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ABSTRACT 

Madsen, P.A. and Warren, I.R., 1984. Performance of a numerical short-wave model. 
Coastal Eng., 8: 73--93, 

A numerical short-wave model system based on the Boussinesq equations is verified 
against analytical as well as experimental results for shoaling, refraction, diffraction and 
partial reflection processes. It is shown that engineers can confidently and responsibly 
apply such a model system to the study of wave disturbance in coastal regions. 

INTRODUCTION 

In order to provide an assessment of the wave conditions in existing or 
proposed new harbours, a detailed knowledge of  the directions of propaga- 
tion and of  the magnitudes of  the transmitted waves is required. 

For this purpose mathematical short, wave models have been applied in 
engineering practise. These models can simulate water level variations and 
flows in estuaries, bays and coastal areas, including short-wave phenomena. 

The model  systems considered here are based on the t ime-dependent ver- 
tically integrated Boussinesq equations of conservation of  mass and mo- 
mentum (shown in Appendix A), and are able to simulate unsteady two- 
dimensional flows in vertically homogeneous fluids. The inclusion of  
Boussinesq terms is of  particular importance to the short, wave simulations. 
These terms account  for the deviation from hydrostat ic  pressure distribution 
due to the vertical accelerations, and make it possible to consider a large 
range of water waves which are not  restricted by linear assumptions. 
Furthermore,  the equations include porosi ty which makes it possible to 
simulate partial reflection from piers and breakwaters. The particular numer- 
ical model  used in the s tudy presented here is described in detail by Abbo t t  
et  al. (1978, 1983). 

The transmission of  waves from the sea into a harbour protected by break- 
waters is a process which involves shoaling, refraction, diffraction and reflec- 
tion processes. 

This paper will present comparisons between model  simulations of  these 
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processes and analytical solutions as well as physical model  tests. It will 
prove that engineers can confidently apply such models to the study of 
development  projects for harbours and coastal regions. 

First one-dimensional shoaling tests are compared against experimental 
data of  surface profiles and wave heights up to breaking. Secondly, a solu- 
tion provided by the modelling system is compared to a theoretical solution 
for depth refraction of  cnoidal waves over straight and parallel sea-bed con- 
tours given by Skovgaard and Petersen (1977). 

Theoretical solutions for diffraction around a single, fully reflecting break- 
water are given in the Shore Protection Manual. Comparison is made with 
these solutions for the case of a 45 degrees and a 90 degrees diffraction. 
Furthermore,  the model is verified against theoretical solutions for dif- 
fraction around an absorbing breakwater. 

Reflection and transmission from vertical porous structures were solved 
analytically by Madsen and White (1976} for the case of  linear shallow-water 
waves. The modelling system results are compared to these results and to the 
experiments of  Keulegan (1973). 

Finally, numerical model tests with wave absorbers have been made. The 
computat ional  results are compared to an analytical solution by Madsen 
(1983) and a qualitative comparison is made with the measurements by 
Straub (1956). 

SHOALING 

One-dimensional computat ional  shoaling tests have been carried out, 
simulating the behaviour of  periodic waves up to breaking point. Bot tom 
friction is included in the modelling and comparison is made with experi- 
mental data obtained at CERC and Delft laboratories (Singamsetti and 
Wind, 1980; see Table I for details). A Chezy type  of  bo t tom friction has 
been applied in the computat ions:  

P g  
r = ~ U I U h  C constant  (1) 

C" 

The opt imum value of C for each of  the two experiments has been chosen by 
trial-and-error, and the resulting comparisons are shown in Figs. 1 and 2. 

An excellent agreement with the measurements from CERC can be ob- 
tained with a Chezy number  of 20 (Fig. 1). However, using the same Chezy 
number  for the comparison with the experiments from Delft  yields an under- 
estimation of  the wave height near the breaking point. Instead, satisfactory 
agreement is obtained with a Chezy number  of  30. Notice that  the computed  
wave heights are sensitive to the choice of C only from the toe of  the slope 
up to the breaking point  (Fig. 2). 

