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ABSTRACT

The problem of mass transport induced by monochromatic waves in a viscous fluid of infinite depth
and infinite lateral extent is examined. The fluid viscosity is assumed constant and the effects of Coriolis
force and a nonzero surface shear stress are incorporated in the analysis. The solution shows the wave-
induced surface drift to be finite, thus eliminating the apparent paradox of an infinite wave-induced sur-
face drift predicted by Longuet-Higgins’ classical solution. The nature of the present solution depends
on the ratio of the Ekman depth & to the wavelength L. The combined wind- and wave-induced drift
velocity is found to be composed of a classical Ekman current and a wave-associated mass transport cur-
rent. For large values of 8/L the wave-associated mass transport current is a superposition of Stokes’
mass transport and the shear current arising from the unbalanced surface velocity gradient predicted
by Longuet-Higgins’ mass transport theory. For smail values of §/L the wave-associated mass trans-
port velocity exhibits the features of a pure shear current corresponding to the surface velocity
gradient induced by the wave motion, i.e., the mass transport becomes proportional to 8 and approaches
zero for an inviscid fluid in agreement with Ursell’s finding. For all values of §/L the wave-induced
surface drift is found to be at an angle of approximately 7 /4 to the direction of wave propagation. The
results show that a simple superposition of the Ekman current and Stokes’ mass transport to find the com-
bined surface drift of winds and waves is invalid. The extension of the present analysis to a fully
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developed sea, described by its spectrum, is discussed.

1. Introduction

Huang (1970) was one of the first to point out
explicitly the seemingly paradoxical result that the
deep-water limit of Longuet-Higgins’ (1953) classi-
cal solution for the wave-induced mass transport in
a viscous fluid showed the surface drift u,, . to be
proportional to the water depth k, i.e., u,, — ®
as h — «. Huang’s (1970) analysis which removed
this apparent paradox, however, was challenged by
Unlitata and Mei (1970) who showed that Longuet-
Higgins’ solution, given its underlying assumptions,
indeed was correct. These assumptions were those
of a steady state having been reached and tke neg-
lect of viscous attenuation of the waves.

As pointed out by Uniliiata and Mei (1970), the time
scale for the establishment of a steady mass trans-
port velocity, influenced by viscosity throughout the
depth of fluid, is #%v where v is the fluid viscosity.
Thus, as & — o« steady state will never be attained.
This conclusion is indirectly supported by the
experimental results of Russell and Osorio (1957)
who found good agreement with Longuet-Higgins’
theory for intermediate depths, whereas Stokes’
inviscid solution was superior to the viscous solu-
tion of Longuet-Higgins for deep-water waves. Mil-
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gram (1977)! has offered an explanation to this prob-
lem by considering the temporal development of the
mass transport velocity as it becomes influenced by
viscosity. Although explaining the discrepancy
between Longuet-Higgins’ theory and the experi-
mental results by Russell and Osorio, Milgram’s
solution does not remove the paradox since his
solution for high values of the fluid viscosity or for
an infinitely long wave flume will approach that of
Longuet-Higgins. Recently, Liu and Davis (1977) in-
corporated the effect of viscous damping of the
waves in the analysis of wave-induced mass trans-
port. By their own admission their analysis is
incomplete, although it too offers a possible explana-
tion of the discrepancy between Longuet-Higgins’
theory and the experimental results of Russell and
Osorio.

There is little doubt in this author’s mind that
a complete solution to the problem of wave-induced
mass transport in a viscous fluid should consider
the temporal development of the mass transport
velocity as well as the viscous attenuation of the
wave motion. However, given the fact that we con-

! Milgram, J. H., 1977: Mass transport of water and floating
oil by gravity waves in deep water (personal communication).
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sider an infinite ocean we must, to be realistic,
include Coriolis force in the analysis. Also, waves
are generated by winds and the assumption of zero
surface shear stress is therefore appropriate only
for swell.

