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The uncertainty in estimates of the energy yield from a wave energy converter (WEC) is considered. The
study is presented in two articles. This first article deals with the accuracy of the historic data and the
second article considers the uncertainty which arises from variability in the wave climate. Estimates of
the historic resource for a specific site are usually calculated from wave model data calibrated against in-
situ measurements. Both the calibration of model data and estimation of confidence bounds are made
difficult by the complex structure of errors in model data. Errors in parameters from wave models exhibit
non-linear dependence on multiple factors, seasonal and interannual changes in bias and short-term
temporal correlation. An example is given using two hindcasts for the European Marine Energy Centre in
Orkney. Before calibration, estimates of the long-term mean WEC power from the two hindcasts differ by
around 20%. The difference is reduced to 5% after calibration. The short-term temporal evolution of errors
in WEC power is represented using ARMA models. It is shown that this is sufficient to model the long-
term uncertainty in estimated WEC yield from one hindcast. However, seasonal and interannual changes
in model biases in the other hindcast cause the uncertainty in estimated long-term WEC yield to exceed
that predicted by the ARMA model.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Before a wave farm is installed developers and planners need to
have an estimate of the energy that will be produced over the
expected life time. Like other sources of renewable energy, ocean
waves are a variable resource, impossible to predict precisely. This
increases the risk associated with the development of a wave
energy farm, since the upfront cost of a project is large and the
return is variable and imprecisely known. It is therefore necessary
to estimate the expected yield from the wave farm, the variability in
power production and confidence bounds on these estimates.

The uncertainty in estimates of the electrical power which will
be produced by a wave farm can be split into three categories:

1 Uncertainty in future wave conditions.
2 Uncertainty in conversion from wave energy to electrical

energy.
3 Uncertainty in availability of machines.

This paper will focus on the uncertainty in future wave condi-
tions but it is worth making some notes on the other sources of
kay).

All rights reserved.
uncertainty as well. The electrical energy produced by a wave
energy converter (WEC) in a given sea state is dependent on the full
directional wave spectrum. However, for the purposes of esti-
mating the yield it is useful to describe the response in terms of
a small number of parameters. Most device manufacturers specify
the power produced by a WEC in a ‘power matrix’ in terms of the
significant wave height, Hs, and energy period, Te. The power
matrices are usually calculated from numerical simulation of the
WEC using theoretical spectral shapes such as Pierson-Moskowitz
(PM) or JONSWAP (see e.g. [1]), and are validated using a combi-
nation of scale-model tank tests and sea trials with prototype
devices. For real wave spectra there will be some deviation in the
spectral shape and directional distribution from theoretical forms,
which will result in differences in the power produced from the
values specified in the power matrix.

Parameterising the WEC response solely in terms of Hs and Te

leads to uncertainties in estimates of power for a given sea state,
but at this stage of the industry, where few experimental or hard
data exist, it is a necessary approximation. On the whole, the effect
of parameterisation is less important for higher Hs, since spectra
tend toward standard shapes in larger seas. Kerbiriou et al. [2] have
shown that partitioning directional spectra into separate sea states
improves accuracy compared to using a simple parametric repre-
sentation of the whole spectrum when estimating the performance
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of the SEAREV device. Once further data has been gathered on the
effects of varying spectral shapes and directional distributions, this
can be factored into the estimated energy yield in a probabilistic
manner. This is discussed further in Section 6.

Interactions between WECs within arrays will cause differences
in the power absorbed compared to an isolated device. This intro-
duces a further level of uncertainty into the conversion from wave
energy to electrical energy. There has been a considerable amount of
work on the theoretical aspects of WEC interaction effects (see [3] for
a brief overview). Millar et al. [4] take a slightly different approach in
order to examine the impact of an offshore wave farm on the
shoreline wave climate, but their method could be applied to model
array losses. They use the spectral wave model SWAN [5] to examine
the effect of a generic WEC removing energy at various points in the
wave field. This paper will focus on modelling the uncertainty in the
predicted yield of a single device. Array losses can be factored into
calculations when more precise information is available.

The third category of uncertainty mentioned above is perhaps
the most difficult to quantify. Mechanical failures are inherently
unpredictable in a new technology. As operational experience is
gained maintenance requirements will be better understood and it
will be possible to estimate the availability of machines. At present
it is difficult to put a realistic figure on this type of uncertainty.

The aim of this paper is to estimate the uncertainty in predicted
energy yield resulting from uncertainty in future wave conditions.
Estimates of future wave conditions are based on historic condi-
tions. The accuracy is limited by the accuracy of the historic data
and the variability in the resource. Due to the length and
complexity of the analysis, the work will be presented in two
articles. This first article deals with uncertainty in the historic data
and the second article [6] deals with uncertainty in the future wave
conditions resulting from variability in the resource.

2. Summary of approach

In order to get a reasonable estimate of the long-term mean and
interannual variability in the power produced by a WEC at a specific
site a long record of wave conditions is required. It is rare that at
a site of a proposed wave farm there will be an existing long-term
dataset. In absence of a long record for the site of interest, an
approach similar to the Measure-Correlate-Predict (MCP) method
used by the wind energy industry can be applied. In the MCP
procedure short-term measurements recorded at the site of
a proposed development (the predictor site) are correlated with
concurrent measurements taken at a nearby reference site for
Table 1
Power matrix for an early version of the Pelamis WEC, values in kW.

Te [s]

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

0.5 Idle Idle Idle Idle Idle Idle Idle Idle
1.0 Idle 22 29 34 37 38 38 37
1.5 32 50 65 76 83 86 86 83
2.0 57 88 115 136 148 153 152 147
2.5 89 138 180 212 231 238 238 230
3.0 129 198 260 305 332 340 332 315
3.5 270 354 415 438 440 424 404
4.0 462 502 540 546 530 499

Hs [m] 4.5 554 635 642 648 628 590
5.0 739 726 731 707 687
5.5 750 750 750 750 750
6.0 750 750 750 750
6.5 750 750 750 750
7.0 750 750 750
7.5 750 750
8.0 750
which long-term data exists. This calibration is then applied to the
historic data at the reference site to estimate the historic climate at
the predictor site.

The US and Canada have an extensive network of offshore wave
buoys which can be used as long-term reference datasets. Recent
assessments of wave energy potential from these buoys are given in
[7, 8]. In Europe there are fewer offshore buoys. Halliday and
Douglas [9] have presented a survey of the long-term wave data
available in UK waters. They note that there is relatively little in-situ
data available for the most energetic locations and that it would aid
wave energy development if coverage was increased in these areas.

