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ABSTRACT

A physically realistic and general model for the vertical eddy viscosity in a homogeneous fluid is proposed.
For an infinitely deep ocean the vertical eddy viscosity increases linearly with depth from a value of zero
at the free surface. Based on this model a general theory is developed for the drift current resulting from
a time-varying surface shear stress. Explicit expressions are given for the temporal development of the drift
current in the vicinity of the free surface and for the steady-state response to a suddenly applied uniform
shear stress. The steady-state solution predicts the effective Ekman layer depth to be proportional to
the square root of the wind shear stress and reproduces the experimentally observed logarithmic velocity
deficit near the free surface. The angle between the surface drift current and the wind stress is found to be
somewhat smaller (of the order 10°) than predicted by Ekman’s classical solution. For the unsteady re-
sponse to a suddenly applied wind stress the present model predicts a much shorter response time than
that found by Fredholm based on a constant vertical eddy viscosity assumption. The application of the
proposed vertical eddy viscosity model to finite depth conditions, including the effects of slope currents,

is outlined.

1. Introduction

In Ekman’s (1905) classical study of wind-driven
currents a constant vertical eddy viscosity was assumed.
For the steady wind-driven current in an infinite homo-
geneous ocean the assumption of a constant vertical
eddy viscosity leads to an angle between the wind
shear stress and the surface current of x/4, a value
generally considered to be on the high side. In shallower
waters, where bottom friction comes into play, the as-
sumption of a constant eddy viscosity in conjunction
with a no-slip condition at the bottom leads to unreal-
istically low velocities as recently pointed out by
Murray (1975), who circumvented this problem by
introducing the somewhat artificial concept of a slip
velocity at the bottom boundary. The shortcomings of
a constant vertical eddy viscosity assumption have
long been recognized and the proper parameterization
of the vertical eddy viscosity was recently identified
by Reid (1975) as one of the major problems in the
analysis of wind-driven currents.

In relatively shallow water, when the depth 4 is
smaller than or comparable to the thickness of the
frictional layer, more realistic models than that of a
constant vertical eddy viscosity have been proposed.
Fjeldstad (1929), based on an analysis of field data,
suggested that the vertical eddy viscosity »r was pro-
portional to the § power of the distance 2, from the
bottom, i.e., 7 « 232, This model was recently employed
by Murray (1975) in a study of nearshore wind-driven

currents. Thomas (1975) suggested a physically more
realistic version of Fjeldstad’s model by taking
vr=x|uss|25, where « is von Kdrmén’s constant (0.4)
and |u,s| is the shear velocity based on the absolute
value of the bottom shear stress, i.e., | x| = (| 75| /p)?
with p being the fluid density. Thomas’ mode! has
several physically pleasing features. The magnitude
of the vertical eddy viscosity depends on the flow
itself and on the bottom boundary roughness ks through
|#es|, and it leads to the classical logarithmic velocity
profile in the vicinity of the bottom. However, the
added physical realism of Thomas’ model is not achieved
without a cost in terms of added computational diffi-
culties. Thus, since the solution for the wind-driven
flow depends on the value assigned to »r and since vz
itself depends on the flow characteristics, a rather time-
consuming iterative solution procedure must be adopted.
This additional computational complexity apparently
caused Witten and Thomas (1976) to abandon this
model in favor of an explicit model for the vertical
eddy viscosity. The eddy viscosity models referred to
above are all restricted to application in shallow
water. If, despite this limitation, they were adopted for
deep water conditions they would effectively correspond
to a constant vertical eddy viscosity assumption.

