Topographical Scattering of Waves: Spectral Approach

R. Magne'; F. Ardhuin?; V. Rey®; and T. H. C. Herbers*

Abstract: The topographical scattering of gravity waves is investigated using a spectral energy balance equation that accounts for
first-order wave-bottom Bragg scattering. This model represents the bottom topography and surface waves with spectra, and evaluates a
Bragg scattering source term that is theoretically valid for small bottom and surface slopes and slowly varying spectral properties. The
robustness of the model is tested for a variety of topographies uniform along one horizontal dimension including nearly sinusoidal, linear
ramp, and step profiles. Results are compared with reflections computed using an accurate method that applies integral matching along
vertical boundaries of a series of steps. For small bottom amplitudes, the source term representation yields accurate reflection estimates
even for a localized scatterer. This result is proved for small bottom amplitudes /4 relative to the mean water depth H. Wave reflection by
small amplitude bottom topography thus depends primarily on the bottom elevation variance at the Bragg resonance scales, and is
insensitive to the detailed shape of the bottom profile. Relative errors in the energy reflection coefficient are found to be typically 2h/H.
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Introduction

Wave propagation over any bottom topography can now be pre-
dicted with boundary element methods or other accurate numeri-
cal techniques. However, wave forecasting relies to a large extent
on phase-averaged spectral wave models based on the energy or
action balance equation (Gelci et al. 1957). For large bottom
slopes waves can be reflected and this reflection is currently not
represented in these models, while the significance of this process
is still poorly known (Long 1973; Richter et al. 1976; Ardhuin et
al. 2003). For waves propagating over a sinusoidal seabed profile,
a maximum reflection or resonance is observed when the seabed
wave number is twice as large as the surface wave wave number
(Heathershaw 1982). Davies and Heathershaw (1984) proposed a
deterministic wave amplitude evolution equation for normally in-
cident waves over a sinusoidal seabed, based on a perturbation
expansion for small bottom undulations. This theory was shown
to be in good agreement with experimental data but overestimates
reflection at resonance. Mei (1985) developed a more accurate
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approximation, that is valid at resonance, using a multiple scale
theory. This approach was further extended to a random bottom
topography in one dimension (Mei and Hancock 2003). The
Bragg resonance theory can be extended to any arbitrary topog-
raphy, in two dimensions, that is statistically uniform (Hassel-
mann 1966). Ardhuin and Herbers (2002) further included slow
depth variations. The resulting spectral energy balance equation
contains a bottom scattering source term Sy, Which is formally
valid for small surface and bottom slopes and slowly varying
spectral properties. Sy, 1S readily introduced into existing
energy-balance-based spectral wave models, and was numerically
validated with field observations (Ardhuin et al. 2003). Although
this stochastic theory is in a good agreement with deterministic
results for small amplitude sinusoidal topography (Ardhuin and
Herbers 2002), the assumed slowly varying bottom spectrum is
not compatible with isolated bottom features, and the limitations
and robustness of the source term approximation for realistic con-
tinental shelf topography are not well understood. The limitations
of the stochastic source term model are examined here through
comparisons with a deterministic model for arbitrary one-
dimensional (1D) seabed topography that is uniform along the
second horizontal dimension. We review the random Bragg scat-
tering model, and investigate the applicability limits of the source
term for a variety of seabed topography. Predicted reflection co-
efficients are compared with results based on Rey’s (1992) model,
which approximates the bottom profile as a series of steps. Ex-
amples include a modulated sinusoidal topography that is well
within the validity constraints of the source term approximation
as well as a steep ramp and a step that violate the assumption of
a slowly varying bottom spectrum and thus provide a simple test
of the robustness of the source term approximation.

