiring non-negative values of
the eddy viscosity at all phase angles is evidently not
possible for Ay/k; < 4.3. Here a pragmatic approach might be
required whereby, for example, the mean eddy viscosity is
increased to the value (K + |K5|)/2, and the magnitude of
second harmonic is equated to this, such that the eddy
viscosity does not become negative, and retains its original
maximum value of K + |K5|. While such an adjustment is ad
hoc, it maintains the spirit of the approach proposed here.

[20] A similar process can be used for the phase of K,
namely ¢, = arg(K,) — 360°, under the constraint that it
reverts to its flat-bed limit, ,,= 60°, at large 4¢/k,. Here the
following expression has been used:

o, Ao { Ao}
—:1_§3_exp —4-1> Ao/kal
d)zf ks ks

(19)
The critical phase angle of 180° identified in Figure 8b
corresponds to ¢»/d,,= —3. Again using a least squares-fit
technique on the model results to equation (19), with
Perrier’s value included, gives ¢z = 7.5 and ¢4 = 0.67. The
best fit curve, shown in Figure 10f, predicts that ¢, is within
1% of its flat-bed value (= 60°) when A4y/k, =~ 14, which is
comparable with the value found for |K;|/K, above. Also, it
can be seen that ¢ = 0° when A4y/k, = 5.6; in other words the
eddy viscosity and shear stress are in phase with the free-
stream flow. (This must occur since the shear stress lags
behind the free-stream velocity in the rippled-bed case (see,
for example, Figure 4b), and the shear stress leads the free-
stream velocity in the flat rough-bed case.) Although the
least squares-fitting techniques described above involve a
large amount of extrapolation, the resulting decay rates are
nonetheless consistent with one another. These two results,
equations (18) and (19), together with equation (14),
provide potentially useful rules for ‘“connecting” the
rippled-bed regime to the flat rough-bed regime in “very
rough” to “rough” turbulent oscillatory flow.

[30] To demonstrate the harmonic method used in this
paper, and to test the equations representing a height-
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Figure 11. Vertical profiles of the first and third harmonics

of convective stress from —(uv) and using the height-
varying and height-invariant eddy viscosities, v, and K,
respectively, for a sharp-crested ripple with 4o/X = 1.2 and
WX = 0.18.

invariant eddy viscosity in the rippled-bed regime, the
harmonics of the stress are reconstructed for a particular
case. The first and third harmonics of the stress can be
calculated by substituting the eddy viscosity coefficients,
V0 and v,.,, and vertical shear harmonics, S; and Ss, into
equations (9) and (10). These stress harmonics can then be
compared with the harmonics calculated directly from
—(uv). This comparison is shown in Figure 11 for the case
of A4g/x = 1.2 and /X = 0.18, as depicted in Figure 10b. It is
clear from this comparison that the harmonic reconstruction
using the height-dependent eddy viscosity reproduces the
harmonics calculated from —(uv) very well, thus validating
the method used herein. Also shown in Figure 11 are the
harmonics of stress again using equations (9) and (10) but
with v, = Ky and v, = K,, where K, and K, are given by
equations (14), (18), and (19). It can be seen that this height-
invariant eddy viscosity produces the amplitudes and phases
of the two harmonics reasonably well, but tends to under-
predict the amplitudes near the crest and overpredict them
farther away from the crest.

4. Discussion

[31] Since the purpose of the present work has been to
represent the vortex-shedding process above ripples in a
IDV framework, it is necessary to consider whether the
convective eddy viscosity characterized by equations (14),
(18) and (19) can reasonably be implemented in a 1DV
model. Davies and Thorne [2002] used a convective eddy
viscosity, in a near-bed submodel, that had its mean value
set by Nielsen’s [1992] equation (14). This has been
confirmed by the results in the present paper. However,
the second harmonic used by Davies and Thorne [2002]

MALARKEY AND DAVIES: EDDY VISCOSITY OVER VORTEX RIPPLES

C12016

was limited by the size of the mean, because the eddy
viscosity is restricted to positive values in most numerical
models, as discussed earlier. Since the results here suggest
that the second harmonic should be greater than the mean in
the vortex-shedding layer, there is perhaps a need for an
analytical solution involving a second harmonic with a
relative magnitude that decreases with height. This solution
could be used in an extended analytical approach, for
example, in a transitional region above the present vortex-
shedding region, such that, at the top of the transitional
layer, where the analytical and numerical models are
matched, the numerical constraint on the eddy viscosity is
not broken. Certainly the assumption of a height invariant
eddy viscosity seems rather crude in the light of the present
model results (see Figure 8). It is also likely that the
turbulent contribution to the eddy viscosity, resulting from
the —((uV),) term in the stress, which is neglected in the
present calculations, becomes increasingly important with
height above the ripple. On the other hand, by assuming a
height-invariant eddy viscosity, the effect of turbulence may
be being included in the outer part of the boundary layer,
but probably too much is being removed from the inner part,
as demonstrated in Figure 11.

[32] At the edge of their vortex layer, Davies and Thorne
[2002] prescribed the turbulent kinetic energy in terms of
the eddy viscosity and a mixing length. This raises the more
general question of how Reynolds-averaged quantities, such
as the turbulent kinetic energy and the energy dissipation
rate, behave in the convective layer. The behavior of
such quantities in a one-dimensional framework can only
be fully understood by analyzing horizontally averaged
measurements or results from suitable two-dimensional,
Reynolds-averaged models. Use of a two-dimensional
Reynolds-averaged model would also allow the stress
contribution —((1),), referred to above, to be quantified
and included in the earlier calculations.