Where there are no long-term measurements to use as refer-
ence datasets, some authors have proposed the use of data from
numerical wave models as a long-term reference [10–12]. Mollison
[10] proposed that offshore data from ocean-scale models could be
used as the boundary conditions of a smaller scale shallow-water
wave model, which is used to estimate the wave conditions at the
site of interest. Since wave model data are estimates rather than
measurements, Mollison [10] suggests that the model data should
be calibrated against nearby buoy measurements before use. Bar-
stow et al. [11] take a similar approach, but use satellite altimeter
measurements to calibrate the offshore wave model data, before
using it to drive a nearshore model. This approach is now common
in wave energy resource studies. Pitt [12] compared estimates of
wave power from the UK Met Office wave model to estimates from
buoy measurements at the location of the proposed Wave Hub site
in South West Britain. Several recent studies [13–15] have used data
from the nearshore model SWAN [5] with boundary conditions
from the WAM model [16] to estimate the nearshore wave resource.

However, the issue of uncertainty in energy yield predictions,
necessary for the economic assessment of a wave energy project,
has not yet been addressed. This is in part because until recently the
industry has not required such detailed calculations. With the first
full scale devices being deployed at present and rapid expansion of
the wave energy industry foreseen over the next decade, the
problem of making accurate yield predictions with quantified
uncertainty needs to be considered. As mentioned earlier, the
uncertainty in the historic data is discussed in this first article and
the second article [6] considers uncertainty arising from the vari-
ability of the resource.

The uncertainty in the estimate of the historic WEC yield is
examined using two hindcasts for the European Marine Energy
Centre (EMEC) in Orkney. The Pelamis wave energy converter is
used as an example. The power matrix for an early version of the
Pelamis WEC is given in Table 1. It will be shown later on that over
9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0

Idle Idle Idle Idle Idle Idle Idle Idle Idle
35 32 29 26 23 21 Idle Idle Idle
78 72 65 59 53 47 42 37 33

138 127 116 104 93 83 74 66 59
216 199 181 163 146 130 116 103 92
292 266 240 219 210 188 167 149 132
377 362 326 292 260 230 215 202 180
475 429 384 366 339 301 267 237 213
562 528 473 432 382 356 338 300 266
670 607 557 521 472 417 369 348 328
737 667 658 586 520 496 446 395 355
750 750 711 633 619 558 512 470 415
750 750 750 743 658 621 579 512 481
750 750 750 750 750 676 613 584 525
750 750 750 750 750 750 686 622 593
750 750 750 750 750 750 750 690 625
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an 8-year period covered by both datasets, the mean power
produced by the Pelamis calculated from each hindcast differs by
over 20%. It is clear that one or both models produce significantly
biased estimates. In this article the calibration of wave model data
is discussed and a method is proposed to calculate confidence
bounds for estimates of WEC yield from calibrated model data. The
paper begins with a description of the errors in model data in
Section 3. In Section 4 techniques for estimating model errors are
discussed. In Section 5 these techniques are applied to calibrate the
hindcasts for the EMEC site. In Section 6 the estimation of confi-
dence bounds on the estimate of energy yield from the calibrated
hindcasts is discussed, and in Section 7 the two calibrated hindcasts
are compared in more detail. In Section 8 the results are discussed
and conclusions are presented.

3. Errors in wave model data

Understanding the features of errors in model data is vital both
for calibration purposes and for the calculation of the uncertainty of
derived wave energy statistics. Error sources can be viewed as
either internal or external to the model. The internal sources of
error are the formulation of model physics or ‘sources terms’ and
the numerical resolution, while external errors refer to errors in the
input data, primarily the wind field. An in depth review of the
present state of the art and limiting factors in wave modelling is
given in [17]. In this section we are concerned with a description
rather than diagnosis of model errors.

Modelled wave spectra can be considered an estimate of the
average conditions over the grid spacing and time step used in
the model. Typically, global or oceanic scale wave models will be
run with a grid spacing somewhere between 0.5� and 3� (about
50–300 km) with a time step of 3 or 6 h. Measured data are
obtained over a smaller scale, with data from buoys representing
a point average over time (between 20 min and 1 h) and altimeter
data representing an instantaneous spatial average over an area of
5–10 km in diameter. The spatial and temporal variability of wave
conditions will therefore result in differences between measure-
ments and modelled data, even if both are perfectly accurate. The
larger scales over which wave models estimate conditions result
in time series of model data appearing smoother than those from
in-situ measurements. It can also lead to small intense pressure
systems being subject to some smoothing, resulting in systematic
underestimation of peak wind speeds and hence peak wave
heights [18].

The calibration of wave model data involves estimating the
mean error under a given set of conditions. Modelling the random
errors is necessary for estimating confidence bounds. It can be
difficult to distinguish between the mean and random model
errors, since the error at a given location is the integrated effect of
mean (predominantly internal) and random (predominantly
external) errors over the whole wave field. Both the mean and
random components will have a complex dependence on the actual
wave conditions. For instance the bias in a model estimate of Hs

may have a dependence on the actual Hs, period, spectral shape,
swell age, etc. Due to the way that errors occur in wave models and
propagate through the model domain, the biases are non-
stationary with location and with time. Janssen [19] presents
a particularly clear illustration of the non-stationary biases in
spectra from the European Centre for Medium Range Weather
Forecasts (ECMWF) WAM model. A plot of the bias in spectral
energy binned by frequency shows that the model tends to over-
predict energy at lower frequencies in the Northern Hemisphere
summer and much less in the winter time. Moreover, the magni-
tude of this bias and its dependence on both frequency and time of
year changes from year to year. He notes that the main reasons for
the changing biases are that large swells generated in the Southern
Ocean in the Southern Hemisphere winter time are not well
modelled due to the formulation of the dissipation source term and
unresolved islands and atolls.

This goes to show that it is difficult to define and adjust for
a ‘mean error component’ since varying conditions lead to
varying amounts of internal and external errors occurring and
aggregating over the model domain. Therefore errors in wind seas
and young swells can be expected to have different characteristics
to older swells that have propagated further, increasing
uncertainties.

A further reason for non-stationary biases in model data is
changes made to the models themselves. This is more of an issue for
archived data from operational models than for hindcasts.
However, despite the fact that hindcasts are run with a constant
model setup, the quality of the input wind fields and assimilated
wave data may be varying.