Theoretical Background

Matching Boundary Solution

We use Rey’s (1992) algorithm, based on the theory of Takano
(1960) and Kirby and Dalrymple (1983). It uses a decomposition
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Fig. 1. Stepwise approximation

of the bottom profile in a series of N steps with integral matching
along vertical boundaries between each pair of adjacent steps. A
coordinate frame is defined with the horizontal x coordinate in the
direction of the incident waves and the vertical z coordinate point-
ing upwards relative to the mean water level. The velocity poten-
tial is described by a sum of flat bottom propagating and evanes-
cent modes. Evanescent modes are included in the matching
condition to ensure a consistent treatment of the wave field (Rey
1992). The general solution of the velocity potential for a step (p)
of depth H, is given by the following equations:

D, (x,z,1) = d,(x,z)e™™” for p=1,N (1)

with

0
bp(x,2) = Az iy, (2) + X BE e, ,(2)
D¢ X

propagating modes

evanescent modes (2)

where (x,, ¥, , ¢=1,%) define a complete orthogonal set for each
step region (p)

Xp(z) = cosh k,(H, +2) 3)
U, ,(2) =cosk, ,(H,+2) (4)
k, and k, , satisfy the following dispersion relations:
2
=k, tanh(k,H,) )
w,
? =-k,,tan(k, H,) (6)

where g=acceleration of gravity.

Across each step (p), matching conditions between two do-
mains (labeled p=1 and p=2 in Fig. 1) must be applied to ensure
continuity of the fluid velocity and surface elevation

J J
bi=dy, 1T p <o 7)
ox ox
J
&—Ofor -H <z<-H, (8)
ox

The integral formulation of these conditions (for H, > H,) leads to

H, H,
bixdz = box,dz )
0 0
Hy Hy
b, dz= by ,dz forg=1,0 (10)
0 0
H Hy
ok ok
J indZ= &deZ (11)
0 X 0 X
Hy Hy
ok
J iy o= | Py g wrg=1.0 (12)
0 0

The orthogonality of the set functions largely simplifies these
equations. In order to solve the problem numerically, the number
of evanescent modes ¢ are truncated to g=Q. Practically, only a
few evanescent modes are needed to ensure convergence. For N
steps, 2N(Q+1) equations are solved to obtain the 2N(Q+1)
complex coefficients A7 and B, . At the boundaries (p=0 and
p=N), the reflection coefﬁcwnt 1s given by

_ |ao*]
Ao

(13)

This method has the advantage that it is valid for arbitrary 1D
topography.

Bragg Scattering Theory

We consider random waves propagating over a two-dimensional
irregular bottom with a slowly varying mean depth H and small-
scale topography h. The bottom elevation is given by z=—H(x)
+h(x), with x the horizontal position vector. The free surface
position is {(x,1).

Considering an irrotational flow for an incompressible fluid,
we have the governing equations and boundary conditions for the
velocity potential ¢

V2¢+%=0 for —H+h=<z=<{( (14)
T
% _g _
Pl & -V(h—-H) atz=—H+h (15)
L o
(?—f:a—(f at z={_ (16)
2o (2]]
gL+ = 2[IVd)l o) | ae=t (17

where V and V? are the horizontal gradient and Laplacian opera-
tors. Egs. (14)—(17) are, respectively, the Laplace’s equation, free
surface and bottom boundary conditions, and Bernoulli’s equa-
tion. Combining these two last equations, we obtain

Fd b AR Fd

—4 =gV -V(-V —— atz=
(%2+g gVe-VL-Vé- ot Jz ooz atz=¢

(18)
Assuming that the surface and the small-scale bottom slopes are

of the same order &, and the large-scale bottom slope is of order
€2, a perturbation expansion of ¢ up to the third order in & yields
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the following spectral energy balance equation (details are given
in Ardhuin and Herbers 2002):

dE(K,x,1)
T = Sbsca[(k,x,t) (19)
where
27
Spscak,X,1) = K(k,H)f cos’(6 - 0")FP(k - k’,x)
0
X[EK',x,1) — E(k,x,1)]d0’ (20)
with
4okt
K(k,H) (21)

= sinh(2kH)[2kH + sinh(2kH)]

E(k,x,t) is the surface elevation spectrum and FZ(k,x) is the
small-scale bottom elevation spectrum. These spectra are slowly
varying functions of (x,7) and x, respectively. k is the wave num-
ber vector defined by k= (k cos 0,k sin 0) = (k,,k,), where 6 de-
fines the angle with the x axis. The spectral densities E and F” are
defined such that the integral over the entire k plane equals the
local variance

(h*(x)) = f f F5(k,x)dk,dk, (22)

The frequency w is given by the dispersion relation
o? = gk tanh(kH) (23)

