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Abstract

A wave transformation model (RIDE) was enhanced to include the process of wave breaking
energy dissipation in addition to water wave refraction, diffraction, reflection, shoaling, bottom
friction, and harbor resonance. The Gaussian Elimination with partial Pivoting (GEP) method
for a banded matrix equation and a newly developed bookkeeping procedure were used to
solve the elliptic equation. Because the bookkeeping procedure changes the large computer
memory requirements into a large hard-disk-size requirement with a minimum number of disk
I/O, the simple and robust GEP method can be used in personal computers to handle realistic
applications. The computing time is roughly proportional toN1.7, whereN is the number of
grid points in the computing domain. Because the GEP method is capable of solving many
wave conditions together (limited by having the same wave period, no bottom friction and no
breaking), this model is very efficient compared to iteration methods when simulating some
of the wave transformation process. 2002 Elsevier Science Ltd. All rights reserved
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1. Introduction

The seven water wave transformation processes (refraction, diffraction, reflection,
shoaling, bottom friction, breaking energy dissipation, and resonance) can be
described using the mild slope equation (Berkhoff et al., 1982), or the extended mild
slope equation (Suh et al., 1997). For simulating wave transformation at a place with
complicated geography, bathymetry, or strong reflective structures (e.g. breakwaters),
the extended mild slope equation is needed to accurately describe the possibly drastic
changes of wave field (Massel, 1995; Chamberlain and Porter, 1995; Porter and
Staziker, 1995).

Approaches selected in currently available numerical models for solving the ellip-
tic equation can be divided into four categories: (1) parabolic approximation, (2)
hyperbolic approach, (3) iterative approach to solve the elliptic equation, and (4)
direct matrix equation solver.

The first approach is restricted to cases with negligible wave reflection and weak
wave diffraction (Radder, 1979), but can be solved quickly, e.g. REF/DIF-1 (Kirby
and Dalrymple, 1991). Under this category, numerous studies have been conducted
during the past decades (e.g. Kirby, 1986a; 1986b; 1988; Dalrymple et al., 1989;
Maa and Wang, 1995) for open coasts. When wave reflection and diffraction are
strong, one cannot use this approach and has to use one of the other three approaches.

The second approach changes the elliptic equation to a transient mild slope equ-
ation (Copeland, 1985; Madsen and Larsen, 1987; Li, 1994b) and solves for results
at steady state. The computing speed of this approach is better than the traditional
iterative methods such as conjugate Gradient method (Panchang et al., 1991), Gen-
eralized Conjugate Gradient method (Li, 1994a), Preconditioned Bi-Conjugate Gradi-
ent method (Maa et al., 1998a) and may be similar in performance to the most
advanced iteration methods.

The third approach (most advanced iteration methods), e.g. Multi-Grid method (Li
and Anastasiou, 1992) and Generalized Minimum Residual Method (Walker, 1988),
does not require a large computer memory and the convergence rate usually is good.
The disadvantage is that the computing algorithm as well as the computer coding
are not simple, and thus, difficult to maintain the program. The convergence rate
also degrades if the computational domain is not simple or the selection of the pre-
conditioner is not perfect.

The last approach, using the Gaussian Elimination with partial Pivoting algorithm
(GEP, Dongarra, 1979) to directly solve the huge banded matrix equation, was only
possible on main-frame computers with enormous core memory (more than giga-
bytes, GB). For this reason, using the GEP algorithm on personal computers has
never been attempted. Recently Maa et al. (1997) developed a special bookkeeping
procedure that works with the GEP algorithm. This procedure changes the required
large core memory to a large hard disk requirement (which is easily available for
10 GB or more) with a minimum number of disk I/O requests. Using this approach,
the computer codes to simulate wave Refraction and Diffraction by solving Elliptic
(RDE) mild slope equation are simple and straightforward (Maa and Hwung, 1997;
Maa et al., 1998b). Since many wave conditions, which have the same wave period
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and no breaking, can be solved together to significantly improve the overall comput-
ing efficiency, this method is rather attractive.

