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Institut de M6canique des Fluides de Toulouse, Unit6 de Recherche Associ•e au CNRS, Toulouse, France 

Abstract. New experimental results describing the structure of both orbital and turbulent 
motions below laboratory wind water waves are presented. The data obtained by means of a 
submersible laser probe are processed through the triple decomposition method developed by the 
authors. This method allows one to distinguish three contributions in the fluctuating motion, 
namely the potential and rotational parts of the orbital motion, as well as the turbulent 
fluctuation. The results show that the orbital rotational motion has spectral properties very similar 
to those of its potential counterpart and represents a contribution of significant magnitude. The 
behavior of all three components of the turbulent motion is discussed. Their near-surface level is 
comparable with that found near a wall, but their vertical decay is quite different. The dissipation 
rate estimate confirms that under present conditions the turbulence is essentially unaffected by the 
orbital motion. In contrast, a study of the cross correlations between orbital rotational and 
potential motions shows that the rotational contribution plays a key role in energy transfers 
between the wave motion and the mean shear flow. Finally, the origin of the orbital rotational 
motion is addressed. Several theoretical mechanisms capable of contributing to the generation of a 
wave-related component of the vorticity are examined. Comparison between theory and 
experiments supports the idea that in laboratory experiments an important part of the orbital 
rotational motion results from wave-current interactions linked to the vertical variations of the 
mean shear. 

1. Introduction 

Interactions between wind-generated waves, wind-induced 
mean current, and turbulence affect significantly the dynamics 
of the surface layer of the ocean and are thus of particular im- 
portance for predicting transfers through the top meters of 
water. These interactions are extraordinarily complex since 
they involve many different processes like turbulence 
production by breaking, propagation of the wave field on a 
nonuniform shear, forcing of the turbulent motion by the 
orbital motion, etc. Even though the importance of several of 
these mechanisms has been earlier recognized, present 
knowledge is quite unsatisfactory because precise and 
complete experimental data are, as yet, rather rare while 
available theoretical studies only concern some aspects of the 
problem. Nevertheless, among many experimental studies 
carried out in the field or in laboratory tanks (see Cheung and 
Street [1988] for a review), several characteristics of the water 
motion have emerged. 

Kitaigorodskii et al. [1983] performed field measurements 
on Lake Ontario and found that the level of both the turbulent 

kinetic energy and its dissipation rate were dramatically in- 
creased with respect to usual shear flows. This finding means 
that turbulence below wind waves does not originate entirely 
in shear production but that other mechanisms usually termed 
as "wave-turbulence interactions" also act. The same authors 

also found that turbulent spectra exhibited a bump near the 
dominant wave frequency. Lumley and Terray [1983] analyzed 
these spectra and explained their form by a kinematic model in 
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which turbulent fluctuations are transported bodily by the 
mean current and the orbital motion. A similar form of the 

spectra was also observed in laboratory experiments [Terray 
and Bliven, 1985], and the authors found a good agreement 
with the model of Lumley and Terray [1983]. 

The phase relation between the surface displacement and the 
orbital motion was also investigated. Cavaleri and Zecchetto 
[ 1987] established in sea measurements that under swell condi- 
tions, orbital velocities obey the standard theory, while a 
downward momentum flux exists under active wind conditions. 

This momentum flux is a clear indication of the existence of a 

rotational component in the orbital motion. Most of the fore- 
going features were also observed in laboratory experiments 
by Cheung and Street [1988]. These authors studied both wind- 
generated waves and mechanical waves sheared by a wind. 
They established the existence of a positive cross correlation 
between the horizontal and the vertical orbital velocities, in- 

dicating an energy transfer from the waves to the mean current. 
Furthermore, they found a strong increase of the turbulent ki- 
netic energy level in presence of mechanically generated 
waves, suggesting that significant wave-turbulence interac- 
tions can be observed under certain conditions in laboratory 
experiments and that some aspects of these interactions are 
certainly related to the cross correlation of the orbital veloci- 
ties. 

In every experimental study dealing with turbulence below 
water waves, the question of separating the total velocity fluc- 
tuation into orbital and turbulent contributions is crucial; no 

analysis of the interactions between both contributions is 
possible before a decomposition process has been defined. 
Most of the studies previously mentioned made use of the well- 
known linear filtration technique (hereinafter referred to as 
LFT) of Benilov and Filyushkin [1970]. This method enables 
one to obtain very interesting information about the main 

757 



?58 MAGNAUDET AND THAIS: ROTATIONAL MOTIONS BELOW WAVES 

spectral features of orbital and turbulent motions. However, a 
major limitation of this technique lies in the linear relation 
assumed to exist between the surface displacement and the 
orbital motion. As a consequence, all nonlinearities of the 
orbital motion are rejected into the turbulent contribution. To 
overcome this shortcoming, 7iang et al. [1990] developed 
another technique based on a generalization of the Dean 
method [Dean, 1965] to random waves. They used this 
technique to reanalyze the wind wave data of Cheung and Street 
[1988]. Coherence spectra showed strong correlations 
between orbital and turbulent motions, leading the authors to 
the conclusion that marked wave-turbulence interactions exist 

below laboratory wind water waves. However, the separation 
criterion used by Jiang et al. [1990] is based on the severe 
assumption that the orbital motion is completely irrotational. 
Several experimental results including those of Cavaleri and 
Zecchetto [1987], as well as those obtained with mechanical 
waves by Cheung and Street [1988], do not support this 
assumption. This hypothesis is removed in the separation 
method thoroughly described in a companion paper by Thais 
and Magnaudet [this issue] (hereinafter referred to as TM). This 
method, called triple decomposition method (hereinafter 
referred to as TDM), is based on a decomposition of the 
fluctuating motion in which the determination of the potential 
orbital motion is achieved by means of an extension of the 
Dean [1965] method, while the rotational orbital motion and 
the turbulent fluctuation are computed by means of the LFT. 

The main objective of this paper is to present new labora- 
tory data analyzed with the aid of the TDM and to use the 
results to examine some aspects of wave-current and wave- 
turbulence interactions. Consequently, the remainder of the 
paper is organized as follows. In section 2 we present the 
characteristics of our facility and the experimental 
arrangement used to perform the experiments. Section 3 is 
devoted to the presentation of the results concerning the three 
contributions of the fluctuating motion. Section 4 discusses 
some consequences of the existence of an orbital rotational 
contribution and more generally of the orbital motion on the 
energetic balance of mean, orbital, and turbulent motions, 
while section 5 tries to distinguish the origin of the orbital 
rotational motion. The major conclusions are finally drawn in 
section 6. 

2. Experiments 

Experimental data were obtained in our laboratory wind- 
water tunnel facility. Dimensions of the channel are 22 m 
long, 1.2 m wide, and 2 m high. For all series of experiments 
the water depth was fixed to 1 m. Our facility offers the 
possibility to impose a mean water current ranging from 2 to 5 
cm/s. During the experiments the air free-stream velocities 
ranged from 4.5 m/s to 13.5 m/s and the water current was set 
to 2 cm/s. All measurements were performed on the centerline 
of the channel at a fetch nearly equal to 13 m sufficiently far 
away from the dissipation beach. 