The purpose of this paper is to present a more
realistic and more general model for the vertical eddy
viscosity than those previously advanced in the context
of wind-driven ocean currents. The proposed model is
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simply that the vertical eddy viscosity is assumed to
increase linearly with vertical distance from a sheared
boundary, i.e., »r=«|u,|2, where |u,| is the shear
velocity and z the distance from the sheared boundary.
In the vicinity of the bottom z;=0%. This model is
identical to that proposed by Thomas (1975). Near
the free surface, however, where z,=%~, the eddy vis-
cosity given by the proposed model varies according to
vp=k|uys| (h—2y), with |uys| being the shear velocity
based on the surface shear stress. The model for the
vertical eddy viscosity proposed here may be shown to
agree with the model of steady turbulent shear flows
proposed by Reid (1957). It leads to a logarithmic
velocity profile near the bottom, as does Thomas’
model, and a logarithmic velocity deficit in the vicinity
of the free surface. The latter feature, which is absent
in Thomas’ model, has been observed experimentally
in steady, turbulent Couette flow by Reichardt (1959).
Furthermore, Shemdin (1972) found the wind-driven
current in a laboratory wind wave facility, i.e., in the
presence of surface waves, to exhibit a logarithmic
velocity deficit in the vicinity of the free surface. These
observed features, which are reproduced by the pro-
posed model for the vertical eddy viscosity, are taken
to support the physical realism of the proposed model.
In addition, the proposed model may be applied in
deep as well as in shallow water and is therefore con-
sidered to be of a more general nature than previous
models. It is noted that the present model, when applied
to the case of infinite water depth, is identical to the
model proposed by Ellison (1956) in the context of the
atmospheric boundary layer.

The model for the vertical eddy viscosity is, of course,
limited to the idealized conditions of a homogeneous
ocean. It is applied here to the response of an infinitely
deep, homogeneous ocean of infinite lateral extent to
a time-varying spatially uniform shear stress. Approxi-
mate expressions are derived for the temporal develop-
ment of the pure drift current for a suddenly applied
shear stress. The limit of this solution for large times is
shown to be identical to Ellison’s (1956) solution for
the atmospheric boundary layer. The steady response
is compared to the classical Ekman solution and reveals
the angle between surface shear stress and velocity to
be approximately 10° as compared to the 45° predicted
by Ekman (1905). The temporal development of the
surface current resulting from a suddenly applied shear
stress is compared with Fredholm’s solution as given
by Ekman (1905). The present solution shows the re-
sponse to be nearly instantaneous when compared to
the slow approach to steady-state conditions exhibited
by Fredholm’s solution. The differences between the
present and previous solutions as well as the implica-
tions of these differences are discussed in some detail.
The problems associated with the application of the
proposed model for the vertical eddy viscosity in the
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general case of finite depth and including the effects of
a slope current are outlined.

2. General analysis

For an infinitely deep, homogeneous ocean of infinite
lateral extent the linearized form of the horizontal
momentum equations may be written

Jw (i} Jw
—+ifw=—(u7»—), 6]
ot 92 93
where
w= y+1v (2)

is the complex horizontal velocity in the (£,7) plane of
the Cartesian coordinate system, f=2w,sing is the
Coriolis parameter, w. and ¢ being the radian frequency
of earth’s rotation and the latitude, respectively, and
2 is the vertical coordinate chosen positive upward.
The right-hand side of (1) represents the contribution
of frictional forces on horizontal planes, and the terms
expressing the horizontal force components associated
with a spatially varying atmospheric pressure and free
surface elevation are omitted to be consistent with the
assumption of an ocean of infinite lateral extent.

Introducing the more convenient vertical coordinate
£= —z which is positive downward and taking z=0 in
the free surface, the proposed model for the vertical
eddy viscosity v reads

V= KUy, (3)

in which x=04 is von Karmén’s constant and
ue= (| 74| /p)* is the shear velocity based on a repre-
sentative value of the magnitude of the surface shear
stress | 7,|. In problems where |7,| may be considered
constant, such as in the problem of a suddenly applied
constant surface shear, there is little ambiguity in the
value to be assigned to u,. For the flow resulting from
a time-varying surface shear stress the subsequent
analysis necessitates the use of a time-independent
value of %, in (3). The use of a representative value of
| 75| to define the magnitude of the vertical eddy vis-
cosity must in this case reflect the intended application
of the results.