As well as biases changing with time and location, the random
error will persist in both time and location. For instance models will
tend to over or under predict the intensity of an entire storm, which
leads to correlation of errors up to a few days.

Additionally errors in various parameters can be correlated. At
high sea states, since wave spectra tend toward standard PM or
JONSWAP type forms, an overestimate in model Hs will result in an
overestimate of period as well. This correlation of errors between
parameters means that one needs to be careful when calibrating
model data, since adjusting model parameters independently may
lead to changes in the shape of their joint distribution.

Finally, we note that modelled data may be subject to temporal
offsets, with the model predicting that a storm arrives slightly early
or late. This type of error is sometimes referred to as a ‘jitter error’.
Jitter errors are not so important when calculating long-term mean
statistics from modelled data, but are important for validation
purposes where concurrent modelled and measured data are
compared.

To summarise, the main features of the errors in model data are:

� The bias and variance of modelled parameters may depend on
multiple factors such as Hs, Te, swell age, etc.
� The bias and variance of the modelled parameters may be non-

stationary with both time and location.
� Errors in parameters exhibit short-term auto-correlation.
� There may also be correlation of errors between parameters,

e.g. errors in Hs and Te may be correlated.
� There may be temporal offsets or ‘jitter errors’ in modelled

parameters.

4. Techniques for estimating model errors

4.1. Published studies

Model errors are estimated by comparing collocated modelled
and measured parameters, where the measurements are usually
from wave buoys or satellite altimeters. Various techniques have
been proposed to determine the errors. If there is reason to believe
that the model bias may be a linear function of a model parameter
then linear regression can be used [20,21]; to test for non-linear-
ities the bias and standard deviation of model data, can be plotted
against integrated buoy parameters such as Hs and Tp [20] or the
bias can be calculated in discrete frequency bands [19,22]. A more
sophisticated approached was implemented by Caires and Sterl
[23], in which corrections were estimated using a non-parametric
method, based on analogues in a learning dataset.

Alternatively, if three or more concurrent datasets are available
then a multiple collocation technique can be used to explicitly



Fig. 1. Summer and winter distributions of Hs at EMEC.
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calculate the bias relative to one dataset and error variance of each
dataset [24,25].

Another approach is to compare the distribution functions of
modelled and measured parameters via quantile-quantile plots
[24,26–29]. Using distribution functions has the advantage that the
effects of random errors and temporal offsets (jitter errors) are
smoothed out.

4.2. A note on the interpretation of results

In model validation studies, the objective is usually to determine
the model response for a given sea state. For the purposes of esti-
mating WEC yield we would like to know what the actual sea state
is for a given modelled estimate. These two problems are subtly
different. It may seem logical to determine the mean value reported
by a buoy for a given model estimate, since this is what we want to
know. However, this method will lead to a calibration which is
dependent on the distribution of the parameter in interest (Hs or Te)
during the calibration period.

Consider a comparison of Hs from a model with a buoy.
Suppose that the model has normally distributed errors with zero
mean and a standard deviation of 0.2þ 0.1Hs. We assume that
sampling errors in the buoy data are minimal (a reasonable
Fig. 2. Solid line: mean model Hs binned by buoy Hs; dashed line: mean buoy Hs binned by m
right – winter.
assumption for 3 or 6 h averages) and simulate buoy and model
data for theoretical summer and winter distributions of Hs. The
distribution in both summer and winter is assumed to be log-
normal with a mean of 1.5 m in summer and 3.0 m in winter and
a variance 0.7 m2 in summer and 2.0 m2 in winter. The distribu-
tions are shown in Fig. 1.

Fig. 2 shows plots of the mean value of model Hs binned by buoy
Hs, mean buoy Hs binned by model Hs and quantile plots for the
summer and winter data. Since the model is unbiased, the mean
value of model Hs binned by buoy Hs is equal to the buoy Hs and the
line is straight. However, it can be seen that the mean value of the
buoy for a given model value differs from summer to winter, with
a larger bias for low Hs in winter and the location at which the lines
cross different in summer and winter. Similarly, the shape of the
quantile plots is dependent on the distribution of buoy Hs. This is
because the distribution of model Hs is a convolution of the model
error distribution with the true distribution of Hs. The situation is
similar to that described by Tolman [30], in the context of obser-
vation errors.

So despite the fact that the model is unbiased and does not
change calibration, this example demonstrates that it can appear to
change calibration throughout the year. It should be noted that the
changes between the summer and winter distributions are much
larger than interannual changes in distributions, so the differences
would be much smaller if we compared bin-average and q–q plots
using data for whole years. However, it will be shown Section 5 that
there are actual changes in the performance of the model
throughout the year, and these changes should not be confused
with the apparent changes shown here.
4.3. The calibration problem

A further problem arises when a calibration is applied to the
model data. Again we can consider a simple hypothetical situation
to illustrate the problem. Suppose we have a modelled estimate Xm

of a real variable X and that

Xm ¼ X þ 3 (1)

and

3wN
�

mðXÞ; s2ðXÞ
�

(2)

where 3 is a normally distributed error, whose mean and variance
are both dependent on X. Suppose that mðXÞ and sðXÞ are stationary
odel Hs; dotted line: quantile plot. For distributions of Hs shown in Fig. 1, left – summer;



Fig. 3. Time series plots of Hs from buoy and hindcasts.
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in time and can be determined from a bin-average analysis. In this
case a functional relationship, g, can be defined between the real
and modelled values:

Xm ¼ X þ mðXÞ þ d
¼ gðXÞ þ d

(3)

where

gðXÞ ¼ X þ mðXÞ (4)

and

dwN
�

0; s2ðXÞ
�

(5)

We then calibrate the model by applying the inverse function:

Y ¼ g�1ðXmÞ
¼ g�1ðgðXÞ þ dÞ (6)
Fig. 4. Scatter plots of buoy and model Hs (left) and Te (rig
where Y denotes the calibrated model values. We need to determine
whether the mean of the calibrated model, Y, is equal to the mean of
the real variable X. In the case that g is a linear function,
gðXÞ ¼ aX þ b, we have Y ¼ X þ d=a. So the mean of X is equal to the
mean of Y, since d has zero mean. However, if g is non-linear, then the
situation is more complicated. For instance if g is a quadratic function
then it is simple to demonstrate that mean value of Y is not neces-
sarily equal to the mean of X, the difference being dependent on both
the distribution of X and the error distribution.