Here we consider a steady wave field in one dimension with
incident and reflected waves propagating along the x axis. After
integration over k,, k, becomes k and Eq. (19) reduces to

JE(k,x JE(k,x
c ( )+Ck (k,x)

& oy Ik = Sbscat(k,x) (24)

with a source term

B
PO bk - 0] (29

Sbscat(k’x) = K(h,H)
The first term of Eq. (24) represents advection in physical space
with the group velocity defined by

C,=—=— (26)

and the second term describes the effect of shoaling on the wave
number

dk 2k oH

C=—=-C,(—————
K ar $2kh + sinh(2kh) ox

(27)

Reflection by Modulated Sinusoidal Bottom
Topography

The source term approximation was validated by Ardhuin and
Herbers (2002) for random waves reflecting from a sinusoidal
seabed, by integrating S, analytically across the wave spectrum
in the limit of weak reflection [E(-k)<E(k), with positive and
negative wave numbers corresponding to the incident and re-
flected waves, respectively]. A comparison with Dalrymple and
Kirby’s (1986) solution gave good agreement, even for only a few

Fig. 2. Definitions

bars. For stronger reflection, Eq. (24) is not readily evaluated
analytically, and numerical integration is not feasible since a sinu-
soidal bottom has an infinitely narrow spectrum (a Dirac distribu-
tion), and thus cannot be represented with a finite bottom discreti-
zation Ak;,.

We consider instead a bottom spectrum with a finite width that
corresponds to a modulated sinusoidal bottom profile. The modu-
lated seabed is represented by a sum of cosines

i=(m—-1)/2
h(x)= >, bicos[(kyo+ ilky)x] (28)
i=—(m-1)/2

The slowly varying depth (H), defined in Fig. 2 is taken constant
whereas the perturbation (%) represents the modulated seabed. We
define the root-mean-square bar amplitude b from the bottom
variance, b=\/@, and a representative bottom slope e=bk, .
The reflected wave energy is calculated for the bed profile shown
in Fig. 3, with the peak bottom wave number kj(,=6 m™'
(Np0=1.04 m), and a short modulation length with m=3, and
equal amplitudes (b;) for all bottom components. The length of
the bed is 1.5 modulation lengths, giving the bottom spectrum
shown in Fig. 4. The reflection from this modulated sinusoidal
bottom was evaluated for an incident Pierson—-Moskowitz spec-
trum, with a peak at &, satisfying the Bragg resonance condition
2ko=ky (Fig. 5). Spectral results for Rey’s model were obtained
by evaluating reflection coefficients for monochromatic waves
over a range of frequencies and integrating the reflected energy
across the spectrum. Seventy steps are used to resolved the
bathymetry. Results for various values of b are displayed in the
form of reflection coefficients R (Fig. 6) as a function of the slope
bk, . R is defined by the ratio of the reflected and incident ener-
gies: R=(Z,oE)/(Z;=(F). Predictions based on the source term
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Fig. 3. Modulated seabed (m=3), bk, ,=0.06
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Fig. 4. Modulated seabed spectrum (m=3)

method (Rgp0q) and the matching boundary model using five eva-
nescent modes (Rypmoq) agree well over a wide range of bottom
slopes. The solutions gradually diverge for large bottom slopes
where the source term underpredicts the reflection. Even for
bky=0.3 (b/N\y=0.05), differences are less than 10% confirming
the robustness of the source term method for steep topography.
To evaluate the effect of the spectral width on the reflection
coefficient, Fig. 6 also includes predictions for sinusoidal topog-
raphy (m=0) with the same variance. Results for sinusoidal to-
pography were obtained using Mei’s (1985) analytical approxima-
tion and Rey’s (1992) algorithm. The resulting reflection
coefficients Ry;; and Rypgi,, respectively, agree for small bottom
slopes (Fig. 6) and diverge for larger slopes as already shown by
Rey (1992). Indeed, Ry;; was derived for small bottom slopes
while the matched boundary solution converges to the exact re-
flection for any bottom profile when the number of evanescent
modes goes to infinity. What may seem surprising is that the
reflection coefficient for the sinusoidal and modulated sinusoidal
topographies Rygmoa aNd Rypsin agree for small slopes although
bottom profiles are quite different. Apparently, for small bottom
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Fig. 5. Incident wave spectrum