With the shear stress on horizontal planes expressed
in complex form as 7= 73+ 47 and defined in the usual
manner in the right-handed (£,9,8) coordinate system,
we have

T TF 7 dw Jw
== yp—= —pyp—, (4)
p P 0 a2 0z

For the general problem of a flow starting from rest,
Le.,

w=0 for t<0, (5)

and driven by a time-varying, spatially uniform surface
shear stress 7,(f), Eqs. (3) and (4) provide one of the
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necessary boundary conditions:

() Te3(t)  Tap(D) © dw
= +3 = —Kllys—;
p p

P : 02
The remaining boundary condition to be satisfied by
the solution of (1) is that of a vanishing motion with
depth, i.e.,

:120. (6)

z— 0,

w—0 as z— o, M

Since the governing equation (1) is linear and the
coefficients independent of time, the use of Laplace
transforms, defined by

w=2L£{w} =‘/°° e~*w(t)dt, 8)

is convenient. Taking the Laplace transform of (1)
and invoking the initial condition (5), the governing
equation becomes

9 ow
(s+if)w =——(xu*z—), 9)
0z 9z

with the boundary conditions

o 15.2()  Tep()
— KUy T——= [ +i } as z—0 (10)
9z o 0
and ‘
w—0 as z-— o, 11
Introducing the dimensionless vertical coordinate
z(s+if)
£¢= ; (12)
Kty
Eq. (9) may be written
d/ v .
~{¢=)~u-0, (13)
OEN\ 9&
whose general solution (Hildebrand, 1965) is
w=A1y(2NE)+ BKo(2VE), (14)

where 4 and B are arbitrary constants and I and K,
are the zeroth-order modified Bessel functions of the
first and second kind, respectively.

By virtue of the exponential behavior of I, for large
values of the argument it follows from (11) that 4=0
in (14), thus leaving us with

o= BEo(2NE). (15)

The constant B in (15) is determined from the free
surface stress condition (10), which in terms of the
dimensionless vertical coordinate £ may be written as

Ts,2  Tab
7
P P

=£{2} as £—0. (16)
P

W _ _
—xu*égs=xu*\/$BK1(2w/£) =g ‘
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Introducing the asymptotic expansion of the first-order
modified Bessel function of the second kind K; for
small values of the argument, we obtain from (16)

- 2ef3

Kity U p

7

and the Laplace transform of the solution to the stated
problem has been found as

2 Ts -
w=~—£{—]Ko(2w/s). (18)
Ky L p

To invert this Laplace transform it is recognized that

Ko(2VE)= Ko{ [ (42/kuy) (s+if) ]} (19)

may be inverted by use of the table of Laplace trans-
forms presented in Abramowitz and Stegun [(1972)
Chap. 29, Eqgs. (29.2.14) and (29.3.120)7]. The result of
this inversion may be written in terms of the function
to which (19) is the Laplace transform, i.e., :

Dc{%e—iftt—le—ll““*t}:Ko(Z'J-E—)- (20)

Inserting (20) in (18) it is readily seen that the use of
the convolution theorem yields the general solution

1
£—iI8 —g—zIxuBgg

1 /‘ 75,30 —B) it 5 —8) 21)

p

for the response of an infinite homogeneous ocean to a
time-varying, spatially uniform surface shear stress.
The main assumption involved in obtaining the above
solution, in addition to those made in the problem
formulation itself, is that of a constant value of u,
based on a representative value of the surface shear
stress, | 74| = (v23+ 72;)}. This assumption is not unique
to the present formulation of the problem and is made
also when the solution is found based on an assumed
constant vertical eddy viscosity. In this respect it may
be worthwhile to point out that a spatially varying but
time-independent vertical eddy viscosity has been em-
ployed successfully by Kajiura (1964, 1968) in an analy-
sis of turbulent oscillatory boundary layers.