The present paper considers the idealized case of
wind and wave-induced drift currents. In the initial de-
velopment, the waves are assumed monochromatic
and propagating in the direction of the wind. The
effect of the wind is modeled by assuming a constant
shear stress to act on the free surface and by adopt-
ing an appropriate value for the constant turbulent
eddy viscosity. Wave attenuation is neglected based
on the assumption that the wind transfers sufficient
energy to the wave motion to offset viscous dis-
sipation. The present analysis may therefore be
viewed as an idealized treatment of the wind- and
wave-induced drift current corresponding to a fully
developed sea. The inclusion of Coriolis effect in
the analysis results in a finite wave-induced surface
drift, thus removing the paradoxical result of
Longuet-Higgins’ solution. The combined wind- and
wave-induced surface drift is found to be at an angle
of approximately 77/4 to the wind and wave direction,
thus demonstrating that a simple superposition of the
classical Ekman current and Stokes mass trans-
port is invalid.

An extension of the monochromatic wave solution
to the case of a fully developed sea, described by
its spectrum, is discussed. It is shown that adopt-
ing the Pierson-Moskowitz (1964) spectrum to de-
scribe the fully developed sea state leads to an
infinite surface drift. Thus, one paradoxical result
is replaced by another. This latter paradox, however,
appears to be somewhat artificial because of our
lack of accurate knowledge of the high-frequency
portion of the wave spectrum. Various tempting
ways of removing this prediction of an infinite
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in which p is the fluid density, g gravity, v, the
constant turbulent eddy viscosity and V2 = §%8¢2
+ 0%/0e® + %92,

To find a periodic solution of radian frequency
o corresponding to wind waves, i.e., w = O(1 s7),
it would appear that the Coriolis terms in (2) may
safely be neglected since these terms are of the order
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surface drift are discussed and dismissed as valid
candidates on the grounds that they are inconsistent.
An extremely simple analysis, however, does show
that the wave-induced surface drift in a fully de-
veloped sea may be of the same order of magnitude
as the 3% of the wind speed generally attributed
to the effect of the wind shear stress.

2. Analysis for monochromatic waves

Unliiata and Mei (1970) demonstrated clearly that
an analysis of wave-induced mass transport was
facilitated greatly when the perturbation equations
in their Lagrangian form, as derived by Pierson
(1962), were employed. Since the effect of earth’s
rotation. is to be included in the present analysis, in
addition to viscous effects, the expression for fluid
accelerations in the x*, y* and z* directions become
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in which x, y and z denote the location of a fluid
particle which is tagged by its position (¢,€,0),
i.e., x = x(£,¢6,0,0) and analogous for y and z; and
f and f are the Coriolis parameters defined by (f,f)
= 2w,(sing,, cosd,), where w, is the radian fre-
quency of earth’s rotation and ¢, the latitude.

Introducing the fluid accelerations expressed by
(1) in the dynamic equations the derivation of the
first- and second-order perturbation equations fol-
lows readily from Pierson’s (1962) development
since the Coriolis terms are linear. Thus, the first-
order equations become
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f/o=10"%* compared to the leading terms. The
validity of this argument may be challenged based
on the finding of Pollard (1970) regarding the neces-
sity of including Coriolis effects in the first-order
solution in order to obtain the correct second-order
solution. It should, however, be recalled that the
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finding of Pollard was based on a perturbation
analysis of the governing equations in their Eulerian
form and that the problem arose in the second-
order perturbation equations as a result of convec-
tive acceleration terms not present in an analysis
employing the Lagrangian form of the governing
equations. As a consequence of employing Lagran-
gian coordinates it is therefore sufficiently accurate
to take the first-order solution for the periodic
motion as the solution to (2) neglecting the Coriolis
terms, i.e., the solution obtained by Unliiata and
Mei (1970). This will ensure that the second-order,
steady, wave-induced current is obtained to the
accuracy of the square of the wave steepness.

Therefore we seek a solution to the second-order,
time-averaged equations of motion corresponding
to a first-order wave motion whose surface profile
is given by

3

in which a is the wave amplitude, k the wavenum-
ber, and only the real part of (3) constitutes the
solution.

Since the fluid is assumed viscous, a decay of the
wave motion in time or space may be introduced.
In the present paper, however, we consider the com-
bined effect of wind and waves and we may justify
a neglect of wave decay by assuming an energy
transfer from the wind to the wave motion equal
to the rate of energy dissipation, i.e., we are
simulating a condition corresponding to a fully de-
veloped sea. With these assumptions we have for
infinitely deep water

M, = aelE—ot

w?
k=—.
g

This form of the dispersion relationship neglects
the effects of earth’s rotation, which has aiready
been justified, and the presence of the steady wave-
and wind-induced current, the solution for which is
to be obtained from the second-order equations. The
absence of the steady current in the dispersion rela-
tionship is clearly a convenient assumption which,
however, may be partially justified by recognizing
that observations show a surface drift, whether
wave- or wind-induced or both, of the order 3% of
the wind speed. For a fully developed sea :his is
considerably below the first-order wave orbital
velocities and suggests that the surface drift may
be considered of second-order in wave steepness,
thus justifying the assumption.