In order to justify the present choices of  the Chezy number,  eq. 1 is 
compared with a more precise description of  the bo t tom friction: 
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1 
r =7pfwUIUI (2) 

where fw is a function of the particle mot ion amplitude ~ and of the 
Nikuradse roughness kN. Laboratory measurements by Jonsson (1976) 
showed that fw can be determined from: 

fw = 0.30 for .... < 1.57 (3) 
kN 

1 1 
+ l o g  - -  - - 0 . 0 8 + l o g ~  for ~ > 1 . 5 7  

kN kN 

The Nikuradse roughness parameter is defined from the velocity distribution 
in a steady, turbulent  uniform flow over a rough bed. Hence kN is not  a 
function of  the wave parameters but  merely a function of  the bo t tom mate- 
rial. However, the width of  the channel may be important  as the friction 
along the sides of  the channel will tend to increase fw, i.e. to increase kN. 

Comparing eqs. 1, 2 and 3 makes it possible to relate the chosen values of  
C to values of ~/k N. C equal to 20 yields o~/k N = 18.2 and C equal to 30 
yields o~/k N = 100. Now using sinusoidal theory allows for an approximate 

TABLE I 

Characteristics in shoaling experiments 

/ / / / /  I / / / / / / / / / / / /  

q A 

Delft CERC 

A (m) 9.80 22.0 
width (m) 1.13 0.46 
slope 1/20 1/30 
T (sec) 1.55 4.1 
h o (m) 0.30 0.60 
H o (m) 0.11 0.13 
L o (m) 2.4 9.7 
so (m) 0.07 0.17 
h b (m) 0.17 0.23 
H b (m) 0.14 0.20 
L b (m) ~-1.9 ~6.0 
~b (m) ~0.12 ~0.42 
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solution for a at the toe of  the slope as well as at the breaking point.  Hence 
the chosen values of  C can be related to a range of corresponding kN values. 

From the CERC measurements a can be determined to be 0.18 m and 
0.42 m at the toe of  the slope and at the breaking point  respectively. With C 
equal to 20 m ~ s -1 this leads to kN values in the range of 9--23 ram. 

From the Delft  measurements a can be determined to be 0.07 m and 
0.13 m at the toe of  the slope and at the breaking point  respectively. Hence 
with C equal to 30 m ~ s -1 this yields k N in the range of  0.7--1.3 ram. 

The differences in roughness parameters in the two experiments are obvi- 
ously rather large bu t  may be justified by the differences in model  setup: 
The Delft  measurements were performed in a very smooth  channel with 
water depth 0.30 m and width equal to 1.13 m while the CERC measure- 
ments were performed with water depth 0.60 m and width equal to 0.46 m. 
Hence, the friction from the sidewalls cannot  be neglected in the CERC 
measurements which probably explains the higher kN values in this case. 

It can be concluded that  satisfactory shoaling computat ions  can be made 
by using the simple Chezy formula. However,  in order to determine a reason- 
able value of  C, information is required about  the roughness parameter for 
the specific bed material. 

REFRACTION 

A theoretical solution for the depth refraction of a first-order cnoidal 
surface gravity wave in shallow water was given by Skovgaard and Petersen 
(1977) for a quasi two-dimensional situation, i.e. for a gently sloping 
ba thymet ry  characterized by straight and parallel sea-bed contours  (Fig. 3). 

This quasi two-dimensional situation permit ted the determination of  the 
wave refraction solution (except  for the orthogonal paths) as a function of 
the depth as the only independent  variable wi thout  integrating the differen- 
tial equations for the orthogonal paths. 

-Y---~'f" t PLA~ VtEW I [ 

i If 
, ~, ~1 ~ ~, I I I II x 

Fig. 3. Definition sketch for refraction over straight and parallel bottom contours. 
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With the basic assumption that  the energy flux is constant  between ad- 
jacent wave orthogonals, Skovgaard and Petersen derived two non-linear 
algebraic equations with the wave height and the cnoidal parameter m as un- 
knowns. Sinusoidal and cnoidal theory were matched assuming continui ty in 
the energy flux and accepting the resulting discontinuity in the wave height. 