3. Response to a suddenly applied constant surface
stress

To investigate in more detail the nature of the gen-
eral solution obtained in the previous section the re-
sponse to a suddenly applied constant surface shear
stress in the 5 direction is considered here, i.e., we take

0, t<0
Tsg™= { N (22)
irey, (20
for which
7o\
p
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For this problem, which corresponds to the problem
solved by Fredholm based on a constant eddy viscosity
assumption (Ekman, 1905), Eq. (21) becomes

ue 41
w=uy+iv=1— / —e i Bgm2 kb, (24)
k Jo B

The solution obtained here is remarkably similar in
its appearance to Fredholm’s solution [Ekman (1905)
Egs. (11)]. The most striking difference between the
two solutions is in their behavior in the vicinity of the
free surface, i.e., as 2 — 0. Taking 3= 0 Fredholm’s solu-
tion simplifies to Fresnel integrals, which are conver-
gent, whereas the imaginary part of the present solution
is a divergent cosine integral. This behavior of the
present solution is, of course, a consequence of the
assumed variation of the vertical eddy viscosity, in
particular the vanishing of »r as the free surface is
approached. A similar peculiarity is exhibited by the
classical solution for turbulent flow over a rough
boundary (Schlichting, 1960) in the context of which
the problem is resolved by satisfying the no-slip condi-
tion a distance zop= k»/30 above the theoretical bottom,
where k; is the equivalent sand roughness of the
boundary. In analogy with the turbulent flow over a
rough boundary we may therefore consider the surface
velocity w, obtained from the present solution to be
the velocity evaluated from (21) or (24) corresponding
to a value of z=2,,= k,/30, where k, is the equivalent
sand roughness of the free surface.

The preceding argument, which is supported by the
experimental findings of Reichardt (1959), removes the
apparent singularity of our solution. It leaves us, how-
ever, with the rather unpleasant problem of estimating
the value of the equivalent sand roughness k, of the
free surface. The equivalent sand roughness of a sea
surface has been studied to some extent in the context
of the atmospheric boundary layer. These results in
conjunction with Shemdin’s (1973) observation that
the equivalent sand roughness of a free surface was of
the same order whether the free surface was approached
from above, ks, air, Or from below, k,, may be used as a
guide for estimating k,. Analyzing wind velocity pro-
files above a sea surface Ruggles (1970) found the
equivalent sand roughness of the sea surface to be
essentially constant and of the order kqqir~4 cm for
wind speeds Wiy, measured 10 m above the still water
level, ranging from 3 to 10 m s™.. In a similar study
Wu (1969) found by reanalyzing wind data from both
laboratory and field experiments that k, .;»~8 cm for
wind speeds in excess of 15 m s~. Although several
problems regarding the sea surface roughness remain
unresolved, including a discrepancy between the values
of k,,air obtained by Wu (1969) and Ruggles (1970) for
W10<10 m s~* and the equivalency of %, .ir and k,, the
above discussion does provide an order-of-magnitude
estimate of 2,. As we shall see the results obtained from
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(21) and (24) are relatively insensitive to the actual
value assigned to %, so long as its order of magnitude
is known.

Inspection of (24) shows that we may write the
equation in the form

sy 7t sina+1 cosa

w=utiv=— S da, (25)
K 0 «
in which
a=fB (26)
is the nondimensional time and
af
g=— @
Kl

is the nondimensional vertical coordinate.
Eq. (27) identifies the characteristic vertical length
scale / of the problem to be

Ky

f

By taking x=0.4 and %,=0.04(p./p)*W1o as found by
Ruggles (1970) with the ratio of air to fluid density,
pa/p=1/840, Eq. (28) shows that

) 3.66W 1o
- sing ’

(28)

(29)

where / is in meters if Wy is in meters per second. The
magnitude of / is indicative of the depth of frictional
influence, as will be discussed later. In the present
context (29) is established merely to show that the
parameter { in (25) safely may be considered small in
the uppermost meters of the ocean.