For the general case of any ratio of water depth to
wavelength, the Lagrangian equations governing the
second-order steady streaming were given by
Unliiata and Mei (1970) for a pure wave motion
without considering the Coriolis effect. From the
preceding discussion it follows that earth’s rota-
tion will manifest itself in the second-order equa-
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tions in the same manner as it appears in (2), the
first-order equations. Therefore, the time-averaged,
second-order Langrangian equations [Eq. (45) in
Unhiata and Mei (1970)] are readily generalized
for a fluid of infinite depth and infinite lateral extent
to account for Coriolis effect. For infinite depth we
obtain in our notation

vp d’u = —fv + dvrwkiate?®t, 5)
dg
d*

vr iC = +fu, (6

in which ¥ = 8x,/0t and v = 8j,/0t are the second-
order steady Lagrangian velocity components in the
horizontal plane.

Up to this point the influence of the wind blowing
over the water has been introduced as a justifica-
tion for the neglect of wave decay. In terms of
the second-order streaming associated with the com-
bined effect of wind and waves, the wind enters
the problem through the surface boundary condi-
tion to be satisfied by (5) and (6). Whereas the
pure wave solution by Unliata and Mei (1970)
assumed a zero shear on the free surface, we ac-
count for the effect of wind by assuming a con-
stant surface shear stress to act in the direction
of wave propagation, i.e.,

Ts = Tge = pu*z at =0, )

where u,, is the shear velocity.

In addition to this explicit account for the action
of wind, the presence of the wind will also manifest
itself implicitly through its effect on the value of the
turbulent eddy viscosity. Thus, with increasing wind
speed it would be reasonable to assume an in-
creasing value of v,.

The surface boundary condition to be satisfied by
the second-order Lagrangian velocity was derived
by Unliata and Mei (1970). The effect of a non-
zero surface shear is readily incorporated and the
free surface boundary condition to be satisfied by
(u,v) for infinitely deep water is

2
U _ ke + 2 a =0
14 Vr

The first term on the right-hand side is the familiar
velocity gradient obtained for a pure wave motion
and, as pointed out numerous times, it is twice the
value of the surface gradient predicted by Stokes®
inviscid solution.

Combining (5) and (6) using the complex velocity
variable

®

w=u+iv, (&)
we obtain the governing equation
dZ
Y i L = dwksazer (10)
dg? Vp
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which, in addition to (8), must satisfy the boundary

condition of remaining bounded as { —> —, i.e.,
d u,’
DY~ 4wkta® + 2.

11

The solution to the homogeneous form of (10),
which satisfies w — 0 as { = —, is

Wy = Ae(1+i)l16 (12)
in which A is an arbitrary constant and
8 = Qur/f)1? (13)
is the scale of the Ekman layer.
A particular solution of (10) is
wka? 2kt (14)

Wp = ——— 727
1 — %i(kd)

Requiring the complete solution, w = w, + w,, to
satisfy the boundary condition given by (11) leads to
a determination of the constant
) 2 1 — i(kd)2
A= ——{5‘— + 20k*a? __u—J . (15)
1+ il vy 1 — %i(k8)~2
The complete solution, therefore, for the wind-
and wave-induced current is given by

"=+ iv= uy? pHOU | _ ©ka®
1+ v 1 — Y5i(k8)~2
. [1258' (1 — HRB)-#)eaose + ezkc] . 6
1