Wave breaking is an essential wave transformation process that should be included
in a wave transformation model for study coastal waves. For this reason, we
enhanced the RDE model by Including the wave breaking processing and present
the RIDE model.

To demonstrate this approach, we present the governing equation, boundary con-
ditions, and a brief description of the bookkeeping procedures that work with the
GEP algorithm. Three new cases were selected for demonstrating the energy dissi-
pation caused by wave breaking.

Although nonlinear wave transformation (important for studying wave-wave and
wave-structure interactions) is not included in this study, the nonlinear mild-slope
equation established by Tang and Quellet (1997) may be used in future extensions.

The finite difference equations, computer codes, details of the preparation of the
input files, and post-processing codes for graphic presentation are presented else-
where (Maa et al., 1998b).

2. Governing equations

The extended mild slope equation (Suh et al., 1997; Hsu and Wen, 2000b) was
selected as follows. Although Eq. (1) can be transformed to the Helmholtz equation
and then solved numerically, it was decided to solve the original form to simplify
future development.

�·(CCg��) � k2CCg(1 � if)� � [f1g�2h � f2(�h)2gk]� � 0 (1)

where

f1 �
�4khcosh(kh) � sinh(3kh) � sinh(kh) � 8(kh)2sinh(kh)

8cosh3(kh)[2kh � sinh(2kh)]
�

khtanh(kh)
2cosh2(kh)

(2)

f2 �
sech2(kh)

6[2kh � sinh(2kh)]3·{8(kh)4 � 16(kh)3sinh(2kh)�

9sinh2(2kh)cosh(2kh) � 12(kh)[1 � 2sinh4(kh)][kh � sinh(2kh)]} (3)

where � � (∂ /∂x,∂ /∂y) is the horizontal operator, � is the velocity potential function
for a simple harmonic wave flow, g is the gravitational acceleration, k=2p/L is the
local wave number, L is the local wave length, h is the water depth, C and Cg are
the wave velocity and group velocity, respectively, �h and �2h are the bottom slopes
and bottom curvatures in the x and y directions, respectively, x and y are the two
horizontal coordinates, f=fb+fd is the combined energy dissipation factor, fb is the
non-breaking, bottom friction factor, and fd is the energy dissipation factor after wave
breaking. According to Hsu and Wen (2000c), fb and fd are as follows:
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fb �
4Cf

3p
aw2

ngsinh3kh
(4)

fd �
k2

kh�1�
k1

2

4g2� (5)

where

n �
1
2�1 �

2kh
sinh2kh� (6)

Cf is the wave friction factor, a is the wave amplitude, w is the wave angular fre-
quency, and k1 = 0.4; k2 = 0.15 are empirical coefficients, and g � a /h is the ratio
of the wave amplitude to the water depth. The detailed derivation of Cf and fd can
be found in Hsu and Wen (2000c).

3. Boundary conditions

There are only two types of boundary conditions in the simulation of wave trans-
formations: a partial reflection boundary condition and a given boundary condition.
These conditions are specified along the border of a study domain (Fig. 1).

Fig. 1. Coordinate system and grid alignment for the computing domain.
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3.1. Partial reflection boundary condition

The condition described here (Eqs. (7) and (8)) is actually a general condition that
can be used for (1) total reflection, (2) partial reflection, or (3) radiation (Behrendt,
1985). The only difference among the three boundary conditions is in the selection
of the constant coefficient, a, in Eqs. (7) and (8).

