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Noisy spectra, long correlations, and intermittency in wave turbulence
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We study thek-space fluctuations of the wave action about its mean spectrum in the turbulence of dispersive
waves. We use a minimal model based on the random phase approxirf@idy and derive evolution
equations for the arbitrary-order one-point moments of the wave intensity in the wave-number space. The first
equation in this series is the familiar kinetic equation for the mean wave-action spectrum, whereas the second
and higher equations describe the fluctuations about this mean spectrum. The fluctuations exhibit a nontrivial
dynamics if some long coordinate-space correlations are present in the system, as it is the case in typical
numerical and laboratory experiments. Without such long-range correlations, the fluctuations are trivially fixed
at their Gaussian values and cannot evolve even if the wave field itself is non-Gaussian in the coordinate space.
Unlike the previous approaches based on smooth iritigpace cumulants, the RPA model works even for
extreme cases where tkespace fluctuations are absent or very large and intermittent. We show that any initial
non-Gaussianity at small amplitudes propagates without change toward the high amplitudes at each fixed wave
number. At each fixed amplitude, however, the probability distribution function becomes Gaussian at large
time.
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I. INTRODUCTION will use RPA in this paper because it provides a minimal

) . model for description of th&-space fluctuations of the wave
The concept of wave turbuleng®T), which describes action about its mean spectrum, but we will also discuss

an ensemble of weakly interacting dispersive waves, S'gn'f"relation to the approach of Ref2] which does not assume
cantly enhanced our understanding of the spectral energy

transfer in complex systems such as the ocean, the atmo- |
sphere, or in plasmdg4-5]. This theory also became a sub-
ject of renewed interest recentlgee, e.g., Ref§6-9)). Tra-
ditionally, WT theory deals with derivation and solutions of
the kinetic equatioiKE) for the mean wave-action spectrum
(see, e.g., Refl1]). However, all experimentally or numeri-
cally obtained spectra are noisy, i.e., exhibgpace fluctua-
tions which contain a complimentary to the mean spectr . .
information. Thesek-space fluctuations always develop in ensemble of complex fields means the following.

numerical xperiments even tough ypcal,most numen (1), T phase acor ve unformly ditruted en e
cal experimentge.g., Refs.[6,7]) start with initial wave- piexp y P

action fields in thek-space which have random phases butdem of each other,

which have no amplitude fluctuations. How fast and why do (e ﬁ )= 5%,

these amplitude fluctuations get developed? Are they a nu- 17n2

merical artifact or a real physical phenomenon? Are theywhere&% is the Kronecker symbol.

Gaussian, or some intermittent bursts of Fourier amplitudes (2) The phases are statistically independent from the am-
can be expected? These questions remain unanswered [gitudesA,,

cause the wave-action fluctuations have not been studied be- _

fore. Such a study involves description of the higher one- <¢k1Ak2>_0'

poi_nt moments of the Fourier amplitude_s and it will be theThus, the averaging over the phase and over the amplitude
main focus of the present work. We will _show that Wh_en statistics can be performed independently.

these one-point moments are not Gaussian the coordinate

space fields are long correlated. Such fields are very common—__

in WT, and the numerical initial conditions discussed above Iperiodic box is an essential intermediate step for formulating

is a typical example. Thus, we will have to generalize WT toRPA and for defining the new correlatoks,” later in this paper.

Let us consider a wave field(x,t) in a periodic box of
volume V and let the Fourier transform of this field lag.
Later, we take the large box limit in order to consider homo-
geneous wave turbulence. Let us write the complex function
a, asa,=Ali, whereA, is a real positive amplitude anfl,
is a phase factor which takes values on the unit circle cen-
éered at zero in the complex plane. By definition, RPA for an

include such long correlated fields. This is related to the fact that, strictly speaking, the infinite-space
Fourier transform is a distribution, rather than a smooth function,
II. RANDOM PHASES VS GAUSSIAN FIELDS for the class of functions corresponding to statistically homoge-

_ . neous fields. The previous theory considered a class of correlators
The random phase approximati@RPA) has been popular which are box-size independent and which could be formally ob-
in WT because it allows a quick derivation of KE,3]. We  tained via a direct manipulation with the infinite bays.
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(3) The fluctuations of the amplitude&, must also be Will the wave-action fluctuations appear if they were ab-
decorrelated at differerk’s. sent initially? Will they saturate at the Gaussian levgl
0 N =ny or will they keep growing leading to thiespace inter-

(A AG = (AA,  (Mn=1,2,3,..). mittency? To answer these questions, we will use RPA to

. . : . derive and analyze equations for the momemtg) for arbi-
Properties 2 and 3 have typically not been mentioned explic: : C e .
itly before. The name RPA itself does not refer to the ampli_trary orders and thereby describe the statistical evolution of

tudes but to the bh nlv. However. this important the spectral fluctuations. Note that RPA, without a stronger
udes but to the phases only. However, this importa asGaussianity assumption, is totally sufficient for the WT clo-
sumption about the amplitude statistics has always bee