With the assumption that {<<1, approximate expres-
sions for (25) may be obtained in terms of tabulated
functions. For example, we have from (25)

uye 7t cosa

y=— —-e g
K 0 o
U~ % cosa 1t cosa
=—] —e ¥ da+t —etlda | (30)
klJo « o @

Now with <1 and choosing { <a;3< 1, we may expand
cosa=1—a?/2 in the first and e ¥/*=1—{/a in the
second integral of the right-hand side of (30). Retain-
ing only the leading term in the expansions and omitting
the algebraic manipulations, we obtain

=3’1*[E1(5_>_Ci(a1)+Ci(ﬂ):], fi>a=01, (31)

K o
'Y © ¢ f
() [ S
oy tre B

in which

(32)
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and

* cosf
Cilw)=— [ ==ip 53)
aj B
are tabulated exponential integrals (Abramowitz and
Stegun, 1972, Chap. 5). By retaining the omitted terms
in the expansions of cosa and ¢~$/= utilized in obtaining
(31), an error bound may be obtained; the choice of
a1=0.1 made here ensures us that the error in v is less
than 25 {u,.
In a similar manner from (25) we obtain

uzﬁ{Si(ﬁ)-H’[Ci(g') —=Ci(f)y, fi>¢, (34)

in which

It sin
Si(/0) = / s (35)

8

is the tabulated sine integral. The error term in (34)
1s O({).

For {«1 the asymptotic behavior of E1(8)= —Ci(B)
= —v—InB as B — 0 may be introduced in (31) and
(34) to give

U
utivm—[hr+¢ Inf+i(~2y~Ing)]
K

2SI —m— Cilf)+i Gi(f)], (36)

in which y=0.577... is Euler’s constant. In the limit
ft— o we have Si(ft) — r/2 and Ci(f¢) — 0 and the
second bracketed term in_(36) vanishes. The steady-
state response is ‘therefore expressed by the first
bracketed term in (36).

The exact steady-state solution may be found from
(24) by taking the limit as ¢— oo, This procedure is
rather time-consuming and involves numerous changes
of variables and contour integration to obtain an expres-
sion which by use of Abramowitz and Stegun [(1972,
Eq. (9.6.25)7] may be shown to be identical to

2 * — p—
u+iv=i~u—[ker(2w/s‘)+i kei (2V¢)]
2444 _
=i—Ko(2Vte™ ),  (37)
K

in which ker and kei are the zeroth-order Kelvin func-
tions. It is, however, relatively simple to obtain (37),
which is identical to Ellison’s (1956) solution for the
atmospheric boundary layer, by returning to (1) and
solving this equation for 3/9t=0. It is reassuring to
find that the asymptotic expansion of (37) for small
values of 2V¢ to O(¢) is identical to the steady-state
solution obtained from (36).

JOURNAL OF PHYSICAL OCEANOGRAPHY

VoLUME 7
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As discussed in the preceding section the value ¢f the
surface drift current is obtained from the general solu-
tions corresponding to a value of z= z¢,= k,/30. With
the order of magnitude of k, being 5 cm and with !
given by (29), it is evident that {o,= 2¢,/I<1 so that
the steady surface drift obtained from (36) is

U

T 30/
W= 10 =——|:E+i(— 1.15+In -;—):' (38)

K

Combining (36) and (38) it is seen that the velocity
deficit, w,—w, in the vicinity of the free surface is
logarithmic as observed by Shemdin (1972). The value
of the deflection angle 8, between the surface shear
stress and the steady surface drift current is found
from (38) to be given by