∂�

∂x
� ± iak�� �

1
2k2

∂2�

∂y2 �, on ± x boundary (7)

∂�

∂y
� ± iak�� �

1
2k2

∂2�

∂x2 �, on ± y boundary (8)

where i = (�1)1/2, a � (1�R) / (1 � R), R = the reflection coefficient. The above
equations are second order approximations because the angles, b, for waves
approaching a boundary (Fig. 1) are unknown a priori. Eq. (7) is applicable to the
boundary segments that are perpendicular to the x-axis, where the positive sign is
for those segments that have the water grid points on their left side. Eq. (8) is appli-
cable to boundary segments that are perpendicular to the y-axis, where the positive
sign is for those segments that have the water grid points on the bottom. When a
= 0, Eqs. (7) and (8) represent a total reflection boundary condition. When a = 1,
these two equations represent a radiation boundary condition. For 0 � a � 1, they
represent partial reflection boundary conditions. Because Eqs. (7) and (8) are second-
order approximations, reflective waves will be introduced when b deviates more than
30 degrees off the normal line of the boundaries, even when specifying a = 1. High-
order approximations (e.g. Kirby, 1989) are needed to alleviate this behavior. Unfor-
tunately, even that approximation has a limitation, i.e. up to 70 degrees. Recently,
Hsu and Wen (2000a) solved the hyperbolic wave transformation equation with wave
approach angles nearly parallel to the boundary, i.e. b ~ 90 degrees. In their time-
dependent wave transformation model, b can be upgraded with time, and thus, is
only one time step behind.

In order to specify boundary conditions exactly on the boundaries, an imaginary
grid point was used that is just one grid size outside of the study domain. Using the
finite difference form of Eq. (1) and the finite difference form of the boundary con-
dition (Eq. (7) or (8)), the velocity potential at the imaginary external point can be
eliminated. For a corner grid point, three equations (i.e. the finite difference form
of Eqs. (1), (7), and (8)) are used to obtain the finite difference equation.

3.2. Given boundary condition

This kind of boundary condition is used at those grid points where input wave
information is specified. Because of the possible scattering waves generated from
the study domain, the actual velocity potential functions are still unknown at these
grid points. In other words, there are two velocity potential values at a given bound-
ary grid point, and the outgoing scatter waves should pass through the boundary
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without any reflection. For this reason the radiation boundary condition, Eqs. (7) and
(8) with a = 1, are used together with the given wave velocity potential, �g, as
follows (Behrendt, 1985):

∂�

∂x
� ± ik�� �

1
2k2

∂2�

∂y2 � � 2ik�g, on ± x boundary (9)

∂�

∂y
� ± ik�� �

1
2k2

∂2�

∂x2 � � 2ik�g, on ± y boundary (10)

For a given monochromatic wave with wave height H, period T, and direction
q (reference to the given boundary, see Fig. 2), the given wave velocity potential
can be calculated as (Behrendt, 1985)

�g � AeiS �
igTH

4p
eiS (11)

where A is the amplitude function and S is the phase function.
For normally incident waves, the phase function should be the same at all entrance

grid points. For convenience and without loss of generality, we chose S = 0 for this
condition. For oblique incident waves (Fig. 2), the phase function can be calculated
as follows:

S(xL) �
2pxLsinq

L
, 0�S(xL)�2p (12)

where xL is the local one-dimensional coordinate, and q is the incident wave angle
between wave direction and the normal vector of the boundary.

4. Numerical model

Eq. (1) with boundary conditions (Eqs. 7–10) was applied to all the water grid
points in the study domain (Fig. 1), which has MP and NP grid points in the x and
y directions, respectively. A banded matrix equation can be established as follows

Fig. 2. Specification of wave phase at given boundary grid point.
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BX � G (13)

where B is a banded matrix with a dimension of M × N, N is the length of this
banded matrix (same as the number of water grid points), M is the band width of
this matrix, X is the unknown matrix (dimension N × K) for the unknown wave
potential function in the study domain for the K given wave conditions (same wave
period, but different wave directions and wave heights), and G is another matrix
(dimension N × K) that includes the given boundary conditions. In general, M
varies with the grid alignment as well as the geometry of the study domain. The
computer codes were written in such a manner that when the x-axis is selected paral-
lel with the larger dimension of the study domain, the bandwidth will be a minimum.