Free-surface displacement with respect to the still water 
level was measured using a 300-}.tm diameter, copper teflon 
capacitance gauge, while all three components of the instanta- 
neous water velocity were successively measured by mean of a 
submersible one-component laser optical fiber system opera- 
ting in backward scatter mode (in the remainder of the paper 
any fluctuating velocity component v• will be denoted u, v, or 
w along the streamwise x, spanwise y, and vertical z direction, 

respectively, the vertical axis being directed upward). The 
laser probe used was a 60X14 Dantee transducer whose 
complete technical specifications can be found in the Dantee 
60X Fiber Flow Series Instruction Manual. The probe is a 14- 
mm diameter stainless steel head with 8 mm beam spacing and 
66.7 mm focal length in water. The probe volume whose 
dimensions in water are 2.02 mmx 162 }.tin with a green Ax- 
ion laser contains 37 fringes. The Doppler signal was 
processed with a 55N20 frequency tracker. Particular attention 
was paid to flow seeding in order to get a continuous signal 
output during the whole record. The capacitance gauge 
recording wave elevation was mounted at the same fetch as the 
LDV measuring volume but 2 mm away from it in the spanwise 
direction in order to avoid lighting of the wire or wake 
perturbations (Figure 1). Rotating the laser probe around the 
gauge axis, all three components of the water velocity were 
successively measured simultaneously with the wave 
elevation. 

To ensure that laser head intrusion did not modify the beha- 
vior of the flow field, a systematic comparison of the results 
obtained either by the submersible fiber probe or by the outer 
classical optics proceeding in forward scatter mode was carried 
out. As an example, Figure 2 presents for a typical run the pro- 
files of the vertical rms velocity obtained using both methods. 
The total fluctuation, as well as the orbital and turbulent 
contributions separated using the LFT, are shown in this 
figure. The collapse between both curves obtained for each 
contribution clearly proves that both intrusion of the probe 
and use of the backward scatter mode have no significant effect 
and that the present technique can be used with confidence. 

At each wind regime a separate set of experiments was 
conducted to determine the phase speed of the dominant fre- 
quency of the wave field. For this purpose, the cross-spectra 
technique based on simultaneous measurement of wave heights 
from two capacitance gauges aligned with the wind direction 
was used. 

Four wind regimes were studied using the arrangement pre- 
viously described. The corresponding air free-stream veloci- 
ties determined by use of a Pitot tube were 4.5 m/s, 6.8 m/s, 
9.0 m/s, and 13.5 m/s. Table 1 summarizes the wave characte- 
ristics determined at each wind velocity and the corresponding 
values of normalizing parameters u, (water friction velocity), 
•t,s (rms orbital surface velocity) and z n (wave decay depth) 
which are used in the presentation of the results. Wave-related 

parameters •t,s and z n are defined in section 3. Friction velo- 

gauges 

laser pencil 

optical 
fiber A 

mm 

A' 

Figure 1. Detail of the experimental arrangement. 
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Figure 2. Comparison of vertical profiles of total, orbital, and turbulent rms velocities measured by means 
of external optics / forward scatter mode (open circles) and submersible probe / backward scatter mode (solid 
diamonds). (Wind speed U•,=6.8 m/s). 

cities were taken from the experiments carried out by 
Prodhomrne [1988] in the same facility. In these experiments, 
air friction velocities were first determined through a loga- 
rithmic fit of streamwise velocity profiles obtained from hot- 
wire measurements. Then, water friction velocities were 
obtained assuming continuity of shear stresses at the mean 
water level. 

A Leuwen Measurements and Systems data acquisition sys- 
tem driven by an HP 1000-A700 real time computer was used 
to store the velocity and wave height signals. The sampling 
rate was 100 Hz and the sampling time 512 s for the analog to 
digital conversion. 

3. The Three Contributions to the Fluctuating 
Motion 

3.1. Separation Procedure 

After the mean velocity V is removed from velocity records 
by time averaging the fluctuating velocity data are processed 
using the triple decomposition method (TDM) described in 
TM. The reader is referred to TM for all points concerning the 
theoretical foundations of the method and the discussion of the 

physical assumptions on which it is based, as well as the 
validation tests. We just recall here the main ideas of the TDM. 
From any simultaneous measurement of the wave elevation •1 
and the instantaneous velocity V at the same fetch the TDM 
first computes in a nonlinear way the velocity fluctuation vet, 
corresponding to the potential part of the orbital motion. To 
achieve this goal, the TDM assumes that the orbital motion is 

two-dimensional and nondispersive and takes into account the 
effect of the streamwise mean drift U(z). Then, applying the 
LFT to V-V-•'t,, the spectral characteristics of both the 
rotational part of the orbital motion VeR and the turbulent 
fluctuation v' are simultaneously determined. It is crucial to 
notice that in this approach all the motions having a phase 
correlation with q lie into vet, or •R, meaning that no phase 
correlation exists between q and v'. A consequence of this 
property is that no correlation can exist betweeen v' and a 
contribution linearly related to the wave motion like :gR. Since 
nonlinear contributions in ve t , are small (they were shown to 
be clearly smaller than •R in TM) correlations like •t,iv' i 
between the ith component of vet, and the jth component of v' 
are also almost zero. 

Table 1. Physical Parameters of the Experiments 

U. u. f0 c (r127/2 a•,• z n 
m/s mm/s I-Iz m/s mm mm/s mm 

4.5 7.6 3.6 0.61 3.4 67.1 18.5 
6.8 11.7 2.8 0.73 5.8 92.7 30.0 
9.0 17.3 2.4 0.85 7.8 98.3 38.6 
13.5 27.6 2.0 1.06 14.0 144.2 61.6 

8.8 
7.9 
5.7 
5.2 

Variables are defined as follows: U.., wind speed; u. water 
friction velocity; f0 dominant wave frequency; c absolute 
phase velocity of the dominant wave; (•'•)u2 rms wave 
height; •t,s rms orbital surface velocity; z n wave decay depth; 
and R = •t,s / u,. 
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3.2. Linear and Nonlinear Orbital Potential 

Motions 

The quantity first extracted from velocity measurements is 
the potential part of the orbital motion. To emphasize nonli- 
near effects, it is useful to consider separately the linear part 
•'el of •t, and its nonlinear counterpart •e•-, the denominations 
linear and nonlinear referring to the kinematic and dynamic 
equations satisfied on the free surface by •t,] and 
respectively (see equations B2 and B3 of TM). Figure 3 shows 
for all experimental conditions the excellent data collapse of 
the linear streamwise orbital potential velocity arising from 
the TDM (the vertical component not shown here behaves 
similarly). The normalizing parameters are the rms surface 
orbital velocity t•t, s and the wave decay depth z n, both deduced 
from linear wave theory. These parameters are defined the 
following way: generalizing the linear potential solution (see 
equation (A4b) of TM) to random waves by means of the wave 
energy spectrum Snn(f) and taking into account the assumption 
of a constant phase velocity used in the TDM, the 
characteristic rms value of the wave-induced potential motion 
at depth z is obtained as 

uez =2•: If Snn(f)exp(4rcfz/c) df (1) 

where c and c o denote the absolute and relative phase velocities 
of the dominant wave, respectively. The surface orbital 
velocity t2t, s is the value given by (1) at z=0, whereas the decay 
depth z n is the value of z at which fe• / fit,, = exp(-1) (z n is the 
inverse of the wave number for a sine wave). With this choice 
of normalizing parameters the single exponential decay found 
in Figure 3 results simply from the fact that most of the wave 
energy is located in a very narrow band of wavenumbers 
centered around the dominant wave. 