[33] It should be pointed out also that while equations (18)
and (19) provide a connection between the rippled- and
flat-bed regimes, they are based only on matching the
limiting cases. Thus they do not specify how, for example,
the vertical structure of the eddy viscosity changes from
constant to linearly increasing with height over the transi-
tional range. The main transitional range 5 < Ay/k; < 10,
where the flow field is changing from two- to three-
dimensional is beyond the scope of not only the present
CIC model, but any two-dimensional model, as pointed out
by Malarkey and Davies [2002].

[34] In terms of future work, it would be interesting to
quantify the increasing effect with height above the ripple
crest of the horizontally averaged Reynolds-stress term. It
would also be of interest to generalize the approach
described in this paper to the asymmetric case, both for
waves in isolation and also for waves combined with
currents, by including a first harmonic in the eddy viscosity.
This might help to verify the behavior of the eddy viscosity
suggested by Davies and Villaret [1999] for weakly asym-
metric progressive waves. Also, it might allow 1DV models
to represent the enhanced current veering, resulting from
asymmetric frictional drag in the two halves of the wave
cycle when waves and currents are superimposed at some
general angle over ripples, found by Andersen and Faraci
[2003]. However, the most important next step should
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be to analyze the horizontally averaged concentration in a
two-dimensional model to see how the sediment concentra-
tion is affected by the corresponding “convective sediment
diffusivity.”

5. Conclusions

[35] Momentum transfer in the lower part of the oscillat-
ing boundary layer above steep ripples is dominated by the
process of vortex formation and shedding. This coherent
two-dimensional (or three-dimensional) motion gives way
in the upper part of the boundary layer to random turbulent
motion. The resulting total boundary layer thickness is
considerably larger than that found in oscillatory flow above
flat beds. The aim of the present study has been to further
develop a relatively simple, practical modeling approach
that captures the essential physics of the vortex-shedding
process.

[36] The “convective eddy viscosity” approach of Davies
and Villaret [1997] sought to represent the process of vortex
shedding above ripples in a one-dimensional framework; in
particular, the eddy viscosity related the horizontally aver-
aged “convective” shear stress to the horizontally averaged
velocity gradient. In the present paper, the results from a
two-dimensional horizontal-vertical (2DHV), cloud-in-cell,
discrete-vortex model have been horizontally averaged and
then used to investigate this convective eddy viscosity
approach over a range of conditions characterizing the
vortex-ripple regime.

[37] Analysis of the model results suggests that coherent
motions exist in a ‘‘convective layer’ of thickness
corresponding to one to two ripple heights above the mean
bed level, within which it is appropriate to use the convective
eddy viscosity approach. Here the time mean value of the
eddy viscosity has been found to agree well with the
empirically derived formula of Nielsen [1992]. In addition,
the time variation in the eddy viscosity has been found to be
characterized by a strong second harmonic that decreases
from about 3 times the mean value of the eddy viscosity to
the size of the mean value, as the ratio of orbital excursion
amplitude to ripple wavelength increases. Moreover, the
second harmonic has a phase angle consistent with the
maximum value of the eddy viscosity occurring at times of
reversal in the free-stream flow. As the above ratio increases,
the trend in both the phase angle and also the magnitude
of the second harmonic has been found to be in keeping with
the expected transition to values appropriate for a flat bed;
these trends have been quantified here by predictive formu-
lae suitable for use in more practical large-scale formula-
tions. These new results should contribute ultimately to a
better representation of sediment transport over rippled beds.

Notation

Ao orbital excursion amplitude.
K Ko+ Re{K»e?""}.

Ko and K> v, and v,, averaged over convective

layer.

R Reynolds-stress term.
Re Reynolds number (= Updo/v).

Sy and S5 first and third harmonic amplitudes of

O(u)/0y.
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wave period.

free-stream velocity amplitude.

first and third harmonic amplitudes of (u).
V1),

bed roughness (= 4n).

nonhydrostatic pressure.

time.

phase-ensembled horizontal velocity.
horizontal turbulent fluctuation.
horizontally averaged horizontal velocity.
free-stream velocity.

Reynolds stress contribution to ().
convective contribution to (T.).
phase-ensembled vertical velocity.
vertical turbulent fluctuation.

horizontal coordinate.

horizontal unit vector.

vertical coordinate.

vertical unit vector.

first, third, and fifth harmonic amplitudes
of —(uv).

phase lead of T, over 1.

ripple height.

ripple wavelength.

kinematic viscosity.

convective eddy viscosity.

mean and second harmonic of v,.
3.1415927.

water density.

angular frequency of the wave (= 21/7).
fitting coefficients.

Reynolds stress (= —(u'zzp).

Reynolds stress (= —(uV),).

Reynolds stress (= —v'?),).

bed shear stress over a flat bed.
convective stress (= —(('V'),) — (uv)).
arg(K>).

arg(K5) in the flat-bed limit (= 60°).
vorticity (= Ov/Ox — Ou/dy).

X0/0x + yO/oy.

denotes a complex conjugate e.g., S*,.
real part, for example, Re{v,.}.
imaginary part, for example, Im{v,.,}.
horizontal average, for example, (u).
phase ensemble, for example, (u'V),,
phase angle of a complex quantity
arg(Vee2).

magnitude of a complex quantity |v,.]|.
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