Although �x and �y are not required to be the same in this model, the less than
1/10-wave-length requirement practically limits the choice of �x and �y. This is
because the maximum �x and �y are usually desired in practical applications.

The banded matrix equation was solved by using the GEP algorithm with a special
bookkeeping procedure (Maa et al., 1997) which replaces the huge memory require-
ment with a large hard disk requirement. In practical applications, N is usually on
the order of 104–106, M is on the order of 102–103, and K is on the order of 10–
20. Thus, using the traditional GEP algorithm with 16 byte complex numbers, 24
MB–24 GB of memory is required.

In the special bookkeeping procedure, two steps were taken. First, only the non-
zero diagonals of the sparse band matrix were stored. This step changed the matrix
B (size M × N) to two small matrices (one complex matrix, Z, with size 5 × N
and one integer matrix, I, with size 5 × N). This step, however, has previously
been implemented by others, and is not sufficient to solve the problem of insuf-
ficient memory.

The key factor in solving the problem of insufficient memory is using a small
working matrix repeatedly. The working matrix had a dimension of (M+Q)×W,
where Q was the lower bandwidth, and W was selected according to the available
computer memory, usually between 4M to 10M. Notice that the working matrix is
much smaller than the banded matrix because W �� N. Only the forward elimin-
ation part of the standard GEP method was carried out in the working matrix. After
completion of the forward elimination with partial pivoting in the working matrix,
the results were saved in a binary hard disk file. Then the working matrix was
replaced by acquiring the next block of data from the Z and I to continue the pro-
cesses (i.e. constructing a new working matrix and performing forward elimination
with partial pivoting). This procedure continues until the entire banded matrix equ-
ation is processed. During this process, writing binary disk files and reading data
from Z and I are the only disk I/O, and thus, the number of disk I/O is limited.
Notice that because of processing the large band matrix one block at a time, the
partial pivoting is only performing within the block.

The back substitution begins by first reading the last saved file, and solving part
of the unknown velocity potential function. The back substitution also repeated one
block/file at a time, until all the saved blocks/files were read and processed.

Unlike the virtual memory implemented in most computer operating systems, this
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process uses minimal disk I/O (less than 200 times for N on the order of 105), leaving
computing time for number crunching. For this reason, the efficiency is only slightly
less than if the entire banded matrix is all stored in memory, if available (Maa et
al., 1997).

The traditional GEP method has to store the entire band matrix in memory. For
this reason, it is almost impossible to provide enough memory for most of the appli-
cations, and thus, cause an enormous number of random swapping between memory
and hard disk. As a consequence, the computing efficiency is very low.

After the wave velocity potential function has been solved, the local wave height
and phase can be found based on � � Aeis. Wave number vectors can be found as

k⇀ � ∂s /∂xi � ∂s /∂yj, where i and j are unit vectors in the x and y directions,
respectively.

5. Model verifications

Many cases, in which either the analytical solution or experimental results were
available, have been selected for model verification (Maa and Hwung, 1997; Maa
et al., 1998a; 1998b, 2000). For example, the effect of bottom curvature and steep
bed slope has been verified with the experimental data from Davies and Heathershaw
(1984). The performance of simulating possible harbor resonance has been checked
using analytical solutions provided by Unluate and Mei (1973) as well as the analyti-
cal solution given by Ijima et al. (1981). Pure strong wave diffraction effects around
a breakwater have been checked using the analytical solution provided by Goda et
al. (1971). The combined effects of wave refraction and weak diffraction caused by
an elliptic shoal on a constant slope beach (Berkhoff et al., 1982) have been also
checked. In this study, the two physical model experiments carried out by Watanabe
and Maruyama (1986) for wave transformation near (1) a shore-normal jetty, and
(2) a shore parallel breakwater were used to verity the model for applicability of
the breaking energy dissipation. Also a case study using this model to study wave
transformation at Sogwipo Marina, Korea, is presented to show the efficiency if
multiple wave conditions were used.