In order to be able to compare the numerical model  with the theoretical 
solutions, we have chosen the top  row in table 1 from Skovgaard ands 
Petersen (1977) as the boundary conditions: 

h H 
- 0.045, - - =  0.0826 ands0  = 25.9 ° 

L0 h 

where h is the water depth,  H the wave height, L0 the deep-water wave 
length and ~0 the initial angle of  incidence. 

Hence, choosing a water depth of 21 m at the open boundary defines the 
incoming wave height and period as 1.74 m and 17.3 s, respectively. 

The model  topography is shown in Fig. 4. The angle of incidence, ~0, is 

"" '= I  ~ _ _  

" " ' = I  ~" "~" 

l 
WAVE DIRECTtON 

Fig. 4. R e f r a c t i o n  o f  cno ida ]  waves. Dashed l ine  = b o t t o m  con tou rs ;  so l id  l ine  = wave 
f r o n t s  computed by numerical mode]  (zero  e leva t i on  iso l ines) ;  T = 17 s; H i = 1,74 m; h = 
2 1 m ; A x = A y = 1 5 . 5 m ; A t = l s .  
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slightly modified from 25.9 ° to 26.6 ° . However, this change is considered to 
have little impact on the results. The model size is 100 X 140 grid points and 
in order to have at least 10 grid points per wave length, the grid sizes are 
Ax = Ay = 15.5 m, while the time step is I s. The bot tom contours rise from 
-21 m to -7  m over 70 grid points, leading to a rather flat slope 
(hx .~ 0.013) which is consistent with the classical shoaling theory. 

In order to minimize the reflections from the closed boundaries a porosity 
filter layer has been applied. This filter layer is discussed further in 
the section on reflection from a porous wave absorber. 

From the isoline plot of the computed wave fronts in Fig. 4 it is noticed 
that  the reflection is indeed very small and no sign of standing waves near 
the far end of the model can be seen. 

From time-series plots of computed surface elevations the time mean 
values of the maximum and minimum elevations are determined in every 
10th grid point  along the 21, 19, 17, 15, 13, 11, 9 and 7 m bot tom contours 
(Fig. 5). Firstly, we notice that  the maximum and minimum elevations are 
nearly constant  along each bot tom contour.  This agrees with the theoretical 
solution which predicts that  the refracted wave heights are functions only of 
the water depth (for given reference waves). However, we do find consider- 
able disturbances, especially in the maximum elevations for h ~< 9 m. This is 
to be expected from the truncation errors, which become significant as 
Ax/h  increases to 2.2 at h = 7 m. At this water depth, secondary waves 
appear in the wave troughs. 

In order to determine a representative wave height occurring along a bot~ 
tom contour,  space mean values are calculated based on the middle area of 
the model in order to avoid boundary effects. The chosen values are shown 
on Fig. 5. These values have been compared with the theoretical solution 
from Skovgaard and Petersen (Table I) and the agreement is indeed very statis- 
factory (Fig. 6). Finally, the angles of incidence have been determined from 
the isoline plot  of the wave fronts (Fig. 4) and once again the agreement 
with Table I in Skovgaard and Petersen (1977) is good (Fig. 7). 
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DIFFRACTION 

A 45 ° and a 90 ° diffraction around a single fully reflecting breakwater on 
a horizontal bo t tom have been simulated and a comparison has been made 
with the theoretical solutions from the Shore Protection Manual. 
Furthermore,  computat ions and theoretical solutions have been compared 
for the case of a fully absorbing breakwater. 

There is a minor problem in performing the comparisons because of the 
fact that  the theoretical solutions and the numerical model are based on two 
different wave theories. While the numerical model is based on finite dif- 
ference approximations of the Boussinesq equations, the diffraction curves 
shown in the Shore Protection Manual are based on solutions of the 
Sommerfelds equations assuming infinitesimally small water waves (linear 
wave theory). Hence, although a sinusoidal input would match with the 
theoretical basis for the curves in the Shore Protection Manual, it will not  
match with the difference equations and the wave will have to change its 
form during the propagation in order to adjust itself to the Boussinesq 
equations. 

On the other hand, a cnoidal wave input will not  propagate with a con- 
stant wave length because of the dependence upon the wave height, and this 
is also in conflict with the theory. 