/2
—1.15+In 30U/,

tanf,= 39)

where the deflection is to the right on the Northern
Hemisphere,

With / given by (29) the sensitivity of the predicted
surface velocities and deflection angles to the value
assigned to &, is seen from Table 1 to be relatively
insignificant. Thus, a change of the estimated value of
ks by a factor of 2 changes the nondimensional surface
current, xvs/u,, as well as the deflection angle by only
about 109,. The most striking difference between the
results presented in Table 1 and the classical results of
Ekman’s (1905) theory is the much smaller value of
the deflection angle. Observations of oil spill trajectories,
either real (Smith, 1968) or simulated (Teeson et al.,
1970), have consistently shown values of the deflection
angle of the order 10° or less and are therefore taken to
support the present results. In the context of oil slick
trajectories, which initially were the motivation for the
present study, it is also interesting to note that the
commonly employed rule of thumb that the speed of
advection of an oil slick is 39, of the wind speed, W1
follows from the results presented in Table 1. Thus,
with the magnitude of the surface current |w,]
= (u24v2)* being essentially equal to ». and adopting
Ruggles’ (1970) result #,=0.04(p./p) W1, it follows

that
o =) - (01N

K \Uy Uy

(40)

Inspection of the values of kv,/u, presented in Table 1
and taking p./p=1/840 show |w,|=0.03Wy, to pro-
vide a reasonable approximation to (40). The preceding
result should not be interpreted to support the “3%
rule” which clearly oversimplifies the problem. The
effect of oil slicks on the water surface in reducing the
apparent surface roughness (Barger et al., 1970) is not
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TaBLE 1. Values of surface drift current and deflection angle for various wind speeds and surface roughness.

Wie(m s71)
5 10 15 20 30
kysing (cm) KVs/ Un ¢° KDa/ U 69 KU/ Uy 60 K5/ 1y 69 KV /U 69
10 7.47 11.9 8.16 10.9 8.57 104 8.85 10.1 9.26 9.6
5 8.16 10.9 8.85 10.1 9.26 9.6 9.55 9.3 9.95 9.0
2.5 8.85 10.1 9.55 9.3 9.95 9.0 10.24 8.7 10.65 8.4

accounted for by the 39, rule, nor is the possible
existence of a geostrophic current at large depths.

To examine the variation of the steady drift current
with depth the solution given by (37) is plotted in
Fig. 1. The velocity vector is indicated at increments
of {*= (2/1)¥ of 0.1, with the surface current given by
(38) rather than corresponding to {=0. The hodograph
shown in Fig. 1 is based on a value of «xv,/#,= 10 but
is, except for the location of the point indicating the sur-
face current, quite general, The extremely rapid decrease
and rotation of the drift current with depth, a conse-
quence of the logarithmic velocity deficit near the sur-
face, is noted. With ! given by (29) it is seen that I=
0O(100 m) for W1p=20 m s~! and the results presented
in Fig. 1 indicate that for z=0.01 I~1 m (V¢=0.1)
the velocity is only approximately one-third of its
value at the surface with a deflection angle of 25° as
compared to §,=9°. It is also evident from Fig. 1 that
there is practically no motion at a depth corresponding
to =1, i.e., at g=/, which shows that / indeed is a
measure of the extent of frictional influence as previ-
ously mentioned. In this respect it is worthwhile noting

. Eqa.(37)

£
5
\ .
\_’_h_/
Fi16. 1. Vertical velocity structure of a pure drift current in an
infinitely deep homogeneous ocean of infinite lateral extent,

comparing the turbulent Ekman spiral (@) and the classical
Ekman spiral (+).

Ku
Uy

that (29) yields estimates of / comparable to empirical
formulas for this quantity given in Neumann and
Pierson (1966), for example.