5.1. A shore-normal jetty

Results from this physical model study (Watanabe and Maruyama, 1986) provide
data for checking the model’ s performance on wave refraction, reflection, diffraction,
shoaling, and energy loss by wave breaking. Waves (wave height = 2 cm, period =
1.2 s) approach the coast from 30 degrees off the shore-normal direction (Fig. 3).
The 4 m long shore normal jetty was located at the center of the study domain which
is a rectangular basin (10 m × 6 m) with a constant slope (1/50) beach. The wave
friction factor, Cf, was chosen as 0.01 that is equivalent to a relative roughness of
Ab /ks � 950 (Jonsson and Carlsen, 1976), where Ab is the semi-excursion distance
of water particle at the bottom, ks is the equivalent sand roughness.
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Fig. 3. Model simulated wave height contours (in cm) near the shore-normal jetty.

Notice that the computation domain was selected as 20 m × 6 m in the x and y
directions, respectively. The radiation boundary condition was specified on the left
and right side boundaries. On the two sides of the jetty, a total reflection boundary
condition was specified. On the top, the radiation boundary was specified, and at the
bottom of the computation domain, the given boundary was assigned with the radi-
ation boundary condition for scatter/reflected waves. Because of no input waves
assigned to the left boundary and wave diffraction, wave height will be smaller at
the left edge. The right boundary also might cause some reflective waves because
of the 30 degrees incident wave angle. The selection of a 20 m long computation
domain in the x direction and use of only the middle 10 m for output avoid the
influence from the two side boundaries.

Inasmuch as the local wave height is not known a priori, energy loss caused by
wave breaking was not included in the first time computation. Results from the first
run was used to check where waves shall break, and then a flag was set up at those
grid points in the second run to include energy loss caused by wave breaking. In
the second run of computation, g = 0.36 was selected at those grid points that the
flag was on. For other grid points, only the energy dissipation caused by bottom
friction was included (i.e. f � fb).

The calculated wave height contours (in cm) clearly show wave reflection on the
left-hand side of the jetty, and wave diffraction on the right-hand side of the jetty
(Fig. 3). The shore-parallel enclosed contours with wave height of 2.5 cm near the
bottom of the computation domain indicate that there are reflected waves. This wave



1450 J.P.-Y. Maa et al. / Ocean Engineering 29 (2002) 1441–1458

height modulation can also be clearly seen from the wave height profiles (Fig. 4).
In general, comparison of wave height profiles along the three selected locations at
y = �9.8 m, 10.2 m, and 12.0 m indicate a reasonable agreement (Fig. 4). The major
difference is that the model calculated wave height profile has a relatively large wave
height modulation at the offshore side.

5.2. A shore-parallel breakwater

Results from this physical model study provide data for checking the model’ s
performance on strong wave reflection, strong diffraction, refraction, shoaling, and

Fig. 4. Comparison of calculated and measured wave height profiles for the shore-normal jetty at (a) x
= 9.8 m, (b) x = 10.2 m, and (c) x = 12.0 m.
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energy loss by wave breaking. The physical model has a dimension of 8 m × 5 m
with a constant slope (1/50) beach. The 2.6 m long shore-parallel breakwater was
located at a water depth of 6 cm. Because the study domain is symmetric with respect
to the centerline at y = 4 m, the computing domain was selected as 4 m × 4.75 m.
The wave friction factor was chosen as the same in the previous case study. On the
top and bottom sides (Fig. 5), as well as the two sides of the breakwater, the total
reflection boundary condition was specified. The numerical study domain stopped at
a water depth of 0.5 cm, which is sufficient to check for wave breaking. The radiation
boundary condition was specified at the left and right sides of the study domain.