The nonlinear part (•v2'•) ]/2 and (½v22) ]/2 of the potential 
wave-induced velocities (not shown here) decays with depth as 
exp (2z/zn), meaning that it is principally due to the second 
harmonic of the dominant wave. The velocity ge2 is smaller 
than ge; by more than 1 order of magnitude. Thus as discussed 
in subsection 3.5 of TM, the effects of both orbital rotational 

motion and turbulence must a priori be taken into account to 
evaluate •e2. This is not the case in the TDM because the 
orbital potential motion has to be determined without 
knowing explicitly the other contributions. As a consequence, 
the characteristics of gt,2 are probably only roughly resolved 
by the method. 

3.3. Orbital Rotational Motion 

Once S t, and v• t, are extracted from the measured velocity 
component, the spectra of t• n and Cs are obtained in the second 
step of the TDM (equation (27) of TM). As shown in Figure 4 
the shape of these spectra is very similar to that of the •t, 
spectra (see Figure 8 of TM for another example). The power 
spectra So/•ioni present a sharp peak centered on the dominant 
wave frequency f=fo and follows essentially the same slope as 
SOl, iOl, i on both sides of f0. This means that the ratio of the 
spectral densities of •n and •t, is nearly constant over the 
whole peak of the spectra. Vertical profiles of the rms of •'n 
and •n are plotted on Figures 5a and 5b using the same 
normalizing parameters as in Figure 3. These figures suggest 
two essential comments. First of all, it appears that at a given 
wind speed the slopes of the t7 n and •n rms profiles are quite 
different. This is an important indication that •n carries 
vorticity (see equation (34) of TM). Furthermore, it appears 
that •'n and •n rms profiles do not collapse on a single curve. 
This could signify that the normalizing parameters used are 
not relevant. However, the theoretical analysis developed in 
section 5 provides another reason; it suggests that •n is 
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Figure 3. Linear part of the streamwise potential orbital velocity. Wind speed U. is 4.5 m/s (solid circles); 
6.8 m/s (solid squares); 9.0 m/s (open diamonds); 13.5 m/s (open triangles). 
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Figure 4. Typical spectra of the vertical wave-induced 
potential and rotational motions. (All velocity spectra are 
normalized by energy of the total fluctuation and integration 
time). Potential contribution is denoted by circles, rotational 
contribution by squares. 

generated through different processes and that these processes 
involve several different scales, so that no universal 

normalizing parameter can be found. This lack of universality 
with respect to scales relevant for •t, is also an indication that 
•R is not an artifact of the TDM like an orbital potential 
contribution forgotten in the farst step of the method. Figures 
5a and 5b also show that the order of magnitude of •tt is 
highly significant. Since the ratio (•'•. / •s) •n reaches values 
between 12 and 20% near the surface (dep,..•di• on the 
component •'n or v•n under consideration), (•i / •i) 112 lies 
between 20 and 30%, a level which is far beyond the limit of 
accuracy of the separation method. It is worth noting in 
particular that the kinetic energy associated with }• is larger 
by roughly 1 order of magnitude than that associated with the 
nonlinear potential contribution •t, 2. In other terms, the 
motion induced by laboratory wind waves seems to be "more" 
rotational than nonlinear. 

3.4. Turbulent Motion 

Figure 6 shows the typical behavior of the spectra of the 
turbulent contribution v' obtained in the second step of the 
TDM. They exhibit two prominent features. First of all, 
although all the orbital contributions have been removed by 
the successive extractions of •t, and •, a bump around the 
dominant wave frequency f0 subsists on the u' spectra. Its 
magnitude decreases with the distance to the surface, as can be 
seen by comparing both spectra in Figure 6. This bump is also 
found on the w' spectra, but its magnitude is consistently much 

smaller (see Figure 8 in TM). The second characteristic feature 
displayed by these spectra is related to the inertial zone; this 
zone with a slope nearly equal to -5/3 is found on both sides of 
the bump, but there is a systematic shift toward larger values 
of the spectral density for frequencies lying above the bump. 
Several of these trends have been observed by previous 
investigators, even if they obtained the turbulent contribution 
by different methods. Donelan [1978] obtained turbulent 
spectra by substracting from the total fluctuation the wave- 
induced velocity deduced from linear wave theory. He 
suggested that the shift of spectral densities for f>f0 was due to 
the existence of a source of turbulent energy near the wave 
peak. Moreover, he found that for f>f0 the slope of the spectra 
approached -5/2, which could suggest a trend toward two- 
dimensionality of wave-induced turbulence. Kitaigorodskii et 
al. [1983] and Terray and Bliven [1985] treated their data by 
applying directly the LFT to the whole velocity fluctuation. 
They interpreted the very specific shape of the turbulent 
spectra in the framework of the kinematic model proposed by 
Lumley and Terray [1983]; these authors showed that if 
turbulence can be considered frozen with respect to the wave 
motion then the turbulent wave number spectrum can be 
inferred from the frequency spectrum via a generalized Taylor 
hypothesis involving both mean drift and wave-induced 
potential motion. This purely kinematic model leads to the 
occurrence of a bump in the frequency spectrum around f0 and 
shows that in the inertial range the ratio of spectral densities 
above and below f0 is a function of (•p•'•)u2/•(z). Terray and 
Bliven [1985] applied this model to their data and found a 
satisfactory agreement with their spectra. The same procedure 
applied to present data also shows a fairly good agreement 
concerning the spectral density shift between high and low 
frequencies. Thus it appears that the form of the turbulent 
frequency spectra cannot be seen as a proof of the existence of 
dynamic wave-turbulence interactions. Unfortunately, the 
question of the origin of the bump cannot be more deeply 
clarified here since this would require a direct determination of 
the turbulent wave number spectra which has not been 
achieved up to now. 