Energy reflection coefficient

Fig. 6. Wave reflection by modulated sinusoidal bottom

slopes and narrow bottom spectra the reflection is only a function
of the total bottom elevation variance b and does not depend on
the phases of its components. This result is obvious from the
viewpoint of the source term theory that was derived for small
bottom slopes, and does not retain the phases of the bottom spec-
trum components. The predicted reflection depends on the convo-
lution of the wave spectrum with the bottom spectrum at the
Bragg resonance wave number [the integral of Eq. (25) over all
wave numbers]. If the bottom spectrum is narrow compared with
the wave spectrum then the total source term depends only on the
total bottom variance and the surface spectral density at the Bragg
resonance wave number.

Reflection by a Linear Ramp

To investigate the robustness of the variance-based source term
model for reflection induced by localized topography, we consider
the linear ramp problem used in previous studies to test the mild
slope equation (Booij 1983). In the source term approximation,
wave scattering is the result of interactions between surface
waves and bottom variations at the scale of the surface wave-
length. The scattering model is thus based on a decomposition of
the topography into a slowly varying depth H and a perturbation
h (small-scale topography), which corresponds to a separation
between refraction and shoaling that occurs over the slowly vary-
ing depth H and scattering at these short scales. For practical
applications, it is desirable to have a perturbation / that is zero
outside of a finite region, so that the spectrum of / is well defined.
Once the two criteria that the slope of H does not exceed a given
threshold and £ is zero outside of a region of radius nL are satis-
fied, the choice of the depth decomposition in 4 and H is fairly
arbitrary and does not affect the following results. For simplicity
we take a piecewise linear function for H(x), so that the pertur-
bation A(x) takes the form of a triangular wave (Fig. 7).

The ramp profile is defined by the fixed water depths H,H,,
whereas the ramp slope a is varied by adjusting its length 2L
(Fig. 7). To ensure that H(x) is slowly varying, vy has to be small.
This is achieved by extending the domain to a length 2nL with
n>1 (Fig. 7). The slope of H is then given by tan y=(tan o)/n,
with several values of n tested below.
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Fig. 7. Decomposition of linear ramp (solid line) into a slowly
varying depth H (dashed line) and residual 4 (dotted line); (a) and (b)
for small and large n, respectively

First Test Case: Small Depth Change

We first consider a ramp with a small depth transition from
H,=0.5 to H,=0.3 m. The incident wave spectrum is represented
by the same Pierson—-Moskowitz spectrum that was used in the
previous section with the peak wave number in deep water
ko=3 m~! (Fig. 5), so that kyH,=1.5 and k,H,=0.9. In order to
investigate the source term applicability limits, the linear ramp
slope tan « is varied from 0.01 to 2.9. For each value of «, several
values of <y are tested, with n varying from 5 to 50. The reflection
coefficient Ry (source term reflection due to the residual) is com-
pared with the “exact” computation Ry (matching boundary al-
gorithm) in Fig. 8 and the relative error (Rg—Ryg)/Ryg is shown
in Fig. 9. In our calculations, for slopes of H such as tana
<0.4, Rg,-s is within 30% of the exact value R\;z. For larger
values of tana, Rg,.s decreases and tends to zero (Fig. 8),

Energy reflection coefficient

Fig. 8. Wave reflection by a ramp

Relative error

0 035 1 15 2 25
tan{o}

Fig. 9. Relative errors in wave reflection by a ramp

whereas the exact solution Ry converges to the reflection over a
vertical step as tan a goes to infinity. The value tan a=0.4 corre-
sponds to tany (=tan a/5) equal to 0.08. For larger n the slope of
H is reduced and Rg, is valid for a wider range of ramp slopes.

We notice that for all values of n shown in Fig. 8, the model
gives reasonable results for tany [=(tan o)/n] up to about 0.08.
The ramp slope does not appear to be a limiting factor (as it was
assumed in the theory). For tan vy larger than 0.08 the reflection is
increasingly underestimated probably because of the contribution
of the large-scale profile H(x) to the reflection.

As n increases h approaches the slope of the actual ramp and
Rs,, converges to R ., which is about 10% larger than Ry for all
ramp slopes. As discussed in the following, the accuracy of the
model is apparently not limited by the ramp slope.