Written in this form the solution clearly identi-
fies the current associated with the surface wind
shear to be the classic Ekman current. The wave-
induced current is seen to consist of two com-
ponents, the first of which has a variation with
depth indicative of a shear current, whereas the
second term exhibits a depth variation typical of the
Stokes drift. It is quite revealing to examine the
nature of the wave-induced current as determined
here with the effect of Coriolis force included
in the analysis. The solution is clearly governed
by the ratio of the Ekman depth & to the wavelength
L, i.e., k5. The Ekman depth determines the
length scale of the spiraling current direction. Thus,
if & is much greater than L, the wave motion is
virtually unaffected by the tendency of the current to
turn with depth. For k38 large the wave-associated
portion of (16) gives

w,, = wka®{[2k8/(1 + l’)]e(1+i)€/6 + e}, (17)

which is merely a combination of the Stokes inviscid
mass transport solution and a shear current corre-
sponding to the portion of the surface velocity
gradient which is unbalanced by the gradient of
Stokes’ solution dw/d{ = 2wk®a®.
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For the scale of the turning & small relative to
the wavelength, i.e., k8 <1, the normal Stokes
drift cannot develop since its scale is larger than the
scale of turning due to earth’s rotation. This is shown
by the fact that the wave-associated portion of (16)
simplifies to

Wy, = dwk?a[/(1 + i)le+ous (18)

for k6 < 1. This solution corresponds to the shear
current solution satisfying the surface velocity
gradient condition dw/d{ = 4wk?a®. It is further
noticed that the resulting magnitude of the wave-
associated current is of the order k3 times the
Stokes drift, i.e., as k& — 0 the Lagrangian drift
approaches zero as predicted based on inviscid
theory by Ursell (1950) and Pollard (1970).

Asymptotic expressions for the magnitude [ Wass |
of the wave-associated surface drift may be ob-
tained from (17) and (18) by setting { = 0. In this
manner we obtain

o] = {2Jiwk2a28, ks <1
s Vok2a®d + Vowka?, kb > 1.

The asymptotic expression for the angle between
the wave-associated surface drift and the direction
8, of wave propagation may similarly be obtained
for large values of &6 from (17), i.e.,

(19)

0. = T 1
4 2\2kd
For all values of k8 the magnitude and direction
of the wave-associated surface drift may be obtained

, kd>1. (20)

- from (16). As shown in Fig. 1 the magnitude of the

surface drift may vary from much less than the
value of Stokes drift, wka?, to several times larger.
The direction of the surface drift is shown in Fig. 2
to deviate only slightly from 7/4 (to the right on the
Northern Hemisphere). The asymptotic expressions
given by (19) and (20) are seen to represent the com-
plete solution to (16) quite accurately. In particular,
(19) represents the complete solution over the entire
range if k8 =14 is chosen as the transition value
between the two asymptotic expressions.

The nature of the solution obtained here clearly
demonstrates that a simple superposition of the
Ekman shear current and the Stokes surface drift,
as has been suggested by some investigators in the
context of oil slick trajectory prediction, is invalid.

The present solution may be viewed as a highly
idealized representation of the wave-induced mass
transport in a fully developed sea. If viewed as
such, the question to ask is: what is the appropriate
value of k87 As seen from Fig. 1 the surface drift
may still be substantially greater than the Stokes
drift if k6> 1. To answer this we assume that
the value of the turbulent eddy viscosity may be
determined by requiring that a purely wind-induced
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surface drift takes on the value of 3% of the wind
speed. From this criterion and assuming a value of
3.2 X 10~3 for the friction factor relating wind
shear stress and wind velocity, we obtain (Stolzen-
bach et al., 1977) a representative value for the
turbulent eddy viscosity

2

vr = 2.3 107 , 1)

sing,
where vy is in square meters per second if W, the
wind speed (at, say, 19.5 m above the sea surface)
is in meters per second. Combining this with a value
of Coriolis parameter f= 1.46 10~* sin¢g, [s7!],
Eq. (13) yields the following estimate of the Ekman
depth (m):

& = Qup/fHV? = 0.56

(22

sing,

To obtain a representative value of the wavenum-
ber k, for a fully developed sea, we chocse that
corresponding to a wave whose phase speed is equal
to the wind velocity W. This choice is consistent
with the Pierson-Moskowitz (1964) spectrum for a
fully developed sea as well as the SMB wave fore-
casting technique (U. S. Army, 1973). From this,
since w/k = g/w = W, we obtain

k= g/W2 23)

Therefore, a representative value of the important
dimensionless parameter k8 is

ko = 0.56 —5

W sing,

where g and W are in SI units. Expression (24)
shows that a representative value of k8, correspond-
ing to a fully developed sea, is of the order unity or
less. Thus, the wave-associated surface drift is seen
from Fig. 2 to remain bounded and to be of the same

(24)
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FiG. 1. Magnitude of the wave-induced surface drift
as a function of k8.

order as the Stokes surface drift. The present simpli-
fied analysis therefore removes the paradoxical
infinite surface drift predicted by Longuet-Higgins’
solution for wave-induced mass transport in deep-
water waves.