If instead we calibrate the model using the mean value of X for
a given Xm, then by definition the mean values of X and Y will be
equal within the calibration dataset. However, we are left with the
problem that mean value of X for a given Xm is dependent on
the distribution of X, so if the distribution of X changes outside the
calibration period then the mean values of X and Y will not be equal.

The differences in the mean value of X and Y introduced by
calibrating using a non-linear function g are normally quite small.
ht), colour denoting buoy Te (left) and buoy Hs (right).



Fig. 5. Bias in Hs and Te for the WAM hindcast binned by buoy Hs and Te.
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Moreover, in practice model performance is dependent on multiple
parameters, so these arguments become somewhat academic.
Nevertheless, they illustrate that some care needs to be taken when
determining and applying a calibration to a model.

4.4. Calibration of estimates of WEC power from model data

A number of approaches could be taken to calibrate estimates of
WEC power from model data. These include:

Method A: Estimates of WEC power from measured and
modelled data are compared directly. This approach has the
advantage that only one variable is involved. However, the
calibration will be dependent on the joint distribution of Hs and Te

during the calibration period. For example the power response of
a WEC will reach a maximum at some given Hs, so if the proportion
of time that the WEC is operating at maximum power is different
outside the calibration period, then a calibration based on model
power alone may not be appropriate.

Method B: To define a look-up table of the value of WEC power
estimated from the buoy, binned by model Hs and Te. This would be
a more flexible approach than calibrating by power alone, but
suffers from the problems of estimating the mean buoy value for
a given model value described in Section 4.2.

Method C: To calibrate the model Hs and Te independently, using
a bin-average method (binned by buoy values). This method is still
Fig. 6. Bias in Hs and Te for the WW3 h
susceptible to problems when applying non-linear calibrations, as
described above, but these effects are relatively small. The other
point to be aware of is that errors in Hs and Te may be correlated, so
adjusting parameters independently may change the shape of the
joint distribution and hence estimated WEC power.

This last method will be used in the following section to
calibrate the hindcasts for the EMEC test site.

5. Calibration of EMEC hindcasts

5.1. Data

In this section we present an assessment of two independent
hindcasts for the EMEC test site, supplied by commercial meto-
cean consultancies. The first hindcast was produced using the
SWAN model [5], with boundary conditions from an archive of
operational data from the ECMWF WAM model [16] and covers
the period 01/01/1997–31/12/2004 with 6 h time steps. The
second hindcast was produced using a nearshore model which
accounts for refraction, shoaling and depth induced breaking only,
with boundary conditions obtained from a hindcast using Wave-
Watch III [21]. It covers the period 01/01/92–31/7/2005 with 3 h
time steps. The hindcasts will be referred to as the WAM hindcast
and the WW3 hindcast. It is stressed that the results should not
be interpreted as applicable to WAM or WaveWatch III in general,
indcast binned by buoy Hs and Te.



Fig. 7. Left: bias in WW3 Te, binned by model Hs and Te. Right: bias in WW3 Te against WW3 steepness. Black crosses: individual points; red circles: bin-average; cyan line: fitted
exponential curve.
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since we are not attempting to separate the errors introduced by
the nearshore models from the errors in the offshore data.
Moreover, the data used here is only for one location and the
performance of the models can be expected to vary with location.
The examination of the hindcast data presented here is intended
to illustrate the type of errors which can occur and how they
should be treated when estimating WEC yield.

The hindcasts are compared to measurements from a Datawell
Directional Waverider buoy moored in 50 m water depth at the
EMEC site. Buoy measurements at EMEC began in October 2002 and
run until the end of the hindcasts with some missing data. For the
comparison with the WW3 hindcast the buoy data has been aver-
aged to give 3 h values and for the comparison with the WAM
hindcast it has been averaged to 6 h values. The nearshore models
are assumed to be of sufficiently high spatial resolution that spatial
variability is not significant. However, since the input data for the
nearshore models comes from global scale models, this assumption
is slightly unrealistic. The buoy measurements of Hs have
a sampling variability of about 2% for a 3 hour average and about 1%
for a 6 h average (sampling variability of wave measurements is
discussed in [31–34]). Since the errors in the modelled data are
much larger than this, it can be inferred from the results of Tolman
[30] that this level of sampling variability will have negligible
impact on our results.
Fig. 8. Bias in hindcast Hs binn
5.2. Analysis of trends in the models

The first step in assessing the hindcasts is to examine the time
series. Fig. 3 shows plots of Hs from the models and the buoy over
a two-month period. The trends shown here are representative of
whole calibration period. On the whole, the models seem to
reproduce the time series of Hs quite well and temporal offsets
appear small. The estimate of Hs from the WW3 hindcast is
consistently lower than the buoy data and the estimate from the
WAM hindcast is consistently higher, although both models
underestimate the most intense storm in this period. A 3 h average
of buoy data has been used in this plot, but it is clear that there is
still more short-term variability in the buoy data than in the WW3
data. This is mainly because the nearshore model data is based on
estimates from large-scale models which will give smoother time
series. Also there is evidence of tidal modulation of the waves in the
buoy data, and tidal current effects were not included in either
model.

The next step is to examine scatter plots of the parameters. Fig. 4
shows scatter plots of model Hs against buoy Hs and model Te

against buoy Te. It is instructive to colour the plots by the buoy Hs

and Te, to see if the performance of model Hs is dependent on buoy
Te or model Te on buoy Hs. The scatter is reasonably low for Hs, but it
is visible that the WAM hindcast tends to overestimate Hs between
ed by month and buoy Hs.



Fig. 9. Correlation of errors in model Hs and Te binned by buoy Hs and Te.
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2 m and 4 m at longer periods. For both hindcasts there is more
scatter for Te, especially for low Hs.

Fig. 5 shows the bias in the WAM hindcast, binned by buoy Hs

and Te. As was seen in the scatter plots, the WAM hindcast is
observed to over-predict Hs to a greater extent for swell events,
where Te > 12 s and Hs < 5 m. This counts for less than 5% of our
dataset, and for the remaining data the bias in Hs appears to be
dependent on Hs only. The poor performance of model Te in low
Hs is also clear. A trend is observed with buoy steepness, but not
with model steepness, and is therefore difficult to correct for.
Since the poor performance occurs at low Hs and hence low WEC
power, no attempt is made to correct for it and instead only
Fig. 10. Calibration plots for the WAM hindcast. (a) Error in model Hs against buoy Hs. Black
Standard deviation of error in model Hs. Circles: bin-average; line: fitted linear relationship. (
red circles: bin-average; cyan line: fitted linear relationship. (d) Standard deviation of erro
points with buoy Hs > 1 m are use to calibrate Te from the WAM
hindcast. However, although these data are not used in the
calibration of Te, they are used for the assessment of the derived
WEC power.