For comparison the classical Fkman spiral is also
shown in Fig. 1. From Ekman’s (1905) solution we
have that the magnitude of the surface drift current is
wy=1,2/(vef)?, where v, is the constant value of the
vertical eddy viscosity. Requiring that the surface
velocity be the same for the two solutions leads to a
determination of v,, which not surprisingly is similar to
formulas quoted by Neumann and Pierson (1966).
With this formula for », the characteristic vertical
scale of Ekman’s solution becomes

V2— —=V2
K

2v\?
aul:(—q) N
f ks f

For xv,/u,=10, as chosen for the turbulent Ekman
spiral, the proportionality of ¢! and / enables us to
present the classical Ekman spiral in the nondimen-
sional form used in Fig. 1. Aside from the difference in
the value of the deflection angle at the surface the
much more rapid decrease of the drift current with
depth predicted by the present theory is noted. This
feature may be of considerable importance in the design
of offshore pile-supported structures.

Despite the considerable differences between the
details of the velocity structure predicted by the
present theory and that of Ekman, the two solutions
share a common feature. The total mass transport
predicted by the present theory is found from (37) to be

Uy KU. .
Y, Sl (41)

Vs

2u. ® —
qe+iqy=—f / [ —kei (2V¢)+1 ker (2N¢) 1dz
K 0

Uyl

u*l g *
= / [—8 keig-+i kerJdB~—, (42)
k Jo f

which is identical to the result obtained from Ekman’s
theory, as it should be since this result is independent
of yr.

In order to compare the unsteady response to a
suddenly applied surface shear stress, Egs. (31) and
(34) are plotted in Fig. 2 corresponding to a value of
the steady surface velocity xvs/u,=10, i.e., Fig. 2
represents the development of the surface current whose
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T Egs. (31) and {34)

L L3 .
t 3 Fredholm
10 2 6 2 ye
° +
/3 BN
kvs dl 6
e 12+ + @ I
|
5 + {173 +
Z 9
LY
RSN RS W NS NN (SN TN R SR R A
(0} 5 0
Kug
Uy

F1c. 2. The temporal development of the surface drift current
due to a suddenly applied uniform surface shear stress. Time from
time of application is indicated in pendulum hours. The present
eddy viscosity model is shown by solid circles and Fredholm’s
classical solution by plus signs.

steady-state solution was the one presented in Fig. 1.
For comparison Fredholm’s solution which is based on
an assumed constant value of the vertical eddy vis-
cosity is also shown. The temporal development is
shown in terms of pendulum hours and the striking
difference is the rapidity with which the present solu-
tion attains its steady-state value. Whereas Fredholm’s
solution very slowly approaches the steady state, the
present theory shows that the steady state is approxi-
mately reached within 3 pendulum hours. This ex-
tremely rapid response predicted by the present theory
suggests that unsteadiness in many problems may
be neglected and a solution based on a quasi-steady
analysis, i.e., assuming steady conditions to be reached
immediately, therefore may lead to meaningful results.

A simple physical explanation for the much’ faster
response predicted by the present model may be found
by comparing the order of magnitude of the vertical
eddy viscosity of the present model and the constant
value », assumed in the classical model. With v, being
assumed to vary linearly with depth, an equivalent
constant value of the vertical eddy viscosity corre-
sponding to the present model would be vr evaluated
at z=//2. Thus, the present model corresponds to an
equivalent constant value of »r ,=x,%/(2f). This
value may be shown to be considerably larger than the
constant value », obtained by requiring that the surface
current be of the order of 39, of the wind speed (by a
factor of the order 50). Since the difference between the
instantaneous velocity vector during the unsteady re-
sponse and the steady-state velocity (according to the
classical analysis) is proportional to ».,7#, it is evident
that the present model, with its much larger apparent
eddy viscosity, approaches steady state more rapidly.
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The nature of the unsteady response at some finite
depth below the free surface is readily envisioned by
examining (36). With the first term on the right-hand
side of (36) expressing the steady-state response, the
second term is identified as expressing the manner in
which steady state is approached. This term depends
only weakly on the value of { so long as {<1 and the
manner in which steady state is approached is therefore
that exhibited by the surface current development
shown in Fig. 2. Since the magnitude of the steady-
state velocity decreases rapidly with depth the approach
of steady-state conditions will appear somewhat slower
at greater depths.