What we have done is to run the model with a cnoidal input having a very 
low value of the Ursell parameter: 

U = H L 2 / h  3 

In this case the differences between the sinusoidal and cnoidal profiles will 
be moderate. In order to describe a typical wave occurring in harbours, the 
following choice for the model tests has been made: 

h = 10 m (constant depth of the area) 
T = 8 s (incoming wave period) 
Hi = 2 m (incoming wave height) 
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Hence, a sinusoidal as well as a cnoidal theory leads to a wave length of 
approximately 70 m which yields an Ursell parameter of approximately 10. 

The grid sizes Ax and Ay are chosen to be 7 m, representing the waves 
with approximately 10 points per wave length. The time step is chosen to be 
0.5 s, representing the waves with 16 points per wave period. 

The model size is chosen to be 100 × 100, i.e. approximately 10 wave 
lengths in each direction and the width of the entrance for the incoming 
waves is 4 wave lengths (Fig. 8). Reflections from the northern and eastern 
closed boundaries are minimized by applying an absorbing porosity filter 
which has the effect of simulating an infinite domain. Reflections from the 
western closed boundary are expected to be small and have not  been treated 
by a filter. The computat ional  results can be seen in Figs. 8--10. 
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Fig.  8. D i f f r a c t i o n  a r o u n d  a f u l l y  r e f l e c t i n g  b r e a k w a t e r  (90°C) .  a. I so l i ne  p l o t  o f  w a v e  
f r o n t s ,  b. Wave  h e i g h t s  H / H  i. D a s h e d  l ine  -- t h e o r y  f r o m  S h o r e  P r o t e c t i o n  M a n u a l ;  so l id  
l ine  = c o m p u t e d  by  n u m e r i c a l  m o d e l .  C n o i d a l  i n p u t ,  T = 8 2; H i = 2 m ,  h = 10 m ,  ~ x  = 
~ y  = 7 m ,  A t = 0 . 5 S .  

In Fig. 8 a 90 ° diffraction around a fully reflecting breakwater is shown. 
The agreement with the Shore Protection Manual is excellent in this case. 

In Fig. 9 a 45 ° diffraction around a fully reflecting breakwater is shown, 
and once again the agreement is very good in most  of the area. However, we 
do find discrepancies very near the breakwater. These are caused by the 
boundary formulation in the numerical model, where a solid boundary at 
45 ° to the grid is represented by a number of finite steps (Fig. 9a). It is well- 
known that  reflections from these steps cause errors (in this case an over- 
estimate of the waves) close to the breakwater. 

The effect of the steps can be avoided by applying a porosity layer (dis- 
cussed below) along the front  face of the breakwater. However, this 
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introduces an energy dissipation which will influence the waves not  only in 
the vicinity of the breakwater but  in the whole shallow area behind the 
breakwater. 

In Fig. 10 such a solution is compared to the theory of  fully absorbing 
breakwaters. The agreement turns ou t  to be very satisfactory. Hence, we can 
conclude that although the basis for the theory and the basis for the model 
runs are different and although we have used an incoming wave as high as 
20% of the water depth, the agreement in diffraction coefficients is accept. 
able in most  of  the model  area. Furthermore,  this result indicates that the 
diffraction process can be considered to be fairly linear with respect to wave 
height, at least if the area is scaled with respect to the resulting wave length. 

REFLECTION AND TRANSMISSION FROM POROUS RUBBLE MOUNDS 

In short-wave modelling of  harbours it is important  to simulate partial 
reflections from piers and breakwaters. In the model  presented here, this is 
done by including porosi ty in the conservation equations (Appendix A). The 
f low resistance inside the porous structures is described by the non-linear 
term: 

(~ + 3)UI)U 

where ~ and fl account  for the laminar and turbulent  friction loss respec- 
tively. ~ and fl are determined by the empirical expressions recommended by 
Engelund (1953): 

( 1  - n )  3 v 
0~----0~ 0 

n 2 d 2 

( 1  - n )  1 
fl = fl0 n 3 d 

in which d is the grain size, v the kinematic viscosity and s0 and 30 are con- 
stant particle-form coefficients which in the following computat ions  have 
been taken to be 1000 and 2.8, respectively. 