The incident waves (wave height = 2 cm, period = 1.2 s, normal incident) were
totally reflected by the shore-parallel breakwater (Fig. 5). Behind the breakwater,
there is strong wave diffraction (see the wave vectors between 2.0 � x � 2.3 m
and 2.9 m � y � 4 m as well as the wave crest lines in Fig. 6). Because waves
behind the breakwater were coming from both top (y 	 5.2 m) and bottom side (y
� 2.8 m), the wave vectors plotted in Fig. 6 actually represent the vector sum of
two wave sources: one from top and the other from bottom.

Fig. 5. Model simulated wave height contours (in cm) for the shore-parallel breakwater.
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Fig. 6. Model simulated wave vectors and wave crest lines showing strong wave diffraction behind the
shore-parallel breakwater.

The wave breaking points measured from the physical model study were also
plotted in Fig. 5 as the solid dots. It can be seen that the present model favorably
predicts the locations of breaking points.

5.3. Case study at Sogwipo Marina, South Korea

Sogwipo Marina is located on the south side of Cheju Island (Fig. 7) which is
not far from the south side of Korea Peninsula. At this study site, the major waves
come from the S and SSE. Further south of the Sogwipo Marina is a smaller island,
Nakto, that provides some protection to the marina. The geography and bathymetry
at this study site are complex because of Nakto Island, the peninsula, and the break-
waters.

One difficulty in simulating wave transformation when wave reflection has to be
considered is the selection of the proper value of a (Eqs. (7) and (8)). For a rigorous
selection, field or laboratory experiments must be performed. In general, a varies
with wave period, beach slope, beach material, and beach structures. Because the
purpose of this paper is to show the computing efficiency for a complex geography,
a was arbitrarily selected as 0.98 on boundary grids that are adjacent to land for
simulating the possible energy dissipation on beaches. On the two lateral boards, the
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Fig. 7. The bathymetry for a case study at Sogwipo marina, South Korea.

radiation boundary condition was specified. The grid numbers, grid size, and the size
(M × N) of matrix B are all given in Table 1.

Similar to the two examples given before, the first run was performed without
considering the energy loss caused by wave breaking. After the first run, wave height
at all grid points were checked for breaking and a flag was set up at these points
that the breaking criterion has been met. In the second run, the energy loss caused
by wave breaking was included.

For demonstration purposes, two results are given next. The computed wave height
distribution (Fig. 8) in the computation domain and wave crest lines (Fig. 9) for the
12 s waves coming from the South indicate a complicated wave transformation pro-
cess caused by Nakto Island. In many places, the original long crest waves were
changed to short crest waves because of wave reflection, diffraction, and scatter. The
significant wave scatter caused by Nakto Island may be because its size (� 300 m
× 500 m) is slightly larger than the deep water wave length (L0 = 225 m) for the

12 s waves.
Nakto Island does provide reasonable shelter effect for the marina (Fig. 8). Wave

heights were significantly reduced in front of the entrance to the marina. Inside the
marina, wave crest lines (Fig. 9) clearly show the wave diffraction effect.

The computing time was 826 s for simulating one wave condition. To take advan-
tage of the GEP algorithm and exclude the process of bottom friction and wave
breaking, 14 wave conditions, which have the same wave period but different direc-
tion, were calculated together. The computing time only increased slightly: 1206 s.
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Table 1
Parameters used and computing time required for the case studiesa

Parameters Shore-normal Jetty Shore-parallel Sogwipo Marina
Breakwater

h (m) 0.005–0.15 0.02–0.12 1–85
�x (m) 0.05 0.05 10.0
�y (m) 0.05 0.05 10.0
W × L (m) 20×6 4×4.8 3360×2520
MP × NP 201×121 81×96 337×253
M 241 161 501
N 24321 7776 67847
Computing time for one wave condition 180 23.2 826 s
Computing time for 14 wave conditions 1205 s (86 s)

a The computing time is based on a 450 Mhz Pentium-III PC with 128 MB of memory and running
the Windows NT operating system. The memory requirement of this model to run the above cases is
about 60 MB. W, L are the width and length of the study domain. MP and NP are the number of grid
points in the x and y directions, respectively, see Fig. 1. The number in parenthesis under the 3rd column
is the average computing time for one wave condition.