The preceding highly simplified argument applies
only to the combined action of wind and waves.
The analysis assumed monochromatic waves which
may be approximately realized only in the case of
swell. For swell the effect of wind must be negli-
gible and the value of v, given by (21) must
consequently be considered high. With a much
smaller value of »;, corresponding to swell, the

45 T I T ‘ T ] T T
o ]
ew,s L _
40 Eq.(16) — .
L e ‘\Eq.(ZO) .
35 | | i l i | 1 1 1 |
o} [ 2 3 4 5

k8

Fi16. 2. Deflection angle of wave-induced surface drift relative to the wave and wind
direction (deflection to the right on the Northern Hemisphere) as a function

of k3.
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value of k8 is again found to be less than unity
and the wave-induced surface drift is found to re-
main bounded; possibly being considerably smaller
than the Stokes drift predicted from the wave
characteristics.

In both cases discussed above the direction of
the wave-induced surface drift is approximately at
an angle of 7/4 to the direction of wave propaga-
tion. In the case of a fully developed sea it should be
recalled that the Ekman surface drift (in the present
analysis forced to be 3% of the wind speed) should
be added to the wave-induced surface drift. To

estimate the magnitude of the wave-induced surface

drift we assume a value of k8 =1 and a repre-
sentative wave amplitude of half the significant wave
height predicted by the SMB method. For these
assumptions Fig. 2 shows that |ww,s| = wka® or
| W.s| = 0.02W, i.e., 2% of the wind speed, which
is comparable to the assumed value of the wind-
induced surface drift. Although highly simplified,
the present arguments do point out the importance of
considering waves as well as wind when calculating
surface drift velocities.

3. Approximate analysis for a fully developed sea

To extend, in a more rigorous manner, the
analysis of wave-induced mass transport to the case
of a fully developed random sea we assume for the
purpose of the following discussion the sea state to
be described by the Pierson-Moskowitz (1964)
spectrum

Smiw) = ag’w™ exp[—Bw/w)], (25)

in which a = 0.0081, 8 =0.74 and w, = g/W, with
W being the wind speed at 19.5 m above the sea
surface.

From Unliata and Mei (1970) we obtain the ex-
pected value of the wave-induced surface drift by
replacing a? in the monochromatic solution by
2S5.m(w) and integrating over all frequencies. Realiz-
ing that the surface drift deviates only slightly
from 45° to the wind direction for all values of
kS, i.e., for all frequencies, we may simplify the
analysis by assuming the wave-induced surface drift
to be at an angle of #/4 to the wind, independent
of frequency. Furthermore, we adopt the asymptotic
expressions given by (19) for the magnitude of the
surface drift. With these assumptions we may ob-
tain the expected value of the surface drift from

( I ww,s' ) = J 2\2wk?8 Sm(w)de
o

+ Jw‘ 2V20k28 Sym(@)dw + r ok Sm(w)dw, (26)

0 w1

in which o, is given by (4) corresponding to the
value of k& = 0.5, i.e.,
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g\ _ [gsing,\!"?
= (&) <~ (230P )\ 27
@ (28) (I.IZW) @7

where (22) has been used.

When substituting »?/g for k and introducing
Sym(w) from (25) the integration may be performed.
It is, however, evident that the first integral in (26)
is divergent. Retaining only the first integral in (26)
we have

([ Wa]) ~ 24305 j expl—B(wo/w)}do — . (28)

0

The problem is associated with the upper limit.
Several possible ways to remove the unbounded-
ness of this integral may be explored. First, the
dispersion relationship for the high-frequency wave
components is not given by (4). Surface tension

.effects become important and we know that & « @?3

for capillary waves. Thus, introducing k « w?? for
the high frequencies would remove the unbounded-
ness of the first integral in (26). However, to do
this would not be consistent since our analysis of
monochromatic waves is based on the assumption of
gravity waves for which (4) is valid. Only if we
adopted a solution for mass transport in capillary
waves for the high-frequency end of the spectrum
would this approach be consistent.