With a porosi ty less than 1 the f low inside the permeable structure can be 
simulated. With the porosi ty equal to 1 the friction loss becomes zero and 
the equations simplify to the normal Boussinesq equations describing the 
f low outside the structures. 

Small-scale experiments on reflection and transmission characteristics of  
porous rectangular breakwaters were performed by Keulegan (1973). The 
numerical model  is set up to the same scale as Keulegan's physical model  and 
for comparison purpose we use the experimental data corresponding to 
relatively long waves ( h / L  = 0.1). 

From the specifications of  the physical model the water depth, h, is 
known to be 0.30 m. Hence h / L  = 0.1 and combining this with sinusoidal 
theory leads to a wave period T = 4.86 s. We regard two different cases, the 
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width of  the rubble-mound being equal to 0.15 m and 0.30 m, respectively. 
The diameter of  grains is 0.025 m and the porosi ty is taken to be 0.46 (see 
Madsen mid White, 1976). 

An important  parameter  in the numerical solution is the grid size of the 
finite difference scheme. Firstly, it is limited by the width (w) of the rubble- 
mound,  and, secondly, it should not  be larger than approximately 1/10 of  
the wave length, L. In the two cases studied here, W/L takes values of 0.05 
and 0.1, respectively, so that  the highest values of Ax are 0.15 m and 
0.30 m, respectively. Four  different values of z~x have been tested in order 
to investigate how sensitive the results are to this parameter. The timesteps 
are varied with the gridsizes in such a way that the Courant number: 

L / ~ x  
Cr = ~ 1  

T / A t  

A definition sketch of the model setup is shown in Fig. 11. It  should be 
noted that  an absorbing filter is used at the far end of the model  in order to 
minimize any reflection from the closed boundary.  

a) Definition sketch 

OPEN BOUNDARY 

. / / / / / / / i / I i / i / / / / / / / / / / /  i i / i i i i i i i i i i / I i / /  

I "  16.5 rn _--~-- 10.5 m ~', 

b) Envelopes of surface elevation 

H/L = 0.020, W = 0.3 m, DX = 0.15 m 

rn 

:::1 I_. ,[ A A ^ I I I 
0. 02  

0 3 6 9 12 15 1B 21 24. 2 7 m  

Fig. I I .  Transmission through a rubble -mound breakwater. 
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The computed surface elevations are plotted as a number of  line plots 
during a wave period. These make an envelope of  the surface elevations 
(Fig. l l b )  from which the reflection coefficient, aR, can be determined 
using Healy's formula: 

a m a x  - a r n i n  
ct R = 

a m a x  + a r n i n  

The computed  results are tested against the experimental data from 
Keulegan (1973)  in Fig. 12a, b. 
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In Fig. 12a the computed transmission coefficients are seen to be in ex- 
cellent agreement with the experimental ones, whereas the agreement in 
Fig. 12b leaves something to be desired. However, Madsen and White (1976) 
found that  in order to fit the latter experiments (Fig. 12) they had to use a 
smaller value of ~0 (= 2.2) while we have used the value 2.8 in all 
the computations.  

Regarding the reflection coefficients in Fig. 12a, b, a significant dis- 
crepancy between observation and prediction can be seen. This discrepancy 
is probably due to experimental errors in the determination of the minimum 
and maximum wave amplitudes of the wave envelope in the reflected wave 
region. Madsen and White (1976) showed that  the expression for aR is very 
sensitive to erroneous results in amin and indeed it  is no easy task to deter- 
mine the exact position of the nodes and anti-nodes in a physical model. 

In Fig. 13a the numerical solution is shown for 3 different grid sizes 
corresponding to w/Ax equal to 1, 2 and 4, respectively (w being the width 
of the rubble-mound). 

Obviously w/Ax = 1 yields too coarse a grid size, leading to an over- 
estimation of the transmission and an underestimation of the reflection. 

The differences in using w/Ax = 2 and 4 are not  alarming and there seems 
to be no reason to represent the rubble-mound with more than 4 grid points. 
The numerical solution is compared to the theoretical solution made by 
Madsen and White (1976) and the agreement is very good, especially with 
respect to the transmission coefficients. 