Fig. 8. Calculated wave height image showing the effect of Nakto Island on waves coming from south
with wave period = 12 s and wave height = 1 m.
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Fig. 9. Calculated wave crest lines showing the effect of the wave scatter caused by Nakto Island for
waves coming from south with wave period = 12 s and wave height =1 m.

On average, 86 s was needed for one wave condition. In other words, the more wave
conditions computed together, the less the computing time for each condition. This
is an order of magnitude difference compared to other iterative methods that also
solve the elliptic mild slope equation.

If bottom friction or wave breaking is considered in the computation, the B matrix
will be different for each given input wave height and incident angle because the
breaking locations are different. For this reason, the second computation has to be
done for one wave condition only. Nevertheless, the total computing time can be
further reduced.

6. Discussion and conclusions

Requiring the grid size to be about 1/10 of the wave length is the major difficulty
in solving the elliptic mild-slope equation. Because of the small grid size, the band
matrix, B, can easily become very large, and thus, require a prohibitively huge com-
puter memory to solve the elliptic equation using a direct approach (e.g. Gaussian
Elimination with partial Pivoting method). With the recently developed bookkeeping
procedures to change the huge computer memory requirement by a large hard disk
(e.g. on the order of GB) requirement, the simple and robust GEP method can be
used in a personal computer for practical applications. The requirement of a small
grid size, on the other hand, improves the feasibility of using the finite difference
method to simulate a complex geometry.
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Major water wave transformation processes (refraction, diffraction, reflection,
shoaling, bottom friction, breaking energy loss, and harbor resonance) can be simu-
lated in the RIDE wave transformation model. Wave friction and wave breaking
energy dissipation are accounted for in the mild slope equation. Therefore, the present
model could provide efficient scheme and accurate predictions of wave transform-
ation across the surf zone. The numerical predictions are favorably compared with
experimental data.

Based on all available numerical simulation examples (for M × N up to 503 ×
101 611), the computing time is proportional to N1.7. Although we have not tested
for a very large band matrix size (i.e. N 	 106), this is an attractive factor using
this method.

Another advantage of the GEP algorithm is that there is no concern about conver-
gence rate, even for a very complex geometry. The computing time depends solely
on the size of B matrix (Table 1).

The most important advantage of using this model to simulate wave transformation
processes can be seen from the case study at Sogwipo Marina. An order of magnitude
reduction for computing time can be achieved if more than 10 wave conditions are
calculated together. The program size, about 60 MB, is designed to run 30 wave
conditions together. With other requirements from the operating system, a PC with
128 MB of memory should be used for this model.

To simulate the more realistic directional wave spectrum transformation, this
advantage is also important because all components in the same frequency band of
a spectrum can be calculated together, at least for the first run that does not include
bottom friction and wave breaking.

To minimize the possible round-off error for solving a large banded matrix, double
precision was used in the program codes. Our studies indicated that the round-off
error is negligible for a banded matrix equation with N up to 105. For an extremely
large N, the round-off error must be checked again.

In conclusion, by using the finite difference method, the Gaussian elimination
method with partial pivoting, and a special book-keeping procedure, a simple numeri-
cal model for simulating wave reflection, refraction, diffraction, shoaling, bottom
friction, wave breaking energy dissipation, and harbor resonance for complicated
geometries and bathymetries has been presented. This model can simulate wave
transformation processes using personal computers with excellent computing speed
if multiple wave conditions are computed together.
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