6. Concluding remarks

The results obtained in the previous sections for the
pure drift current in an infinite homogeneous ocean
were obtained based on a proposed model for the
vertical eddy viscosity. This proposed model, which
simply assumes that the vertical eddy viscosity in-
creases linearly with distance from a sheared boundary
is particularly simple to apply to the problem of the
response of an infinitely deep ocean to a prescribed
surface shear stress when it is assumed that the drift
current vanishes at large depths. In a more general
analysis the effects of a spatially varying atmospheric
pressure p, and free surface elevation 2=n=4(£,9,)
should be included.

For this more general problem formulation the govern-
ing equation replacing (1) reads

Jw [¢] dw
—tifw= ~—P+——<vT——), (43)
at 93 9z
in which
13pa 9 18p, 99
P=- +g~+i(— +g—j> (44)
p 0% ot o 07 0%

is the term giving rise to the slope current.

When the effects of a varying atmospheric pressure
and free surface elevation are included in the analysis
the current no longer vanishes at large depths. This, in
turn, gives rise to the development of a bottom bound-
ary layer in addition to the surface boundary layer
treated in detail in the present paper. Thus, in the
general case and assuming, for simplicity, steady-state
conditions Eq. (43) reads for the present vertical eddy
viscosity model

3 dw,
1fw,= -—P+—~.(K [24 ]2, ), 2% Zm, (45a)
i}

925 Zq

Y dws ‘
if'wb=——P+———(K[u*b\zb——>, 2, < A& 2m, (45b)
aZb Zb
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in which z, is the vertical coordinate, denoted by z in
the main body of this paper, i.e., 2,=0 in the free
surface 2= =0 and positive downward and z; is zero
at the bottom, 4= —#, and positive upward. |u,,| and
|ugs| are the shear velocities corresponding to the
magnitudes of the surface shear stress and the bottom
shear stress, respectively.

It is evident from the steady-state solution for the
surface boundary layer presented and discussed in the
previous sections that the characteristic vertical length
scales of (45a) and (45b) are li=«|u.|/f and I
=«k|u.w!/f, respectively. Thus, for a water depth
E>>1+ 1, the depth is effectively infinite and the solu-
tion of (45a) and (45b) is readily found to consist of
a surface boundary layer, a frictionless layer in which
the flow is geostrophic, i.e., w=w,=w,= —P/if, and a
bottom boundary layer. Hence, for 2>>/.+1/; it follows
that the choice of the matching location z,=k—zp= 2,
is immaterial. In fact, the solution for the bottom
boundary layer becomes identical to the solution ob-
tained by Ellison (1956) for the atmospheric boundary
layer.

In the general case of a finite depth, namely,
h<O(+1s), the preceding reasoning that the extent
of the surface influence is /, and that of the bottom is
I, suggests the following general model for the vertical
eddy viscosity:

{2440
= Iu*s|+|u*bl
‘“*b{

I r——
|u*s!+|u*bl

& | s l Zsy
(46)

«lugslzs, =

This general model for the vertical eddy viscosity
will reproduce the observed features of turbulent shear
flows, i.e., the logarithmic velocity deficit near the free
surface and the classical logarithmic velocity profile
near solid boundaries. It is quite general, in that it
may be applied in shallow as well as in deep water, and
it is sufficiently simple to apply to be practical. In this
respect it is noted that the problems associated with
the application of (46) are similar to those associated
with Thomas’ (1975) model, i.e., the value of the
bottom shear stress must first be estimated and a
solution based on (46) must be obtained. Based on this
solution an updated and improved estimate of |uys| is
obtained and the ultimate solution is approached in an
iterative manner. This procedure is, of course, not
trivial in the general case but is necessary if the details
of the vertical velocity profile are to be resolved in a
physically realistic manner.
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