R : ' : r ny order. This allow wave fields with
made implicitly when using RPA, often without even realiz- Sre at a y(p)o de S alows us to stqu ave fields : ¢
ing it momentsM,” very far from their Gaussian values, which
To illustrate the relation between the random phases an?oi%igigge;’ eIOr:oer:fgn;SLes’iaa?fagf?hgfet::r Chzgjrcog i'g'iﬁé
Gaussianity, let us consider the fourth-order moment for y 9y

) . system.
which RPA gives In Ref. [2], non-Gaussian fields of a rather different kind

5= 1 1 PSS i isti
<aklak2ak3ak4>_nklnk2(535‘21+ 545%)+le52535’ (1)  were considered. Namely, statistically homogeneous wave
fields were considered in an infinite space which initially
where have decaying correlations in the coordinate space and,

) therefore, smooth cumulants in tkespace, e.g.,
ng= <Ak>

. g _ "
is the wave-action spectrum and (B4, BB, B,) = Mi N g%#k‘zl + 3&5%) + C1235:%:k421’

Qi=(AQ — 2(AD)
is a cumulant coefficient. The last term in this expressionWhere Ciz3is @ smooth function oky,kz,ks and 5's now

appears because the phases drop oukfetk,=ks=k, and mean Dirac deltas. On the other hand, by taking the large

their statistics poses no restriction on the value of this cor-b ox limit it is easy to see that our express{an corresponds

relator at this point. This cumulant part of the correlator cant© @ singular CumU|antC123:Qk1/Véf'%_ét§' I tends_ to. Z€ero

be arbitrary for a general random-phased field whereas fofnen the box volume’ tends to infinity and yet it gives a
Gaussian field€, must be zero. Such a difference betweenf_'”'f‘ezCO”,t”b,Ut'O” to the wave-action fluctuations in this
the Gaussian and the random-phased fields occurs only atiit-~ This singular cumulant corresponds to a small com-
vanishingly small set of modes witk,=k,=ks=k, and it Ponent of the wave field which is long correlated—the case
has been typically ignored before because its contribution t§Ot covered by the approach of R¢2]. On the other hand,
KE is negligible. Therefore, if the mean wave-action spec-t would be straightforward to go beyond our RPA by adding

trum was the only thing we were interested in, we could® cumulant part of the initial fields which tends to a smooth

safely ignore contributions from albne poinj moments, function ofk4,k,, ks in the infinite box limit(such as in Ref.
[2]). However, such cumulants would give a box-size-
MP =(al® (p=1,2,3,..). dependent contribution to the wave-action fluctuations which

o ] ® o vanishes in the infinite box limite.g., it would changé? by
However, it is precisely momentd, ™ that contain infor- ¢, /V). Thus, in large boxes the wave-action fluctuation for
mation about fluctuations of the wave action about its meafhe fields with smooth cumulants is fixed at the same value
spectrum. For example, the standard deviation of the wavgs for the Gaussian fieldg,=n,, and introduction of the

action from its mean is singular cumulant is essential to remove this restriction on
_ A o A2 — (a2 _ 21/ the level of fluctuations. On the other hand, the smooth part
&= ({ad = (lad?)*) == (M = m 7= ) of the cumulant has no bearing on the clos(as shown in

This quantity can be arbitrary for a general random-phaseft€f-[2]) and on the large-box fluctuation and, therefore, will
field whereas for a Gaussian wave field the fluctuation leveP€ omitted in this paper for brevity and clarity of the analy-
&is fixed, & =n,. Note that different values of momerig”  SIS:

can correspond to hugely different typical wave field realiza-

tions. In particular, ifM®=nP then there is no fluctuations
and A, is deterministic,§,=0. For the opposite extreme of
large fluctuations we would hawd® > nP which means that
the typical realization is sparse in thespace and is charac-
terized by few intermittent peaks &%, and close to zero
values in between these peaks. Such an information abo
the spectral fluctuations of the wave action contained in th
one-point momentsM® is completely erased from the
multiple-point moments by the random phases and it is pre-

cisely why these new objects play a crucial role for the de- 2Thus, assuming a finite box is an important intermediate step
scription of the fluctuations. when introducing objects such & relevant to the fluctuations.

IIl. TIME-SCALE SEPARATION ANALYSIS

Consider weakly nonlinear dispersive waves in a periodic
box. Here we consider quadratic nonlinearity and the linear
dispersion relationsy which allow three-wave interactions.
%{xamples of such systems include surface capillary waves
T4] and internal waves in the ocef®i. In Fourier space, the
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general form for the Hamiltonian systems with quadratic * .
nonlinearity looks as follow3, ia?= > [V &.donmi@Pal +ala?)
m,n=1
- - \ /T —iot( A(1 0yl
H=, wilca2+ e > (VL CCrCndimn + C.C), +2Vindine” Int(aﬁn)ﬁﬁ?) + ar(n)afn ). ©)
n=1 I, mn=1

We now have to substitute E}) into Eq.(5) and integrate
over time to obtain
. OH . w
ic=—, c=ae', @ _ | m | |
P a?(M= X [2Vi{-Vaa,aEo Jam