It may seem surprising that Rg , actually converges for large n
whereas the bottom spectrum does not. In the case of a vertical
step of height # in the middle of a domain of length 2nL, the
spectral density F?(k) of a discrete variance spectrum of the re-
sidual is proportional to h%/2nLk> and tends to zero (except
around k=0) as n goes to infinity. However the source term for-
mulation represents scattering as uniformly distributed along the
bottom, and the integration of the source term along the wave
propagation path yields a reflection that is proportional to 2nL
FB(k) and thus converges when n goes to infinity. The use of
infinite support for H and 4 (taking the limit n— %) to compute
the reflection over a localized ramp is counterintuitive. It repre-
sents a physically localized scattering with a mathematically dis-
tributed source. In practice, the bottom spectrum is obtained by
discrete Fourier transform of the bottom, and it only tends to
continuous power spectrum in the limit n— . Further, it should
be realized that the bottom power spectrum is the Fourier trans-
form of the bottom autocovariance function used by Mei and
Hancock (2003, see the Appendix).

For a nonrandom bottom such as the ramp here, one may use
intermediate results by Mei and Hancock (2003) where the hy-
pothesis that the bottom is random only comes in for discarding
nonlinear wave effects (which are not taken into account here). It
thus appears that our rather surprising result for the convergence
as n— o is justified by the convergence of the discrete spectrum
to the continuous power spectrum and the theory of Mei and
Hancock (2003) applied to nonrandom bottoms (see the Appen-
dix). It shows that the far field scattered energy by small ampli-
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Fig. 10. Wave reflection by Booij’s ramp

tude depth variations only depends on the power spectrum of the
scatterers at the Bragg scale, and not on its localization in space,
as long as the bottom amplitude remains small.

Booij’s Ramp: Larger Depth Change

This approach should clearly break down for finite bottom ampli-
tudes, in particular because subharmonic scattering was observed
(Belzons et al. 1991) whereas it is not explained by the present
theory. Such a limit should be tested to see whether our present
approach has some practical applicability. We therefore take a
second test case with a larger ramp is taken from Booij (1983)
with water depths H;=4.97 m, H,=14.92 m, and an incident
wave peak period 7=10 s. The corresponding peak wave number
in deep water ky=0.04 m™! so that koH,=0.6 and kyH,=0.2. Re-
sults for ramp slopes tan o ranging from 0.001 to 2.9, and
n=10 and 50 are shown in Fig. 10.

We notice again that Rg, converges for large n, provided that
(tan a)/n<<0.08. However, in this case the relative error is larger
than in the first test case, up to about 30%. The two tests have the
same ramp slopes but different ratio of water depths at the edges
of the ramp H,/H,=3 here versus H,/H,=1.7 in the previous
case. The two cases suggest that the source term is more sensitive
to the amplitude than the slope of the bottom perturbation .
Formally, the bottom amplitude only appears in the bottom
boundary condition (15), which is linearized at z=—H using the
following Taylor series expansion:

oD h? 7o s
(I)|z=—H+h = (I)z=—H + h(?_ZZ=_H + E?z:—H + O(h ) (29)

Ardhuin and Herbers (2002) use a representative length scale
1/k to nondimensionalize Eq. (29) as

- oD n? D
= =Pyt = p S =HT Oo(n’) (30)

® +—
0z 2 97

where Z=koz, m=kyh, m corresponding to the scales that cause
wave scattering. The validity of the Taylor expansion requires that
7 is small and also that the first and second derivative of ¢ with
respect to Z are of order 1. In this approximation (30) is limited by
the small-scale slope kyh. However one may also take H,, as the
representative length which leads to the same Eq. (30) with

/ Free surface

P e r

Fig. 11. Sketch of the step

n=h/H,, limited then by the water depth ratio 4/H,. The choice
of the representative length was arbitrary and can be justified only
a posteriori, by evaluating the scale of variation of ® and thus the

magnitude of o®/d7 and PP/572. The numerical results pre-
sented here show that the source term is more sensitive to the
water depth change h/H, than the small-scale slope kyh. Booij
(1983) had found that the standard mild slope equation (Berkhoff
1972) gave errors less than 10% for tan o up to 1/3. Our results
suggest that the Bragg scattering model can be as accurate as the
mild slope equation for computing reflection, but only for Ah/H,
less than 0.2.