Fig. 6 shows similar plots for the WW3 hindcast. The depen-
dence of the error in model Hs on buoy Te does not appear to be as
strong as for the WAM hindcast. There is some trend visible in the
error in model Te on buoy Hs. However, if the performance of WW3
Te is examined in terms of model parameters the trend is much
stronger. Fig. 7 shows the bias in model Te against model Hs and Te,
and also against model steepness (here steepness is defined in
terms of Te rather than the usual definition based on Tz, as steepness
crosses: individual points; red circles: bin-average; cyan line: fitted quadratic curve. (b)
c) Error in model Te against buoy Te, for buoy Hs> 1 m. Black crosses: individual points;
r in model Te. Circles: bin-average; line: average over dataset.



Fig. 11. As previous figure, but for the WW3 hindcast.
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¼ 2pHs=gT2
e ). The model is effectively over-predicting Te for low-

steepness swell events. A new model period is defined, with an
exponential correction in steepness (shown in Fig. 7). From hereon
this definition is used for WW3 Te.

This correction in terms of model parameters is subject to the
effects of changing distributions, discussed in the last section.
However there is little that can be done about it, since the trend is
not evident with buoy parameters. The correction is also remark-
ably effective in decreasing the level of scatter, with the standard
deviation of the differences decreasing from 1.17 s for the original
data to 0.85 s for the new definition.
Fig. 12. Quantile plots of hindcast against buoy Pelamis pow
The dependence of model errors on direction was tested for, but
no trend was found. The performance of both hindcasts is likely to
be dependent on numerous other factors, such as frequency, swell
age, wind sea component, etc. However, in this example we only
consider dependence on Hs and Te. Strictly speaking, it is only fair to
assume that model errors are purely random when there is no
residual dependence on other factors.

Fig. 8 shows how the bias in model Hs changes throughout the
year. The WAM hindcast over-predicts low Hs in the winter, but is
almost unbiased at low Hs in the summer. This is contrary to the
results of Janssen [19] who showed that when results were
er. Crosses: uncalibrated values; diamonds: calibrated.



Fig. 13. Scatter plots of monthly mean Pelamis power for calibrated hindcasts against buoy values.
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averaged over a number of buoys the ECMWF WAM model over-
estimates low frequency energy in the summer. Since we are
binning by Hs rather than frequency, our results are not directly
comparable, but the changing bias observed here may be a result of
the tuning of the model to compensate for biases elsewhere. Note
that since we are binning results by buoy parameters, the changing
calibration is not a result of changing distributions between
summer and winter, described in Section 4.2. The WW3 hindcast
does not appear to perform differently in summer and winter,
despite the shorter colour scale used in the plot.

Finally, we can test for correlation of the errors in Hs and Te.
Overall the correlation is low, about 0.2 for the WAM hindcast and
0.1 for the WW3 hindcast. However, errors in certain sea states are
more strongly correlated. Fig. 9 shows the correlation of errors in
model Hs and Te, binned by buoy Hs and Te. Note that only bins
containing 10 or more points have been displayed. For the WAM
hindcast a stronger correlation is apparent for low Hs, which may be
related to the poor performance of model Te at low Hs. For the WW3
hindcast the correlation in the errors is strongest in steep seas. This
is a result of the limiting steepness of ocean waves, which neces-
sitates that an increase in Hs for a steep sea is accompanied by an
increase in period. There is also some positive correlation of errors
in swell events. However, for the highest occurrence sea states the
correlation is low.

5.3. Calibration of the hindcasts

The hindcasts are calibrated using separate corrections for Hs

and Te, determined from a bin-average analysis. A seasonal cali-
bration for the WAM data was tested and found to perform worse
Fig. 14. Monthly mean Pelamis powe
outside the calibration period, than a non-seasonal adjustment.
This is thought to be because calibrating for each season reduces
the number of points and therefore increases the uncertainty in
estimating trends. Figs. 10 and 11 show bin-average plots of the bias
and standard deviation in the model errors. We model the bias in Hs

as quadratic, and the bias in Te as linear. The standard deviation is
modelled as linear in Hs and constant in Te. At higher values of Hs

and Te there are few data points, which makes the estimates of the
standard deviation of the errors uncertain. Therefore the points
which are away from the trend lines on the far left of Figs. 10(b), (d)
and 11(b), (d) are not considered significant.

The use of a quadratic calibration for Hs means that there will be
a maximum model response at some point. For the WAM hindcast
this occurs when the buoy Hs is 13.2 m and model Hs is 7.9 m.
Clearly this is not a realistic assumption, since the WAM hindcast
contains storms outside the calibration period, exceeding this
value, with a maximum of 8.4 m. The situation is not as severe for
the WW3 model, with the maximum occurring when the buoy Hs is
32.3 m and model Hs is 15.7 m. This does not present a problem for
the estimation of WEC power, but clearly is not satisfactory for the
estimation of extremes.

Fig. 12 shows quantile plots of Pelamis power for the calibrated
and uncalibrated models against values from the buoy. The Pelamis
power has been calculated from the power matrix shown in Table 1
interpolated to a resolution of 0.1 m Hs and 0.1 s Te. There is a clear
improvement for both models after calibration, but with some
small discrepancies remaining. This is most likely because the
parametric correction that was applied does not entirely describe
the model behaviour. But it could also be a result of correlation in
the errors in Hs and Te or an effect of using a non-linear calibration,
r from the calibrated hindcasts.



Fig. 15. Distribution of normalised errors in model Hs and Te (histograms) with fitted normal distribution (lines).
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described in Section 4.3. Considering the models are calibrated in
terms of Hs and Te and the Pelamis response is calculated after-
wards, the result is good. For the WAM hindcast, the bias before
calibration is 30.1 kW and �4.0 kW after calibration. For the WW3
hindcast, the bias before calibration is �24.4 kW and �2.3 kW after
calibration. Fig. 13 shows scatter plots of monthly mean Pelamis
power for the calibrated models against buoy values. It is clear that
the agreement is better for the WW3 model. The standard devia-
tion is 18.1 kW for the WAM hindcast and 7.9 kW for the WW3
hindcast.