In Fig. 13b the width of the rubble-mound is doubled while the wave 
input is the same, i.e. for the same value of w/Ax the value of L/Ax will be 
different. The result is that  w/Ax = 2 is no longer acceptable and the dif- 
ferences between using w/Ax = 2 and w/Ax = 4 has become significant. 

On the other hand, there is nearly no difference between using w/Ax = 4 
or 8; hence once again we can conclude that  a reasonable representation of a 
transmitting rubble-mound can be made using 4 grid points. 

The agreement with the theoretical solution (Madsen and White, 1976) is 
still very good although we find some discrepancies in the reflection co- 
efficients. Generally, it can be concluded that  the simplifications made by 
Madsen and White, such as for instance the linearisation of the friction terms 
in the momentum equation, are reasonable. 

Finally, the energy loss within the rubble-mound has been calculated by 
the expression: 

DISS = 1 - (a~ + at:) 

F i g .  1 2 .  Comparison between computed and measured transmission, a .  S q u a r e s  = ~r  a n d  

crosses = a t ,  experimental data, Keulegan (1973).  Dashed line = computed ( D X  = 

0 . 0 3 7 5  m ,  D T  = 0 . 0 2 5  s ) .  T = 1 . 8 6  s,  h = 0 . 3  m ,  w i d t h  = 0 . 1 5  m ,  p o r o s i t y  = 0 . 4 6 .  b .  Data 
a s  in  a ,  b u t  w i t h  w i d t h  = 0 . 3 0  m ,  D X  = 0 . 0 7 5  m ,  D T  = 0 . 0 5 0  s. 
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Fig. 13. Comparison between numerical solution and a theoretical solution, a. Data as in 

Fig. 12a. Solid line = theoretical solution by Madsen and White (1976). a t, c~ by numerical 

solution: e, • DX = 0.15 m, DT = 0.10 s; o, a DX = 0.075 m, DT = 0.050 s; x, * DX = 

0.0375 m, DT = 0.025 s. b. Data as in Fig. 12b. Solid line = theoretical solu- 
tion by Madsen and White (1976). at, m r by numerical solution: e, • DX = 0.30 m, DT = 

0.20 s; o,~ DX = 0.15 m, DT = 0.10 s; x, *DX = 0.075 m, DT= 0.05 s; D, • 

DX = 0.0375 m, DT = 0.025 s. 
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As seen from Fig. 14 the dissipation increases with increasing wave steepness. 
Furthermore it can be seen that  using a coarse representation of the rubb le  
mound ( w / A x  = 1) leads to an underestimation of the energy loss for the 
smallest wave steepnesses. 

1,0 

0.~ 

0.1 

DISS:  I-( CI.2t ÷ Ct2r ) 

r ~ I "  I , ] r , I ~ - -  I I I I I i 

i 0  " 3  I 0  ~ H i 10 - l 

L 

Fig. 14. C o m p u t e d  energy  loss w i t h i n  t he  r u b b l e - m o u n d  as a f u n c t i o n  of  t h e  wave 
s teepness .  

REFLECTION FROM A POROUS WAVE ABSORBER 

In a wave absorber the core of the permeable breakwater is impervious 
and the transmission through the rubble-mound is eliminated. However, 
because of the energy loss inside the structure the reflections will only be 
partial. 

Numerical model tests simulating wave absorbers have been carried out. 
The reflection coefficient is determined by Healy's formula as explained in 
the previous section. 

In Fig. 15 the computed reflection coefficient is shown as a function of 
the width of the absorber divided by the wave length. Clearly, the absorber 
has to be quite long to be really efficient. The computat ional  results are 
compared to an analytical solution made by Madsen (1983). This solution is 
based on linear shallow-water wave theory and is derived using a technique 
quite similar to that  used by Madsen and White (1976) for transmission 
through rubble-mounds. The agreement with the numerical solution is seen 
to be very good, especially when aR is no t  too high. 

In Fig. 16 the reflection coefficient is shown as a function of the porosity. 
It turns out that  we get the best absorption for a porosity as high as 0.95. 
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This actually agrees with the measurements by Straub (1956),  who used 
wire-mesh plates to obtain such high porosities. However, a quantitative 
comparison with the experimental results cannot  be made as the absorbers 
used by Straub were not  rectangular. 