Reflection by a Step

Now that the effect of h/H,, is well established, one may question
the importance of other parameters. We thus evaluate source term
predictions of broad and narrow surface wave spectra over steps
of varying height to gain further insight into the limitations of the
source term approximation for localized topography. Reflection of
waves by a rectangular step has been investigated analytically and
experimentally in numerous studies (Neuman 1965a,b; Miles
1967; Mei and Black 1969; Mei 1983; Rey et al. 1992) and is
well understood. The step is defined in Fig. 11, where 2L is the
step-length, & is the height, and 2nL is the size of the entire
computational domain.

Numerical Setup

The spectral density of the bottom FZ(k) is proportional to
h*/2nLk?. Hence, integration of the source term along the wave
propagation path yields a reflection that is proportional to
2nLFB(k)~ h?/k*, independent of n. Although the domain length
has not effect on real waves in the absence of bottom friction, it
influences the discretization of the bottom spectrum
(Ak=2m/2nL), and thus it may have an impact on the numerical
results. However 2nF5(n) converges as n goes to infinity (Fig.
12), so that the domain length does not change the results for
large enough values of n. A large domain with n=8 was used
here.

The step width (2L) is taken to be half the wavelength of the
surface waves for a spectrum peak k,=0.04 m™! (Ly=157 m) in
a water depth of 15 m. Two different wave spectra are used here
(bold lines in Fig. 12): a wide spectrum (solid) with a classic
Pierson—-Moskowitz shape, typical of wind seas, and the narrow
swell-like spectrum (dashed) with a Gaussian shape. Once the
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Fig. 12. Wide and narrow surface wave spectra superposed on the
bottom spectrum for domain sizes n=2, 6, and 8. The bottom
spectrum is rescaled by the surface wave number [FZ(k/2)] to show
the resonant bottom and surface components.

shape of wave spectrum is chosen, the solution is a function of
three nondimensional variables: the step height 4/H, the water
depth ko, H, and the relative step width kL.

Influence of the Height of the Step

The accuracy of the source term for a range of nondimensional
step heights 4/H is evaluated in intermediate and shallow water
through comparison with the exact matching boundary algorithm
(Fig. 13). Energy reflection coefficients are compared for two
different water depths, k,,/{=0.1 and k,,HH=0.6, representative of
shallow and intermediate depths. The incident wave spectrum has
a Pierson—Moskowitz shape.

As expected from previous calculations, the error in the source
term increases with the step amplitude h/H. For h/H<0.05 the

Energy reflection coeficient

Relative error

Fig. 13. Reflected energy computed with the source term (dashed
line) and with the matching boundary algorithm (solid line), for
intermediate depth (k(,H=0.6) and shallow water (ky,H=0.1), and
relative error of the source term

Energy reflection coefficient

Fig. 14. Reflected energy computed with the source term (dashed
line) and with the matching boundary algorithm (solid line) for a
wide wave spectrum. The bottom spectrum (F?) is also indicated,
scaled by the normalized resonant surface wave number to indicate
the resonant response (bold dashed line). Other parameters are
h/H=0.02 and k,H=0.1.

error in the predicted reflection coefficients is less than 10%.
These results provide further confirmation that the height of the
localized scatterer is a limiting factor for the source term compu-
tation, but not its slope, which is infinite here, and this result
holds for very shallow water.

Influence of the Width of the Step and the Wave
Spectrum

Here we consider the dependence of the reflection coefficient on
the width of the step and the width of the wave spectrum for a
small amplitude step (7/H=0.02) in shallow water (ko,H=0.1).
The nondimensional step width k,L is varied, effectively chang-
ing the position of the wave spectrum peak relative to the bottom
spectral peaks (see Fig. 12). Results are shown in Figs. 14 and 15
for wide and narrow wave spectra, respectively.The same compu-
tation is done for the narrow spectrum (Fig. 15).