Vertical profiles of (u'--•) •/• and (w'•)u• normalized by 
water friction velocity u, and total water depth H are plotted 
on Figures 7a and 7b. Water depth H is used because no charac- 
teristic vertical length scale appears; neither z n nor the 
viscous scale v/u, is relevant for turbulent quantities near a 
rough interface, and the boundary layer thickness cannot be 
defined properly for a reason explained below. Owing to this 
lack of suitable universal scale, profiles of each component do 
not exactly collapse on a single curve. As commonly found in 
boundary layers, the streamwise fluctuation is larger than the 
vertical one near the surface. Both fluctuations reach maximum 

values of about 2.5 and 2.0, respectively, in fairly good 
agreement with those reported by Cheung and Street [1988] 
and with the usual results found in turbulent boundary layers 
[Klebanoff, 1955]. On the basis of the assumption of a two- 
dimensional orbital motion, as justified in TM, the total fluc- 
tuation measured along the spanwise axis is supposed to 
belong to the turbulent motion. The spanwise component 
(v'--•) •/2 is shown in Figure 7c. Maximum values of (v w•') 1/2 are 
close to those found for (u m•') 1/2. It is clear that even small, the 
three-dimensionality of the wave field contributes to v' 
especially at the highest wind speed for which an increase of 
the v' level and a change in the form of the decay can be 
observed. In usual boundary layers the magnitude of the 
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Figure 5. Vertical profiles of (a) •',• and (b) •,•. 

spanwise fluctuation lies between the magnitude of the two 
other components. This suggests a way to estimate the 
magnitude of the spanwise component of the orbital motion. 
For example, at U.,=13.5 m/s the maximum excess of v'•'/u, 2 
with respect to the foregoing criterion is roughly 
A(v-•2/u, 2)= 2.8. Then,__consi__dering this excess as the orbital 
contribution, we get •2/(•2+•2+½2)=0.14. Thus in the 
worst case only 14% of the wave kinetic energy lies in the 

spanwise component. This percentage decays rapidly with U.. 
and can be considered as a confirmation of the weakness of 

three-dimensional effects in the wave field, a basic assumption 
for the validation of the TDM. 

The various profiles of each component exhibit a rapid de- 
cay with depth following a law about z 'ø'6. This behavior is 
quite similar to that reported by Terray and Bliven [1985], who 
found a z '] decay of turbulent kinetic energy. In contrast, the 
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measurements of Cheung and Street [1988] exhibited a much 
slower decay. This difference is probably due to the existence 
of a pair of contrarotating cells in our wind-water facility as 
described by Prodhomme [1988]; these cells produce a small 

but significant upwelling on the centerline of the channel (the 
order of magnitude of W being typically 0.5 to 1 cm/s) and 
prevent diffusion of turbulence into the core of the flow. They 
also induce a strong nonlinearity of the shear stress -u' w' 
[Prodhomme, 1988]. That is the reason why it is hardly 
possible to define properly any length scale like the boundary 
layer thickness. These features illustrate the sensitivity of this 
kind of flow to the complex structure of the mean current. 

4. Energy Transfers Between Mean, Orbital and 
Turbulent Motions 

4.1. Balance Equations 

Since the phase-averaging procedure defined by Reynolds 
and Hussain [1972] holds for a flow consisting of a periodic 
wave train superimposed on a turbulent motion, kinetic energy 
balances associated to the mean, orbital, and turbulent 
motions can be easily derived in such a case. The derivation is 
more complex for random waves since it depends on the def'mi- 
tion of the orbital motion. One of the main advantages of the 
separation carried out by the TDM is to give balance equations 
of the mean, orbital, and turbulent contributions essentially 
identical to those obtained for periodic waves by the phase- 
averaging procedure [Magnaudet, 1989]. This results from the 
key point that the motion g/,+gR determined by the TDM 
contains almost all the characteristics of the orbital motion 

and especially the leading contribution to its vorticity as well 
as its main non!inearity. For example, 7/, satisfies a 
nonlinear Bernoulli equation (equation (16) of TM), so that 
terms like 1 / 2 •(•/,•/,•) / •xy do not appear in the balance 
equation of v', in contrast to the results of linear approaches 
like that of Kitaigorodskii and Lumley [1983]. Thus the only 
new terms that arise in the exact V and v' balances (with 
respect to the equations obtained by phase-averaging) are only 
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very small nonlinear terms involving git (rejected in the motions write in the high Reynolds number limit [Reynolds 
turbulent motion in the second step of the TDM)or terms and Hussain, 1972] 
involving correlations of the type Oiv'j which are nearly zero 
as explained in subsection 3.1. Neglecting these terms 
because of their smallness, the form of the balance equations 
obtained by phase averaging is conserved by the TDM; even 
the definition of g is different. Consequently, time-averaged 
kinetic energy balances for mean, orbital, and turbulent 

37 

Oxj 

(2) 
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Dt[2 ' 'J 
(3) 

(4) 

In these equations, D I Dt = • I at + Vj • I •xj and eu, œw, and 
œa: denote the dissipation rates of 1/2V•V i , 1/2Oi01, and 
1/2v'iv' • , respectively. The vi."•' J represents the components of 
the wave-induced Reynolds stress tensor, i.e., the part of the 
Reynolds stress tensor vl.v' i having a phase correlation with 11. 

The first term in the right-hand side of (2) and (3) represents 
energy transfers between the orbital motion and the mean 
flow. This term is the exact analog of the usual production 
term in the turbulent kinetic energy balance. Since the mean 
flow behaves mainly as a one-dimensional shear flow, this 
term is dominated by •"• i}•/ilz. As • is zero for a purely 
potential orbital motion, it appears clearly that the orbital 
rotational motion plays a crucial role in wave-mean flow 
interactions. The second term in the right-hand side of (4), 
which appears with an opposite sign in (3), represents wave- 
induced turbulence production. This term was analyzed by 
Kitaigorodskii and Lurnley [1983] in the case of irrotational 
waves, and these authors concluded it was negligible. 
However, if a rotational contribution with a strong vertical 
gradient exists in the orbital motion, this term may contribute 
significantly to the turbulent kinetic energy budget. 
Furthermore, since (2) involves both correlations •, and 
u' w', the latter stress can be modified by the existence of the 
former. Thus the turbulent kinetic energy balance can also be 
affected indirectly by the orbital rotational motion through 
the usual turbulence production term -u' w'•}U / •}z. 

4.2. Wave-Mean Flow Energy Transfers 

According to the previous remarks, the cross correlation 
fie is the key term governing wave-mean flow energy trans- 
fers. As a one-component probe was used in the present expe- 
riments, we were unable to compute exactly the correlation 
riO. However, since fiR•,R and 0t,2,'ORj are presumably very 
small, one can write approximately 

uw= itn•n +in'in (5) 

Both terms of the right-hand side of (5) can be computed 
using (29) of TM, and their vertical decay is shown in Figures 
8a and 8b. The term •tCm is seen to decrease monotonically 
when U. increases, while •m½n exhibits a more complex 
behavior. In contrast with •RCtn, which is positive for all 
wind speeds, •m½n is negative, except for the intermediate 
wind U..=6.8 m/s. It can be easily seen that the sum 
•mCn + •nCm follows the sign of •m½n. This means that the 
energy transfer term in (3) is positive, except for U..=6.8 m/s, 
where energy goes from the orbital flow to the mean current. 
No satisfying explanation has been found for this singular 
case, even if negative production is not an uncommon feature 

in turbulent flows, especially when nearly two-dimensional 
vortices are present. 

Importance of the wave-mean flow transfer is perhaps better 
appreciated by comparison with the more familiar turbulence 
production, i.e., the first term in the right-hand side of (4). 
The ratio R 2 = (a•,, / uo)2 varies roughly from 85 at U..=4.5 
m/s to 25 at U0.=13.5 m/s. The ratio -(•mCR +•nCm)/u. 2 
evaluated near the surface thus varies from nearly 2.0 at 
U0.=4.5 m/s to 0.5 at U..=13.5 m/s and takes the large negative 
value -3.0 at U..=6.8 m/s. These values show that energy 
transfers between mean current and orbital motion can be at 

least of the same order as the usual turbulence production. 
Their relative magnitude decreases at high wind velocities as 
does R 2 because, at least for young waves, the shear stress 
increases faster with wind speed than does the wave energy 
(see Table 1). 