Fig. 14 shows the monthly mean Pelamis power from calibrated
hindcasts for the 8-year period that they overlap. The mean power
over the entire period is 188.4 kW for the WW3 hindcast and
179.4 kW for the WAM hindcast, a difference of 5%, compared with
167.9 kW and 212.9 kW before calibration. This is an improvement,
but it is clear from Fig. 14 that some residual trends remain. In
particular the calibrated WAM hindcast gives consistently lower
powers in the summer months, a consequence of the seasonal change
in calibration mentioned before. Moreover, since the boundary
conditions for the WAM hindcast came from an archive of operational
data from the ECMWF WAM model, changes to the operational
model made over the years are likely to affect the calibration.

There are also some differences during the calibration period.
The calibrated WAM hindcast is lower than the WW3 hindcast
during the period June–August 2004. However, the agreement in
the previous summer (also within the calibration period) was good.
The calibrated WW3 hindcast is in much closer agreement with the
buoy during June–August 2004, so this provides further evidence of
changing biases in the WAM hindcast.
6. Estimation of confidence bounds on mean WEC power

The error in the estimate of Pelamis power from each model
exhibits correlation over short time scales. This suggests the use of
time series models for representing the evolution of errors and
estimating confidence bounds for the estimates of power from the
hindcasts. The magnitude of the error in WEC power is related to
the wave conditions at the time, so this dependence must be
removed before the time series model is fitted. The procedure we
will follow to fit the time series model consists of the following
steps:

� Estimate distributions of errors in hindcast Hs and Te

� Calculate the distribution of errors in hindcast WEC power.
� Normalise the error in hindcast power.
� Fit time series model

To estimate confidence bounds we can then generate a large
number of simulations of the normalised error in hindcast power
using the fitted time series model. We then un-normalise to get
a number of simulated realisations of the error in power over the
entire hindcast. From this we can calculate error bounds for
monthly, annual or multi-year averages of WEC power.

Fig. 15 shows the distribution of the errors in the calibrated
hindcast Hs and Te, normalised by the standard deviations (shown
in Fig. 10 and 11). The normalised errors are approximately nor-
mally distributed, apart from WW3 Te which shows a slightly more
peaked distribution. However, we will approximate this with
a Gaussian.



Fig. 16. Standard deviation of the error in model power for WAM (top) and WW3 (bottom). Left: from equation (7). Right: from equation (8).
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The error in model estimates of Pelamis power is a function of
both Hs and Te. Fig. 16(a) and (c) show the standard deviation of the
error in model power, binned by the buoy values of Hs and Te. This
can be written formally as follows: let Hb(ti) and Tb(ti) denote the
buoy measurements at time ti, and Hm(ti) and Tm(ti) denote
the model estimates. Let PðH; TÞ denote the Pelamis power response
calculated by linearly interpolating the values shown in the power
matrix (Table 1). If we define the set S as all values of i such that Hs �
Fig. 17. Auto-correlation series of normalised errors. Circles and solid line: values for
WAM hindcast and fitted ARMA (2,3) model. Diamonds and dashed line: values for
WW3 hindcast and fitted ARMA (3,2) model.
dh=2 � HbðtiÞ < Hs þ dh=2 and Te � dt=2 � TbðtiÞ < Te þ dt=2, then
the values shown in Fig. 16(a) and 16(c) are given by

sðHs; TeÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i˛S

½PðHmðtiÞ; TmðtiÞÞ � PðHbðtiÞ; TbðtiÞÞ�2
s

(7)

In Fig. 16 a bin size of dh¼ 0.5 m and dt¼ 0.75 s has been used.
The bin size is a compromise between adequate resolution and
Fig. 18. Standard deviation of the error in monthly mean power from the ARMA
simulations against estimated monthly mean power from the hindcasts.



Fig. 19. Scatter plots of Hs coloured by Te (left) and Te coloured by Hs (right) for the calibrated hindcasts.
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having enough data to accurately estimate the standard deviation.
The standard deviation of the error in model power can also be
calculated from the estimates of the error distributions of model Hs

and Te. The model errors in Hs and Te are correlated in some places,
so strictly this should be accounted for when calculating the
distribution of the error in estimated Pelamis power. However, it
was found that accounting for the correlation made little difference
in practice and they are assumed to be independent here. Let fHm jHs

and fTmjTe
denote the density functions of the model values of Hs and

Te, given the real values. The pdf fHm jHs
is modelled as normal with

standard deviation increasing linearly with Hs, and the pdf fTmjTe
is

modelled as normal with constant standard deviation (see Figs. 10
and 11). Then the variance of the model power for a given Hs and Te

is given by

s2ðHs; TeÞ ¼
ZN
0

ZN
0

fHmjHs
ðhmÞfTmjTe

ðtmÞ½Pðhm; tmÞ

�PðHs; TeÞ�2dhmdtm (8)

Fig. 16(b) and (d) show the standard deviation of model error
calculated using equation (8). The agreement with the values
calculated from equation (7) is good, indicating that approxima-
tions which have been used for fHmjHs

and fTm jTe
are reasonable. This

method of calculating the model error in Pelamis power has the
advantage that the resolution can be made as high as required, so
that the standard deviation can be calculated more precisely for
a given Hs and Te. This method will be used to normalise the errors
in hindcast power.
Fig. 20. Mean and standard deviation of differences in T
If the uncertainty in WEC response were known, it could be
factored in at this point. As was discussed in Section 1, a WEC will
likely have a range of responses for a given Hs and Te due to
variation in spectral shape and directional distribution. We define Q
to be the actual power generated by a WEC in a given sea state, and
the probability that Q¼ q, given that Hs¼ h and Te¼ t, as fQ jHs;Te

ðqÞ.
The distribution fQ jHs ;Te

will typically vary from site to site,
depending on the distribution of different spectral shapes which
occur for a given Hs and Te. Suppose that fQ jHs ;Te

is known for the site
in question, then equation (8) can be modified to include this
additional level of uncertainty, by integrating over the range of
possible powers for a given Hs and Te:

s2ðHs; TeÞ ¼
ZN
0

ZN
0

ZN
0

fHmjHs
ðhmÞfTmjTe

ðtmÞfQ jHs;Te
ðqÞ½ðPðhm; tmÞ

�qÞ�2dhmdtmdq (9)

where, as before, PðH; TÞ is defined to be the power specified in the
power matrix.