For both wide and narrow surface waves spectra, the source
term yields accurate results, and the errors do not appear to be
sensitive to the width of the step. Oscillations in the reflection
coefficient with varying kL represent an interference phenom-
enon that has been described in numerous previous studies. When
a monochromatic incident wave runs up the leading edge of the
step at x=—L, it is partly reflected and partly transmitted. As the
transmitted component passes the rear edge of the step at x=L, it
is again partially reflected and partially transmitted. If the re-
flected waves originating from the front and rear edges of the step
are in phase we have a constructive interference which amplifies
the reflection. Conversely, destructive interference occurs if the
two reflected wave trains are 180° out of phase and cancel out,
yielding zero reflection. For long waves, maximum reflection oc-
curs when sin® 2k,,L=1 (Mei 1983), where k, is the incident
wave wave number. This condition is met when
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Energy reflection coefficient

Fig. 15. Same as Fig. 14 but for a narrow wave spectrum

2k0[,L=(2n—1)§, n=123,... (31)

The corresponding values of k,L are k,L=m/4=0.78,
3mw/4=2.35, 5w/4=3.93,.... These values match with the re-
flection peaks observed in Figs. 14 and 15 both for the source
term and the matching boundary algorithm. In the wide spectrum
case (Fig. 14) these oscillations are suppressed and for high val-
ues of koL, the reflection tends to a constant value. Using Bragg
scattering, this is explained by the fact that in the limit of large
step width kL the wave spectrum is wider than the side lobes of
the bottom spectrum (see Fig. 12) and the effects of constructive
and destructive interferences for different spectral component av-
erage out. The reflection coefficient is a convolution of the bottom
spectrum and the surface wave spectrum, and thus the reflection is
insensitive to bottom spectral details with scales finer than the
wave spectrum width.

Conclusions

Predictions of the scattering of surface waves by bottom topogra-
phy based on a spectral energy balance equation that includes a
wave-bottom Bragg scattering source term (Ardhuin and Herbers
2002) are compared with exact results based on a matching
boundary algorithm (Rey 1992). The source term yields accurate
reflection predictions for modulated sinusoidal topography. In the
limit of small bottom amplitudes 4 compared to the water depth
H, the two models yield identical results, confirming that the far-
field scattered wave is determined entirely by the variance spec-
trum of the bottom and does not depend on the phases of its
components. This finding also holds for localized topography, a
result that can be justified by the approach of Mei and Hancock
(2003) using their intermediate results for nonrandom bottoms. In
that case, the bottom spectrum must be carefully calculated over a
large enough domain in order to resolve the important bottom
scales. Using discrete Fourier transforms, one may use an artifi-
cial gently sloping extension of the area covered by scatterers.
However, it is found that it also holds for very steep topography,
such as a single step, for a variety of water depths and wave
spectrum shapes, as long as 2#<<H is small. In our calculations,

relative errors in the energy reflection coefficient are found to be
typically 2h/H, or h/H for the amplitude reflection coefficient.
These results show that the Bragg scattering source term is a
reasonably accurate method for representing wave reflection in
spectral wave models, for a wide range of small amplitude bottom
topographies found on continental shelves. The source term ap-
proach is also very efficient compared to the elliptic models such
as proposed by Athanassoulis and Belibassakis (1999). An exten-
sion of the source term to higher order (e.g., following Liu and
Yue 1998) may reduce errors for larger values of h/H, that are
shown here to be the limiting factor in practical applications.
Results for 1D bottom profiles are expected to hold for practical
2D applications of the source term approximation.
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Appendix. Reconciliation of Random and
Deterministic Wave Theories

Mei and Hancock (2003) considered the same problem of a wave
train propagating over an arbitrary topography of small amplitude
h. In their scaling / is small compared to the wavelength 27/k,
but, as discussed in this paper, the scaling for the bottom pertur-
bation could also be the mean water depth H. These writers fur-
ther assume that 4 is a random function that is stationary with
respect to the fast coordinate x, and introduce a slow coordinate
x; for variations in the statistics of 4. This two-scale approach is
similar to that used by Ardhuin and Herbers (2002). Mei and
Hancock (2003) obtained an amplitude evolution equation in
which the topography acts as a linear damping with a coefficient
B; given by their Eq. (B8) as

_ o(ka)*k(3(2k) +3(0))
" 4 cosh® kH(w’H/g + sinh? kH)

Bi (32)

where o2(x,)y=autocorrelation function of the bottom topogra-
phy, decomposed in a slowly varying local variance ¢*(x;) and a
normalized autocovariance 7. ¥ is the Fourier transform of +y.
Although Mei and Hancock’s (2003) result does not conserve
energy (which requires the introduction of higher order terms, see
Ardhuin and Herbers 2002), it is rather general as far as the bot-
tom is concerned. The essential difference with Ardhuin and Her-
bers (2002) is that there is no need for a large number of bottom
undulations to obtain an expression for the scattering, and the
“number of undulations” is properly defined by the scale over
which the bottom autocovariance goes to zero.