Present results can be compared with those obtained diffe- 
rent ways by previous authors. Jiang et al. [1990] did not 
separate the orbital rotational motion from turbulence. Thus 
the "turbulent" motion Vr defined by these authors 
corresponds to •vn+v'. However, since Omiv'j =0, the corre- 
lations Ot,•Vrj they computed are nearly identical to O•,iOnj. 
Jiang et al. [ 1990] found •nCtn > 0, like in the present study, 
but obtained •tnCR < 0 and of similar magnitude, so that the 
sum of both terms approximately cancelled. Using a phase- 
averaging technique, Cheung and Street [1988] computed •½ 
for periodic waves sheared by the wind and found this 
correlation positive at all wind speeds, indicating •at energy 
is transferred from the orbital motion to the mean flow. In 

contrast, in their field measurements, Cavaleri and Zecchetto 

[1987] reported negative cross correlations whose magnitude 
was about 2 orders larger than surface stress. The only overall 
agreement emerging from this brief review is the existence of 
significant wave-mean flow energy transfers. However, 
depending on flow conditions, it appears that these transfers 
can change sign. Thus explaining the sign of •½ is of great 
importance, and some indications about this point will be 
given in section 5. 

4.3. An Indirect Identification of the Turbulence 

Source: The Dissipation Rate 

The levels of (u'--•')m/u. and (w'2)m/u. found in the present 
experiments suggest that turbulence production is mainly due 
to the mean shear. To get additional indications about a 
possible signature of wave-turbulence interactions in the 
turbulent motion, it is of particular interest to obtain an 
estimate of the dissipation rate œr. Such an estimate was 
performed in several field experiments. Jones [1985] carried 
out velocity measurements under strong wind conditions in the 
Bass Strait. Using the usual Taylor hypothesis, he estimated • 
and found that the wall scaling er(Z)o,u. •/z applied. This 
contrasts with two different series of measurements performed 
on Lake Ontario by Kitaigorodskii et al. [1983] and Agrawal et 
al. [1992]; these authors found levels of œr larger by nearly 2 
orders of magnitude than predicted by the law of the wall, a 
result suggesting that near-surface turbulence is dramatically 
enhanced by wave breaking. 

A simple way for evaluating er is to use the inertial 
subrange of the frequency spectra combined with a suitable 
Taylor hypothesis. As already mentioned, Lurnley and Terray 
[1983] derived the relation between wave number spectra and 
frequency spectra when both mean current and orbital motion 
act to convect frozen isotropic turbulence past a fixed point. 
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Figure 8. Vertical profiles of (a) •pl•/R and (b) •n•tn. 

In the inertial subrange, according to their theory, frequency 
spectra of the streamwise fluctuation behave asymptotically at 
a given depth z as 

Su' u' ( f , z ) = •5 C tc (•( z )tr ) zts ( 2 •cf ) -5/3 f < fo (6a) 

Su'u'(f ,z)= 
110 

(6b) 

where Ctc is the Kolmogorov constant (hereinafter set to 1.5). 
As indicated, the well-known form (6a) is suitable for the part 
of the inertial range covering frequencies much smaller than 
the dominant wave frequency f0, while (6b), in which turbu- 
lence is convected by the orbital motion, applies far above f0- 
The measurements of Kitaigorodskii et al. [1983] indicate that 
both regions of the inertial subrange exist in spectra obtained 
from field data. The situation is somewhat different in labora- 

tory experiments because the ratio between the dominant 
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wavelength and the scales of the energy-containing eddies is 
not the same due to short-fetch conditions. Examining our 
data, it appears that near the surface, the inertial subrange can 
be clearly identified only for f >f0. In contrast, when depth 
increases, turbulent length scales grow rapidly and the inertial 
subrange shifts to lower frequencies, as shown by Figure 6. 
Owing to this trend, far from the surface, nearly all the inertial 
subrange lies at frequencies lower than f0. The determination of 
1• r is achieved using expressions (6a) or (6b)-according to the 
foregoing remarks. Only spectra presenting a substantial f-5/a 
zone have been used. Furthermore, u' spectra have been 
preferred to w' spectra because they present the strongest 
bump, allowing a more precise estimate of the bounds of the 
inertial subrange. The nondimensional dissipation rate 
,:lzlr determined this way is plotted on Figure 9 (the Von 
Karman constant }c is set equal to 0.4). The results show a 
fairly good agreement with the law of the wall, even if the 
intermediate case U..=6.8 m/s exhibits a different behavior as 
already observed for wave-mean flow energy transfers. The 
agreement is particularly good for the two highest wind 
speeds. Wave breaking is undoubtly present in these cases but 
has no clearly discernable influence, even at the points closest 
to the surface, possibly because dissipation due to breaking is 
not injected in the inertial subrange used to compute gr. 
Overall, even though many possible sources of error exist in 
these estimates of •, the results reinforce the conclusion that 
under present laboratory conditions, turbulence is not 
significantly affected by the orbital motion and remains 
controlled by the surface shear stress. 

5. Possible Origins of the Orbital Rotational 
Motion 

5.1. Theoretical Background 

Having demonstrated experimentally the importance of the 
rotational part of the orbital motion in energy transfers, a fun- 
damental question arises concerning the origin of •tt. Several 
dynamic processes can contribute to the generation of git, and 
they can be classified within two categories. One concerns the 
direct coupling between the air flow and the water motion 
through boundary conditions. The other regroups the distor- 
tions imposed to an orbital motion superimposed on a turbu- 
lent shear flow. 

The first kind of mechanism can be summarized as follows. 

When the wave slope becomes significant, the boundary layer 
above the waves is distorted and a significant wave-induced 
contribution appears in the air motion. Owing to the high 
shear rate existing in the boundary layer, this contribution is 
strongly rotational. Thus matching conditions through the 
air-water interface imposes a nonzero, wave-induced spanwise 
vorticity •y at the water surface. Longuet-Higgins [1953, 
1969] studied the modifications of the flow below a periodic 
wave in the presence of a nonzero surface value of •y resulting 
from the matching of the shear stresses. He emphasized the 
importance of the wave-induced surface vorticity in the crea- 
tion of second-order drift currents which develop over the 
whole depth of the flow and showed that if the wave slope is 
small, then the vorticity balance imposes a very rapid vertical 
decay of •y. More precisely, he determined that the boundary 
layer in which •y diffuses has a typical thickness •5 = (2v/0•) m 
(v being the kinematic viscosity of the water and 0• the radian 
frequency of the wave). Phillips and Banner [1974] showed 
that in the top millimeters below the surface, nonlinear terms 
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Figure 9. Nondimensional turbulent dissipation. 

of the vorticity balance induce a dramatic increase of t• below 
the crest when the wave slope goes beyond 0.2. Nevertheless, 
the laboratory wind waves we analyze here have typical slopes 
around 0.15, so that the linearization of the vorticity equation 
carried out by Longuet-Higgins [1953, 1969] seems appli- 
cable. Of course, his analysis did not take into account turbu- 
lence. However, in most laboratory experiments, water 
friction velocities are so that the characteristic viscous length 
v/u, exceeds •5. Thus it does not seem that turbulence can in- 
crease significantly the diffusion of • from the surface. If the 
previous line of reasoning is correct, then one can conclude 
that the rotational component of the orbital motion generated 
at the surface through matching conditions with the air flow is 
necessarily confined to the immediate vicinity of the surface. 
Consequently, it does not seem realistic that this mechanism 
is responsible from the observations made in laboratory expe- 
riments far below this sublayer. The conclusion might be dif- 
ferent in the field because the typical radian frequency 0• is 1 
order smaller than in laboratory experiments, making v/u, and 
•5 comparable. Thus in that case, turbulence can perhaps 
attenuate significantly t.he vertical decay of •, which would 
then keep a significant value on a larger depth. 