Returning to the time series modelling, since the error in
hindcast power is dependent on Hs and Te, the errors need to be
normalised before fitting a time series model. Each error in hind-
cast power is divided by the standard deviation calculated from the
estimated distributions of errors in model Hs and Te (the right hand
plots in Fig. 16). The resultant distribution of normalised errors is
slightly non-Gaussian so we use the transformation:

z ¼ F�1ðFXðxÞÞ (10)
e between calibrated models, for average Hs> 1 m.



Fig. 21. Mean and standard deviation of differences in Hs between calibrated models.
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where F is the distribution function of the standard normal
distribution and Fx is the empirical distribution function of X. This
transformation forces the empirical distribution of z to be exactly
Gaussian.

Auto-regressive moving-average (ARMA) models are fitted to
the normalised errors in power using the method described in
[35]. The order of the model is chosen by minimising Akaike’s
Information Criterion. An ARMA (2,3) model was found to provide
the best fit for the WAM residuals and an ARMA (3,2) was found
to give the best fit for the WW3 residuals. Fig. 17 shows the auto-
correlation series for the errors in normalised hindcast power and
the fitted ARMA model. It is clear that both ARMA models are in
good agreement with the observed auto-correlations. The error
caused by the tidal modulation of the wave field is also clearly
visible. It is less pronounced for the WAM hindcast because of 6 h
averages are used instead of 3 h averages for the WW3 hindcast.
When the WW3 hindcast was averaged to give 6 h values, the
auto-correlation series was very close to that for the WAM
hindcast.

To estimate confidence bounds for the calibrated hindcasts the
following procedure is followed:

� Generate 1000 ARMA simulations, the same length as the
hindcast.
� Apply the inverse transformation of equation (10).
� Multiply by the standard deviation of the error in model power

obtained from the look-up table shown in Fig. 16 (right hand
plots).
Fig. 22. (a) Mean difference in Hs, binned by Hs and Te. (
Note that here we are substituting the standard deviation in
error for a given calibrated model estimate, for the standard devi-
ation for a given buoy value. However, comparison of the two
distributions showed that they are very similar.

Fig. 18 shows a scatter plot of the standard deviation of the error
in monthly mean power from the ARMA simulations against
estimated monthly mean power from the calibrated hindcasts. The
WAM hindcast has higher monthly errors due to slightly higher
error in individual estimates. The relationship between monthly
mean power and the standard deviation in the model estimate is
slightly non-linear, with the gradient decreasing with higher
monthly mean power. This is because when monthly mean power
is high there is a high proportion of time when the Pelamis is
operating at maximum power, and the standard deviation of the
model estimate is lower.

The differences between the monthly mean power from the
buoy and calibrated WW3 hindcast (see Fig. 13) fall within the 95%
limits obtained from the ARMA simulations, but the monthly errors
from the calibrated WAM hindcast are not within the range from
the ARMA simulations. This is likely to be due to the changing
seasonal calibration, which it was not possible to capture with the
low-order ARMA model.

The 95% confidence interval for the mean power over the 8 year
period from the ARMA simulation, is�1.6 kW for the WW3 hindcast
and �3.0 kW for the WAM hindcast. The actual difference in the
8-year mean power is 9.0 kW, outside the predicted bounds from the
ARMA simulations. Moreover, in 24 of the 96 months that
the hindcasts overlap, the differences between the monthly mean
b) Mean difference in Hs, binned by Hs and month.



Fig. 23. Mean Te (left) and steepness (right) binned by Hs and month, from 5 years of EMEC buoy data.
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values are outside the 95% bounds from the combined ARMA
models. We have already seen that the ARMA model does not
capture the uncertainty from changing seasonal calibration in the
WAM hindcast during the calibration period, and it will not account
for any changes to the ECMWF operational WAM model outside this
period.

The bias in the mean power from the calibrated WW3 hindcast
over the 2 year calibration period was�2.3 kW and the 95% bounds
from the ARMA simulations are �3.4 kW. So it is possible that the
ARMA model is a valid representation of the uncertainty for the
WW3 hindcast, seeing as errors for individual months were also
within the bounds from the ARMA model. However, it is possible
that there could be some component of bias which is not captured
by the ARMA model (which represents a zero-mean random
process) which may affect the accuracy outside the calibration
period.
Fig. 24. Seasonal mean difference in Hs between
7. Comparison of calibrated hindcasts

To help understand the reasons for the differences between
the two hindcasts, we can compare the calibrated data. Fig. 19
shows scatter plots of Hs and Te for the calibrated hindcasts. It is
clear that there is still some residual dependence of Hs on Te and
vice versa. The disagreement in Te between the two models at low
Hs is not surprising, since we ignored points with Hs< 1 m for the
calibration of the WAM hindcast. If these points are removed, the
agreement is good. Fig. 20 shows the mean and standard devia-
tion of differences between calibrated Te, for average Hs> 1 m.
There is a small bias of 0.25 s which seems constant over the
entire dataset. The standard deviation of the differences in Te

increases approximately linearly with Te. This trend was not so
evident in the comparisons with the buoy, since there were fewer
data points.
the calibrated models, binned by Hs and Te.
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For Hs the dependence on period is consistent with the trend
observed between the WAM hindcast and the buoy. There is a much
larger disagreement between the models at high Hs. From inspec-
tion of the time series, it is clear that this is not a result of jitter
errors, but differences in the estimation of the peak Hs in a storm.
This disagreement is not so important for estimating WEC power,
but is much more serious for the analysis of extremes. Fig. 21 shows
the mean and standard deviation of differences in Hs between the
calibrated hindcasts. There is a small bias of 7 cm over the entire
hindcast, but which varies slightly with Hs. The standard deviation
in the differences increases linearly with Hs up to about 6 m, at
which point it increases sharply due to the increased uncertainty in
large storms.

Fig. 22(a) shows the mean difference in Hs, binned by Hs and Te.
It is clear that the WW3 hindcast gives higher estimates in steep
seas and lower estimates at longer periods. The tendency for the
WAM hindcast to over-predict at longer periods was evident in the
buoy data, but a trend with steepness was not evident for either
model. Fig. 22(b) shows the mean difference in Hs, binned by Hs and
month. There are clear seasonal changes in the differences. The
trend observed is consistent with that observed between the WAM
hindcast and the buoy.