Naturally the two theories are consistent, and we can
obtain from f3; the damping coefficient B, for the energy,
which is twice that for the wave amplitude A since
IAA*)/ dt=-2B,AA*=—LBAA*, with A* the complex conjugate of
A. Rewriting Eq. (32) one has
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_ 2Ew0*(§(2k) +5(0))
" sinh 2kH[2kH + sinh 2kH]

Be (33)

For a zero-mean stationary process the Fourier transform of the
autocovariance function is simply 2 times the power spectral
density F? (e.g., Priestley 1981, theorem 4.8.1, p. 211), so that,
for F5(0)=0, we get

~ 4mk’wFP(2k)
~ sinh 2kH[2kH + sinh 2kH]

Be (34)
which is the linear part of the bottom scattering source term (25)
in one dimension

Sbscat(k) = BE(E(_ k) - E(k)) (35)

Interestingly the hypothesis of randomness for / is not impor-
tant for the value of 3; when averaged over the entire field of
scatterers (however, it does impact the real part, i.e., the phase of
the waves). Following Mei and Hancock’s (2003) derivation, one
may define a {3; that is also a function of the fast coordinate x
using their Eq. (2.36), and in that case the derivation is identical,
replacing o2(x,)y by h(x)h(x—§), all the way to their Egs. (B1)—
(B3). Then one may define a mean value, which, in the case of a
finite region with scatterers between —nL and nL reads

nL
— 1
= — (x)dx 36
Bi=5 f B (36)
Taking the imaginary part of their Eqs. (B1)—(B3) we have

K2 I,
“2 cosh?(kH) | w?Hlg + sinh>(kH)

B.=

©

kI
+ “ 37
z k[0?H/g + sin®*(k,H)] (37)

with

(I ik +iklE]
Iy=—"R Tl ) d_EZ_Ik (h(x)h(x—§&))e dédx

(38)

and

e o [ (5 ik conte - gpeseagas
n="4 ol o J dgz_l X X—g € g

(39)

Switching the order of the integrals, Egs. (38) and (39) are iden-
tical to their equations (B2) and (B3), provided that we redefine -y
as the full autocovariance function

+nL

h(x)h(x - £)dx (40)

-nL

1
Y(€) = Il

In this case vy is obviously real and even and we obtain their Eq.
(B8) for B;.

We have thus proved that in one dimension and in the limit of
small bottom amplitudes the scattering source term applies to
nonrandom bottoms. In these conditions, the linear part of the
source term represents the damping of the incident waves (and
thus also the scattered wave energy) averaged over the area cov-
ered by scatterers.

Notation

The following symbols are used in this paper:
A = propagating modes amplitude;
B = evanescent modes amplitude;
b = root-mean-square amplitude from the bottom
variance;
C, = group velocity;
C, = spectral advection velocity;
E = surface elevation spectral density;
F? = small-scale bottom elevation spectrum;
H = water depth;
h = bottom perturbation height;
K = source term coefficient;
K, = amplitude reflection coefficient;
k = surface wave number;
k,o = peak bottom wave number;
ko = peak wave number in deep water;
ko, = peak wave number;
L = half-length of the ramp;
L, = peak wavelength;
m = modulation parameter;
n = mild slope inclination parameter;
R = energy reflection coefficient;

Ryp = matching boundary energy reflection coefficient;
Ryei = Mei energy reflection coefficient;

Rs = source term energy reflection coefficient;
Seat = bottom scattering source term for the wave energy

spectrum;
T, = peak period;
o = ramp inclination;
v = mild slope inclination;
Ak, = discretization of the bottom spectrum;
& = representative bottom slope;
{ = free surface position;
n = small parameter;
® = velocity potential;
X, = complete orthogonal set of functions; and
® = wave radian frequency.

Subscripts

= nondimensionalized variable.
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