The key idea of the second group of mechanisms is that 
when a surface wave field is superimposed on a turbulent shear 
flow, the wave motion cannot remain strictly irrotational. 
This is simply a consequence of the nonlinearity of the equa- 
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tions of motion which leads to different sources of wave- 

induced vorticity. To define these sources, it is necessary to 
write the wave-induced vorticity balance. In the case of a 
periodic wave, denoting by to'•. = •ijk •kk / •xj the ith compo- 
nent of the mean vorticity and phase averaging yields, 

(7) 

This equation shows that if •i is initially zero as in the case 
for irrotational waves, it remains zero only if the three 
possible source terms (the terms that do not contain •) are 
zero. The first one, •j •)toi/i)xj, is different from zero if the 
mean shear is nonuniform, as observed below wind waves 

where •2•/•z2 is nonzero. The second one, 
exists when the wave field is three-dimensional or when the 

mean current is nonuniform in the spanwise direction. It is 
this term that is responsible for the generation of Langmuir 
cells through the two mechanisms analyzed by Craik and 
Leibovich [1976] and Craik [1977]. The last possible source 
term is related to the wave-induced Reynolds stress tensor v'iv' j 
and will be discussed below. 

Under suitable assumptions, (7) can be linearized and solved 
by means of asymptotic expansions. Then, the normal mode 
solution •i can be integrated to obtain explicit expressions of 
the rotational components of the orbital motion 
[Magnaudet and Masbernat, 1990]. For example, assuming a 
two-dimensional flow and disregarding all terms in the right- 
hand side of (7) leads to the creation of a streamwise compo- 
nent •(•) given near the surface by 

From (8) it can be deduced that 

<9> 
~ ~a> _ wp (U(z)_U0) (10) 

~a)½p =0 (11a) u R 

~ ~ O) 
upw n =0 (lib) 

Equations (9) and (10) show that the term Oi•l•xi, 
which is entirely responsible for the creation of the spanwise 
vorticity •y in this simplified model, creates substantial 
correlations between the potential and rotational contri- 
butions. However, as shown by (11a)-(llb), this mechanism 
cannot explain the origin of wave-mean flow energy transfers. 

The vortex-stretching term 00'-•i}0i/Oxi is a possible 
candidate for the generation of a wave-induced shear stress 

when the wave field is strongly three-dimensional; Gartshore 
et al. [1983] studied the evolution of an initially irrotational 
three-dimensional random motion interacting with a mean 
shear •/•z. They showed that owing to this vortex- 
stretching mechanism, a shear stress develops in time. 
However, since the waves we are studying experimentally are 
nearly two-dimensional, this mechanism is probably of little 
importance in the present context, except perhaps at the 
highest wind speed. 

Unlike the other source terms, v'•v'• has to be modeled before 
its effects can be discussed. The closure of viv i is a very 
difficult problem, which is still open, in spite of numerous 
attempts (see Davis [1974] and Townsend [1980]). The 
d•ficulty comes from the fact that one part of 
v'iv' • is in phase with the wave-induced strain rate ,•/i = 
1 / 2(•101 / •xj + •Oj / •x• ) and is of dissipative nature, whereas 
the other part is 90 ø out of phase with •ij and represents the 
elastic response of turbulence to the periodic distortion 
imposed by the orbital motion. For example, a closure based 
on a generalized eddy viscosity vr = vr + 9r can be formu- 
lated as [Fua et al., 1982] 

v•vj-•v'• 2 •j = -2 •rr •ij + 9rS•j + Or•ii - Or•i (12) 
where S ij denotes the mean strain rate. When included into (7), 
expression (12) shows that v'iv' j can contribute to the creation 
of •y through several terms. All possible terms exist below 
wind waves; some of them result from the inhomogeneity of 
the turbulence (represented schematically by the vertical 
gradient of Vr), while others are due to the inhomogeneity of 
the mean shear Sii. The important feature about the 
contribution •2), if,? induced by v'i"•' j is that it creates cross 
correlations •n(2)•,p and •pI•'R (2) . For example, the first term 
in the right-hand side of (12) creates a source term in the • 
balance. This term which relates to the "viscous" response of 
water turbulence to the distortion provided by the orbital 
motion •t, leads to [Magnaudet, 1989;Magnaudet and 
Masbernat, 1990] 

~ (2) ~ • __2•TT, z Wp U R Wp [C-- •(Z)] (13) 
As discussed in section 4, such cross correlations affect 

directly the energy balances of both mean and orbital 
motions. They can also affect in an indirect manner the 
turbulent kinetic energy balance; Magnaudet and Masbernat 
[1990] showed that the wave-induced stress given by (13) 
combined with the mean momentum balance could explain 
quantitatively the very high level of turbulence measured 
below periodic waves by Cheung and Street [1988]. However, 
it must be stressed that any conclusion about the role of viv i 
in (7) is entirely dependent on the validity of the closure 
assumption formulated for this tensor. For example, on the 
basis of timescale arguments, Belcher et al. [1994] have 
shown that the eddy viscosity assumption leading to (13) is 
only valid in a very thin layer of water beneath the surface. In 
the deeper region, turbulence is not in a local equilibrium 
state; it exhibits essentially an elastic behavior that has to be 
modeled through rapid distortion theory. All this suggests that 
much theoretical work is needed for closing accurately v'•v' i 
before drawing definite conclusions about the role of wave- 
induced Reynolds stxesses in wave-current and wave-turbulence 
interactions. 
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To summarize this section, it appears that in laboratory 
studies the wave characteristics are such that the curvature of 

the mean current •}2•/•}z 2 and the wave-induced Reynolds 
,'•, 

stresses viv j are probably the main sources of orbital rota- 
tional motion. However, the conclusion is certainly markedly 
different in field situations since the mean current plays a less 
decisive role, while three-dimensional effects and perhaps 
direct coupling with the air flow are more significant. 