From the buoy data we know that there are seasonal changes
in the mean Te and steepness for a given Hs, with storms in
summer generally steeper than those in winter (see Fig. 23).
However, these changes are not wholly responsible for the
differences in calibration. Fig. 24 shows the mean difference in Hs

between the calibrated models, binned by Hs and Te, broken down
into 4 seasons. It is clear that the dependence on steepness varies
with season. This could be due to seasonal changes of parameters
we are not considering, such as swell age, mean direction, or
directional spread. Alternatively it could be due to seasonal
changes in conditions over the whole model domain, causing
different amounts of error to occur and propagate through the
model to the EMEC site.

8. Discussion and conclusions

The specific method used to calibrate a particular model will
vary depending on the model. For a given model, the appropriate
calibration may also depend on location, due to varying perfor-
mance of the model in different wave climates. It is emphasised
again that the results presented here should not be interpreted as
general results on the performance of WAM and WaveWatch III.
Rather they are intended to illustrate how wave model errors
should be treated when calculating wave energy statistics.
However, it can be concluded that it is preferable to use offshore
data from a hindcast rather than an archive of operational model
runs, since this rules out changes in model performance due to
changes in the operational model.

In the two datasets examined here, both had significant biases
before calibration. After calibration, the WW3 hindcast seems to
perform better, with no evidence of varying seasonal performance.
The differences in estimate of monthly mean power between the
calibrated WW3 hindcast and the buoy fall within the bounds
predicted using the ARMA model of the error.

The use of an ARMA model proved not to be appropriate for
estimating the errors in the calibrated WAM hindcast. This is most
likely because the effects of changing seasonal performance were
not accounted for initially. There was also evidence of interannual
changes in the calibration of the WAM hindcast in summer during
the calibration period.

Since there are only two years of buoy data concurrent with the
models it is not possible to be sure what the causes are for the
discrepancies between the models outside the calibration period.
One possibility is that changes to the operational WAM model at
ECMWF may be responsible for some changes in the performance
of the WAM/SWAN hindcast. Despite the fact the nearshore model
used in the WW3 hindcast is driven by hindcast data, rather than
operational data, we do not know whether the wind fields used to
drive the WW3 hindcast are of consistent quality throughout. So we
cannot rule out changes in the performance of the WW3 hindcast
outside the calibration period.

Another reason for the observed differences between the
hindcasts is that wave model performance is dependent on
the wave conditions over the entire model domain, so changes in
the seasonal or annual distributions of these conditions can cause
changes in model biases. The error in a wave model estimate at
a particular time is the cumulative result of errors which have
occurred over the model grid and propagated to that location. It
was shown that model biases vary depending on Hs and Te (and
doubtless on other variables not considered in this study), therefore
changes in the distributions of these parameters over the entire
domain will cause varying amounts of error to occur and propagate
to the location in question. The large changes in wave conditions
with seasons therefore results in seasonal changes in the model
calibration. It would also seem likely that interannual changes in
wave conditions cause interannual changes in model calibration.
However, these should not be confused with the pseudo-effects
described in Section 4.2.

The seasonal and interannual changes in the calibrations of the
models make it difficult to quantify the uncertainty in the estimate
of WEC yield. Although the ARMA representation of the errors in
the WW3 hindcast appears valid for the calibration period, we
cannot be certain that it gives a valid estimate of the uncertainty
over the entire hindcast. A validation over a longer period, 10 years
say, would be necessary before conclusions can be made about the
long-term accuracy. From the results established in this paper it can
be concluded that the uncertainty in the historic resource over
a period of 8 years at this location is of the order of about 10 kW.

How does this compare to the accuracy which would be
achievable from a continuous record of in-situ measurements?
Suppose there is a long record of accurate in-situ measurements,
from a buoy say, for a potential site of a wave farm. If a WEC had
been placed close to the buoy, but not in the exact location,
sampling variability will cause the power generated by the WEC to
differ from that estimated from the buoy, even if we knew the exact
response of a WEC to that sea state. By comparing estimates of
power from two buoys at the EMEC site moored 1.5 km apart,
Mackay [36] showed that the standard deviation of the differences
in monthly mean power between the two buoys varied between
about 0.5 kW and 2.5 kW, depending on the monthly mean power
and the variability in wave conditions within the month.
Comparing this to Fig. 18, it can be seen that the magnitude of the
uncertainty caused by sampling variability is much smaller than
that from errors in the model data.

It should also be noted that the accuracy which is currently
achievable from model data is better than that which is theoreti-
cally achievable from satellite altimeter data alone (unless the
number of altimeters in orbit increases in the future). Mackay et al.
[37] showed that altimeter data can be used to estimate the power
produced by a WEC and produce strategic-level maps of the long-
term mean power produced. The main limiting factor to the accu-
racy of these maps was the limited temporal sampling from the
altimeters. Mackay [36] investigated the accuracy that would
theoretically be achievable if measurements from the altimeter
missions to date were combined and used as the boundary condi-
tions for a nearshore model. Due to the irregular nature of sampling
from combined missions, it is not possible to give general results on
the effect of limited temporal sampling. But using four case studies
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it was shown that even if each boundary condition from the
altimeter measurements gives a perfectly accurate estimate of WEC
power at the target location, the limited temporal sampling would
mean that the uncertainty in the monthly mean power is over
double that from the calibrated model data.

Calibrating wave model data is a pragmatic solution to wave
resource assessment using the data that is currently available. The
calibrations are difficult to justify from a physical point of view.
However there is a high level of empiricism already present in the
model setup, so a further empirical calibration is not completely
unreasonable. Improving the performance of the input wave
models would be preferable to calibrating the outputs, but this is
a much larger task. Both the WAM and WW3 models include
assimilated altimeter measurements already, so it is difficult to see
how any significant improvements could be made quickly. Never-
theless, the wave modelling community continually improves the
performance of their models (see e.g. [19]) so some improvements
can be expected in the future.

In the second article on uncertainty in wave energy resource
assessment [6] we discuss how the interannual and climatic
variability in wave conditions affects the predictability of WEC yield
and how this compares to the uncertainty in the historic data. It is
shown that uncertainty resulting from variability in the resource is
of a similar magnitude to uncertainty in the historic data. This
means that improving the accuracy of the historic data will result in
improvements in the accuracy of predicted energy yield.
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