A second approach would be to consider the fact
that the expected value of the surface mass trans-
port velocity in a random sea is finite. For large
frequencies (i.e., k& > 1) the troublesome term has a
depth variation similar to the Ekman current. The
high-frequency wave components would therefore
behave as if they were superimposed on a steady
current. The ¢ component of this current, u,,
would not be of second order compared to the phase
velocity of the high-frequency waves and would
therefore alter the dispersion relationship for the
high-frequency wave components. Thus, for the
highest frequencies the appropriate form of the dis-
persion relationship would be &k = w/u, ;. This
again would remove the unboundedness of the first
integral in (26), but the procedure would again be
inconsistent since our analysis of the monochro-
matic wave did not include the effect of a super-
imposed steady current.

Without a significant theoretical development of
a mass transport theory for a viscous fluid with
proper attention being paid to surface tension
and a superimposed current, there does not appear
to be a rigorous way of removing the singularity of
the wave-induced surface drift in a fully developed
random sea. As an admittedly more convenient
than rigorous elimination of this problem we may
take recourse to our lack of knowledge about the
high-frequency end of the wave spectrum. Most
wave measurements are analyzed based on data
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digitized at 0.5 s intervals. This precludes us from
obtaining any knowledge about the wave spsctrum
for radian frequencies greater than 2+ s, This prac-
tical limitation eliminates considerations of surface
tension effects. At the same time the phase velocity
of waves of greater than 1 s period (1.6 m s™) is
such that a significant effect of a superiraposed
current of the order 5% of the wind speed would
affect the dispersion relationship significant.y only
for very high wind speeds. Therefore, it would
appear reasonable to limit the validity of (25) to
values of w < w,,, where w,, is of the order 27 s,
and to take S.(w) =0 for @ > w,. With this
assumption we obtain from (28)

(|Was]) =~ 24200 f""‘ exp[ — Blwo /@) 1dw

= 2\/5801,3 1/4w0(ym—1/4e—um

- | ey . @9)
in which o
y = Blwy/w)*

and y,, is the value of y for o = w,,.

For wy, = g/W and w,, = OQw s7') it is evident
that y,, < 1 for all cases of practical interest. The
integral in (29) is therefore essentially the Gamma-
function and the solution may be written

- F(3/4)] . (3D
For wind speeds >5-10 m s~ the first term in the

square brackets dominates and we obtain the simple
solution

(30)

wm
B 4w,

(|ww,s|) = 2«/58(1[3”4(»0

(|Wws|) = 22800, = 0.0128 wn,  (32)

sing,

where (22) was introduced.

For a value of w, = 27 s™! the wave-induced
surface drift predicted by this model approaches 8%
of the wind speed. The present model is admittedly
simplified and approximate in nature. However,
even if the validity of the Pierson-Moskowitz spec-
trum is limited to waves of periods greater than 2 s,
in which case we may be relatively confident in the
validity of the analysis, we still end up with a pre-
dicted surface drift due solely to the low frecuency
portion (& < 7 s™') of the same order as the surface
drift generally attributed to the effect of the wind
shear stress.

4. Concluding remarks

An analysis of mass transport in deep-water,
monochromatic waves has revealed that the inclu-
sion of Coriolis force in the analysis effectively
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removes the unrealistic prediction of an infinite
surface drift obtained from Longuet-Higgins’ solu-
tion. The combined effect of wind and waves is
found to produce a drift current which is a combina-
tion of Ekman’s classical wind-induced current and
a wave-associated drift current. The wave-asso-
ciated surface drift is found to remain finite and
to be in a direction of approximately 7/4 to the
direction of wave propagation. The analysis shows
that a simple superposition of Ekman’s surface
drift and Stokes mass transport to model the com-
bined effect of wind and waves is invalid.

An approximate analysis of the wave-induced
mass transport in a fully developed sea shows
that the wave-induced surface drift is likely to be
of the same order as the 3% of the wind speed
generally attributed to the effect of wind shear on the
surface. Since wind blowing over water necessarily
is associated with the generation of waves this
finding raises the age-old question of whether the
observed surface drift currents were wave- or wind-
induced or both. The present analysis does not pre-
tend to answer this question, although it indicates
the wind- and wave-induced surface drift currents
are likely to be equally important.
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