5.2. Experimental Indications 

In order to check the mechanisms previously discussed, it 
seems very appropriate to compare the correlations Opu. ORj 
determined from measurements to those predicted theoreti- 
cally. The major limitation of this approach is, of course, that 
it is restricted to the expressions involving solely measurable 
quantities. As a consequence, expressions like (13) involving 
modeling of the wave-induced Reynolds stress tensor cannot 
be checked and no additional info._..•ation about the generation 
of the crucial cross correlation •, can be obtained this way. 
Thus only correlations •m•n and •tn•n are discussed in the 
following. Figures 10a and 10b depict the behavior of these 
two correlations. The most remarkable feature is that •m•'n is 
very generally negative, while •m•n is positive, except for 
the lowest wind speed. Turning back to (9)-(10), it appears 
that this theoretical model predicts •m•n < 0 and •,m•R > 0 
since •}U/•z>O and U(z)-U o < 0. The specific behavior of 
•tn•n at the lowest wind speed cannot be explained this way, 
but the agreement in all other cases suggests to check whether 
the intensity of the correlations predicted by (9)-(10) is 
realistic or not. Since these theoretical predictions have been 
obtained by neglecting completely turbulent diffusion in (7), 
they can at best give an estimate in the region where • is 
produced. That is the reason why predicted and computed 
correlations are compared only at the measured point closest 
to the surface. The comparison is achieved by assuming that 
the dominant wave contains all the wave energy and by fitting 
the mean current profiles with logarithmic curves. Results of 
this comparison are summarized in Table 2. Theoretical 
expressions generally overestimate the correlations obtained 
from experiments by a factor varying between 1 and 2. 
However, they respect the order of magnitude and the 
tendencies displayed by experimental results. Considering all 
sources of error in both theoretical and "experimental" 
evaluations, the result is quite encouraging and shows the 
prominent role played by wave-current interactions in the 
generation of •vn in laboratory experiments. Very different 
experiments carried out by Rashidi et al. [1992] also provide 
an interesting indication. These authors visualized and 
analyzed the vorticity field in a free-surface channel flow 
forced by long waves and found that strong negative 
vorticities occurred below wave crests, whereas positive 
vorticities were found below the troughs. This is exactly what 
is predicted by (8), even though the origin of the mean shear 
differs in free-surface channel flows and in wind-driven flows. 

5.3. About the nature of •vn 

As shown before, in our experiments one of the most im- 
portant mechanisms in the generation of gn appears to be 
basically a wave-current interaction: wave-induced potential 
motion combined with inhomogeneous mean shear leads to 
the term •j •}•'//•}xj in (7), and for this term to be balanced a 
wave-induced vorticity is created. This mechanism has 

nothing to do with turbulence. However, for wind waves, •v t, is 
random and this randomess is reflected in the distribution of 

ß 7R as shown by the spectra of Figure 4. Thus in this flow a 
random and nearly two-dimensional motion correlated with 
wave elevation and carrying vorticity is superimposed on tur- 
bulent fluctuations. The question that comes to mind is then 
whether •e can be classified as turbulent or not. 

As pointed out before, Jiang et al. [1990] did not identify 
ß •. They separated the orbital motion •v defined as the poten- 
tial contribution •v from the remaining fluctuation •e+v' 
defined as turbulence. As a consequence of their definition of 
the turbulent motion, Jiang et al. [1990] wrote a balance 
equation of the turbulent kinetic energy different from (4) by 
several terms involving the correlation tensor (v'i+Om)Ovj. 
For example, a production term -(u' +•n )ff'v•}U / •}z appeared, 
and the authors found it to be of very significant intensity, not 
an unlikely result if we refer to the significant correlation 
•n•'v found in the present experiments. Jiang et al. [1990] 
concluded that these features proved that significant wave- 
turbulence interactions were present in their results. 
Surprisingly, the profiles they found for the "turbulent" inten- 
sities agreed well with the well-known boundary layer results 
[Klebanoff, 1955] as if there were no wave-turbulence interac- 
tions. This paradox is solved if •tt is not included into the 
turbulent motion but is rather seen as a part of the orbital 
contribution; the turbulent kinetic energy balance then reduces 
to (4), and Jiang et al. found that in their experiments the extra 
production term of (4) was negligible. In such a case, (4) 
reduces to the usual balance and no fundamental contradiction 

appears with the results obtained for the turbulent moments. 
Inclusion of •e as a part of the orbital motion rather than a 

turbulent contribution is, in fact, basically suggested by the 
essentially two-dimensional nature of ge, which makes this 
motion very different from three-dimensional, dissipative 
turbulent motions. The picture of the wave-induced motion 
that emerges from both theoretical analysis and laboratory 
experiments is that of a coherent motion induced mainly by 
interactions between a forced excitation (the surface waves) 
and the mean flow; owing to these interactions, the orbital 
motion carries its own vortieity • and remains coherent over 
long times or distances because of its correlation to wave 
elevation. These properties are basically those frequently used 
to define coherent structures [Hussain, 1983]. However, in the 
present case it must be kept in mind that unlike the usual 
situation regarding coherent structures, no instability 
mechanism is needed for the generation of •. Analogy with 
coherent structures was also suggested for mechanical waves 
by Cheung and Street [1988], who obtained a• > 0 with such 
waves; positive cross correlations leading to the so-called 
negative production phenomenon occur frequently when 
coherent structures are present [Hussain, 1981 ]. 

The question of the classification of •R is more than a 
semantic problem and can have implications in modeling of 
turbulent flows below wind waves; turbulence models are gene- 
rally unable to describe motions involving length and 
timescales of different natures, and accurate modeling is 
probably only possible if the whole orbital velocity field and 
the turbulent motion which are governed by completely 
different dynamics are described separately. 

6. Conclusions 

Our aim in this work was to present some new experimental 
insights about wave-current and wave-turbulence interactions 
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Figure 10. Vertical profiles of (a) •m•R and (b) 

below laboratory wind waves. New experimental data were 
obtained, and they were processed using the triple 
decomposition method which allows one to isolate both 
potential and rotational contributions of the orbital motion 
from turbulent fluctuations. Analysis of present results reveal 
the following: 

1. The orbital rotational motion is of significant magni- 
tude; in our experiments it reaches between 20 and 30% of the 
orbital potential contribution. 

2. Cross-correlations fitrig'it and fin•'m can induce impor- 
tant energy transfers between the mean flow and the wave- 
induced flow. The sign of these transfers can change with wind 
speed, and their magnitude is related to the ratio R 2 between 
the kinetic energy of the orbital motion and the surface shear. 

3. In these experiments, turbulent intensities are of the 
same order of magnitude as those found in usual boundary 
layers, but they exhibit a different vertical decay probably 
related to the existence of streamwise vortices in our facility. 
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Table 2. Correlations •R and •,m•,R' Comparison 
Between Theory and Experiment 

U., m/s 4.5 6.8 9.0 13.5 

(•m•e / •)cxp -0.053 -0.105 -0.074 -0.098 
From equation (8) -0.060 -0.178 -0.102 -0.198 

, 

(•• / •2• )cxp -0.125 0.088 0.200 0.194 
From equation (9) 0.064 0.145 0.235 0.267 

Estimates of the dissipation rate confirm that turbulent quanti- 
ties scale as in usual wall-bounded flows. 

4. Most of the properties displayed by correlations aman 
and ½ra½n are predicted by a theoretical model in which }R is 
produced by a wave-current interaction due to the vertical 
variations of the mean shear. However, this conclusion is pro- 
bably specific to laboratory waves, and several other mecha- 
nisms which are certainly more important in the ocean have 
been suggested. 