Instead the numerical solut ion is compared with the analytical solution by 
Madsen (1983). For small values of  aR the agreement is excellent but  for aR 
larger than 0.30 the comparison leaves something to be desired. However, 
the discrepancies for high values of aR are due to non-linear effects which 
will have a considerable impact  on the nodal value in the envelope of the 
surface elevations. The resulting reflection coefficient determined by Healy's 
linear formula will be lower than the true reflection coefficient. This is 
clearly illustrated by Fig. 16 where Healy's formula with a porosity equal to 
1 leads to aR equal to 0.84 instead of  1. On the other hand, Healy's formula 
will only be sensitive for small values of  amin (i.e. for high values of aR) and 
the results appear to be reliable for small values of  aR. 

Wave absorbers are of great importance in numerical modelling. For 
example if a certain area in a harbour is expected to have little or no in- 
fluence on the wave condit ions in the area of  special interest, the first area 
can be deleted from the computat ions  simply by combining a closed bound- 
ary with an absorbing filter layer. In this way a situation is simulated cor- 
responding to full transmission of waves into the neglected areas from which 
no or little reflection is expected.  

If full absorbtion is required at a boundary in the numerical model, other 
methods are more efficient than simulating porous wave absorbers (see 
Larsen and Dancy, 1983). This is due to the fact that  reflection from porous 
wave absorbers is strongly nonlinear with respect to wave height and wave 
period (see Madsen, 1983} and a given absorber will only be efficient for a 
very narrow range of  incoming wave characteristics. 

CONCLUSIONS 

A numerical model  for simulation of  the propagation of  short waves has 
been compared with recognized analytical and experimental results for 
shoaling, refraction, diffraction and partial reflection. In general, the com- 
parisons are entirely satisfactory, thus showing that the addition of  the main 
Boussinesq terms to the normal conservation equations for nearly horizontal 
f low can be used to provide accurate simulations of short-wave phenomena.  
Elsewhere (Abbot t  et al., 1983), the importance of a consistent, third-order 
accurate finite-difference scheme for the solution of  the equations is 
emphasized. 

This paper proves that  the application of numerical models (of  the type  
described here) to the analysis and solution of  practical engineering problems 
is justified. There are, of course, limitations on the ratios h/L, h/H and H/L 
(Abbot t  et  al., 1983), bu t  the range of  validity is sufficient to cover most  
practical problems which can be characterized as studies of  wave propagation 
over complex bathymetries where analytical solutions are not  possible. 
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APPENDIX 

The equations solved by the numerical model 

The numerical model is based on the t ime-dependent vertically integrated 
Boussinesq equations conserving mass and momentum.  The model is de- 
scribed in detail by Abbott  et al. (1983). The equations are given below: 

Continuity 

a~ ap aq 
n - -  + ' + ' = 0  

at [}x ay 

x -momentum 

M + w + 

n at ax 

a 

p2 an pq an 

nh ax nh ay 
- n  

( + n2p a + [~ h f  + h2" + n 2gh ~x 

Hh ( a3p + a3q ) 
3  ;d-j t 

y-momentum 

, + ~ + ~ 

n a t ay ax 

q: an pq an Hh \ [ aa q 
- n  "+ 

nh ay nh ax 3 y2at  

_ +n2g h af  +n2q a + ~  h~ + 
by 

O3p ) 

axayat  

where the following symbols are used: 

Symbol Description 

~-(x,y, t) 
p(x,y,t) 
q(x,y, t) 
h(x,y,t) 
n(x,y) 
g 
n Cx, y ) 
t~ 

X,y 
t 

water surface level above datum 
flux density in the x-direction 
flux density in the y-direction 
water depth 
still water depth 
gravity 
porosity 
resistance coefficient for laminar 
flow in a porous media 
resistance coefficient for turbulent 
flow in a porous media 
space coordinates 
time 

q2 
h'2' ) 

Unit 

(m) 
(m 3/s/m) 
(m ~/s/m) 
(m) 
(m) 
(mls ~ ) 

(m) 
(s) 
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