Present results show that the orbital rotational motion is a 

cornerstone for understanding wave-current interactions. 
Theoretical arguments suggest that it probably plays also a 
key role in wave-turbulence interactions. It is thus highly 
desirable that conceptual models and separation methods be 
improved in order to get more information about vorticity 
dynamics below wind waves. Furthermore, no significant 
effect of the waves on the turbulent motion was found in the 

present study, probably because the kinetic energy of the 
orbital motion was not sufficient. It is thus crucial that new 

laboratory experiments involving more energetic waves be 
performed to clarify the mechanisms of wave-turbulence 
interactions. 

Acknowledgments. This research was partly supported by the French 
PAMOS Program under grants n ø 91 / ATP / 631 and 92N50 / 0268. 

References 

Agrawal, Y.C., E.A. Terray, M.A. Donelan, P.A. Hwang, A.J. Williams, 
W.M. Drennan, K.K. Kahma, and S.A. Kitaigorodskii, Enhanced 
dissipation of kinetic energy beneath surface waves, Nature, 359, 
219-220, 1992. 

Belcher, S.E., J.A. Harris, and R.L. Street, Linear dynamics of wind 
waves in coupled turbulent air-water flow, 1, Theory, J. Fluid 
Mech., 271, 119-151, 1994. 

Benilov, A. Yu., and B.N. Filyushkin, Application of methods of linear 
filtration to an analysis of fluctuations in the surface layer of the sea, 
Izv. Acad. Sci. USSR Atmos. Oceanic Phys., Engl. transl., 6, 477-482, 
1970. 

Cavaleri, O., and S. Zecchetto, Reynolds stresses under wind waves, J. 
Geophys. Res., 92(C4), 3894-3904, 1987. 

Cheung, T.K., and R.L. Street, Turbulent layers in the water at an air- 
water interface, J. Fluid Mech., 194, 133-151, 1988. 

Craik, A.D.D., The generation of Langmuir circulations by an instability 
mechanism, J. Fluid Mech., 81,209-223, 1977. 

Craik, A.D.D., and S. Leibovich, A rational model for Langmuir circu- 
lations, J. Fluid Mech., 73, 401-426, 1976. 

Davis, R.E., Perturbed turbulent flow, eddy viscosity and the generation 
of turbulent stresses, J. Fluid Mech., 63, 673-693, 1974. 

Dean, R.G., Stream function representation of nonlinear ocean waves, 
J. Geophys. Res., 70(18), 4561-4572, 1965. 

Donelan M.A., Whitecaps and momentum transfer, in Turbulent Fluxes 
Through the Sea Surface, Wave Dynamics, and Prediction, edited by 
A. Favre and K. Hasselmann, pp. 273-287, Plenum, New York, 1978. 

Fua, D., G. Chimonas, F. Finaudi, and O. Zeman, An analysis of wave- 
turbulence interaction, J. Atmos. Sci., 39, 2450-2463, 1982. 

Gartshore, I.S., P.A. Durbin, and J.C.R. Hunt, The production of turbu- 
lent stress in a shear flow by irrotational fluctuations, J. Fluid Mech., 
137, 307-329, 1983. 

Hussain, A.K.M.F., Role of coherent structures in turbulent shear flows, 
Proc. Indian Acad. Sci., 4 (2), 129-175, 1981. 

Hussain, A.K.M.F., Coherent structures: reality and myth, Phys. Fluids, 
26(10), 2816-2850, 1983. 

hang, J.Y., R.L. Street, and S.P. Klotz, A study of wave-turbulence in- 
teraction by use of a nonlinear water wave decomposition technique, 
J. Geophys. Res., 95(C9), 16,037-16,054, 1990. 

Jones, I.S.F, Turbulence below wind waves, in The Ocean Surface, edi- 
ted by Y. Toba and H. Mitsuyasu, pp. 437-442, D. Reidel, Norwell, 
Mass., 1985. 

Kitaigorodskii, S.A.K., and J.L. Lumley, Wave-turbulence interactions 
in the upper ocean, I, The energy balance of the interacting fields of 
surface wind waves and wind-induced three-dimensional turbulence, 

J. Phys. Oceanogr., 13, 1977-1987, 1983. 
Kitaigorodskii, S.A.K., M.A. Donelan, J.L. Lumley, and E.A. Terray, 

Wave-turbulence interactions in the upper ocean, II, Statistical cha- 
racteristics of wave and turbulent components of the random velocity 
field in the marine surface layer, J. Phys. Oceanogr., 13, 1988-1999, 
1983. 

Klebanoff, P.S., Characteristics of turbulence in a boundary layer flow 
with zero pressure gradient, Rep. 1247, Nat. Advis. Ctee. Aero., 
Wash., 1955. 

Longuet-Higgins, M.S., Mass transport in water waves, Philos. Trans. R. 
Soc. London A, 535-581, 1953. 

Longuet-Higgins, M.S., Action of a variable stress at the surface of 
water waves, Phys. Fluids, 12(4), 737-740, 1969. 

Lumley, J.L., and E.A. Terray, Kinematics of turbulence convected by 
a random wave field, J. Phys. Oceanogr., 13, 2000-2007, 1983. 

Magnaudet, J., Interactions interfaciales en 6coulement 5 phases stpa- 
rtes, Th•se de Doctorat, Inst. Polytech. de Toulouse, Toulouse, 
France, 1989. 

Magnaudet, J., and L. Masbernat, Interactions des vagues de vent avec 
le courant moyen et la turbulence, C.R. Acad. Sci. Paris, Sdr. 2, 
1461-1466, 1990. 

Phillips, O.M., and M.L. Banner, Wave breaking in the presence of 
wind drift and swell, J. Fluid Mech., 66, 625-640, 1974. 

Prodhomme, M.T., Turbulence sous les vagues de vent, Th•se de 
Doctorat,, Inst. Polytech. de Toulouse, Toulouse, France, 1988. 

Rashidi, M., G. Hetsroni, and S. Banerice, Wave-induced interaction in 
free-surface channel flows, Phys. Fluids A, 4 (12), 2727-2738, 1992. 

Reynolds, W.C., and A.K.M.F. Hussain, The mechanics of an organized 
wave in turbulent shear flow, 3, Theoretical model and comparisons 
with experiments, J. Fluid Mech., 54 ( 2), 263-288, 1972. 

Terray, E.A., and L.F. Bliven, The vertical structure of turbulence be- 
neath gently breaking wind waves, in The Ocean Surface, edited by 
Y. Toba and H. Mitsuyasu, pp. 395-400, D. Reidel, Norwell, Mass., 
1985. 

Thais, L., and J. Magnaudet, A triple decomposition of the fluctuating 
motion below laboratory wind water waves, J. Geophys. Res., this 
issue. 

Townsend, A.A., The response of sheared turbulence to additional dis- 
tortion, J. Fluid Mech., 81(1), 171-191, 1980 

J. Magnaudet and L. Thais, Institut de Mtcanique des Fluides de 
Toulouse, 2 Avenue Camille Soula, 31400 Toulouse, France. (e-mail: 
magnau@imft.enseeiht.fr; thais@imft. enseeiht.fr) 

(Received April 7, 1994; revised October 13, 1994; 
accepted October 13, 1994.) 