Cl nuy? wm utv
mn,uw,v=1

— 2V 88,8, B0l o] 8 ,) Shen + 2V

- R — .m nw?!
ia=e> (V gomis 4+ 2VMa a e @ntsh ), _ -
| ool mrBmen m+n In@n&m I+n _ V;TVanaMaVE[wLTVY_ wm] 5?2” _ ZVmVanaMayE[
@ ~ gy~ 1) O+ VRV, 30, 3,0
wherea,=a(k,) is the complex wave amplitude in the inter- = W= O]+ 2VE ana,a B[ — oo, ],
action representatiork,=2wn/L, L is the box side length, (6)

n=(ny,n,) for two dimensiong2D), or n=(ny,Nn,,n3) in 3D @ .
(similar for k, and ky), @!,,= oy~ —o and o=y is where we usea,”'(0)=0 and introduced
the wave linear dispersion relation. He¥é, ~ 1 is an inter- T
action coefficient and is introduced as a formal small non- E(x,y) = J A(x - y)eVdt.
linearity parameter. 0

In order to filter out fast oscillations at the wave period,
let us seek for the solution at time such that 2Zr/w<T
<1/we®. The second condition ensures tiais a lot less
than the nonlinear evolution time. Now let us use a pertur- Let us now develop a statistical description applying RPA

IV. STATISTICAL DESCRIPTION

bation expansion in smad, to the fieldsa.”. Since phases and the amplitudes are statis-
tically independent in RPA, we will first perform average
a(T) =a” + ea™ + &a?. over the random phasedenoted as...),) and then we av-

erage over amplitude@enoted as...),) to calculate the
Substituting this expansion in E¢3) we get in the zeroth moments,
orderai(o)(T):a(O) i.e., the zeroth order term is time inde- © 5
pendent. This corresponds to the fact that the interaction rep- M (T) = (Ja(T)| PV p=123,....
resentation wave amplitudes are constant in the linear aFirst, let us calculatés,(T)|?° as
proximation. For simplicity, we will write afo)(O)za,,
understanding that a quantity is taken B0 if its time  |a(T)|?=(a” + ea” + €a/?)P(@ + eaf” + 2a[?)P
argument is not mentioned explicitly. The first order is given - |a|(0)|2p + 6p|a|(0)|2p—2(a|(0)a|('l) +afo>a1(1>)

by
+ 62|a{|2p—4[cl2)(a1(0)51(‘1))2+ C‘ZJ@(O)aI(l))Z

AT =i > (Vo Ardndl e+ 2VMa, B AR, ), +pla®2laV? + plaf®*(a{ "8 + &%a?)] + - -

mn=t whereC? is the binomial coefficient.
(4) Up to the second power iaterms, we have
where (M), = a2+ a2 (e plel?
. +a%?),). (7)
O g .
A= fo domiddt= (&°m" = 1)/iwp,. Here, the terms proportional todropped out after the phase

averaging. Further, we assume that there is no coupling to
the k=0 mode, i.e. Vi =Vii,-o=0, so that there is no con-
tribution of the terms like((a”af")?),,. We now use Eqs4)
and(6) and the averaging over the phases to obtain

Here we have taken into account that’(T)=a, and a.”
X (0)=0. To calculate the second iterate, write

3We will follow the RPA approach as presented by Galeev and (D)2 . I 2 I 121 121 12
Sagdee\[3] but deal with a slightly more general case where the <|a' | >‘v”_ 2% [|an| gm+”|Am”| |am| |a”|
wave field is not restricted by the conditiatk)=a(-k). We will '
also use elements of the technique and notations of [Rf. + 2\Vh |3 80l 2AT Al 2lam 2],
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(@%a” +a%(?), = - 8al”2 [[VindSminE (0,00 [
m,n
+ Vil SmE(0, i) (2] — [an|?)].
Let us substitute these expressions into &g}. perform am-
plitude averaging, and take the large box Iimétnd then
large T limit (T>1/0).°We have
MM = MZ(0) + T(= pyuMi® + p*n M), (8)

with
= 47T€2f dk1dk2n1n2[|V'iz|25§25(w'iz) + 2|VE1|25§15(‘051)]:

9)

Y= 8mé? f dkldk2[|V'§2|25‘§26(w‘§2)n2 + |Vil|26ﬁ15(wﬁl)(nl

—ny]. (10)

Now, assuming thaT is a lot less than the nonlinear time

(T<1/we?) we finally arrive at our main result,
M) == PrMP + PP, (11)

In particular, for the wave-action spectrLMf):nk, Eq.(11)
gives the familiar kinetic equatiofKE)

== Y+ 7= €3(ny), (12
whereJ(n,) is the “collision” term[1,3],
J(ny = j dkodk 1 (RY, ~ Ry, = R,
with
Rz = 4mVi 2850w )[non = nn +np ], (13)

The second equation in the serigd) allows to obtain the
rms of the fluctuations of the wave actidja?), gﬁszf)
—nﬁ. We emphasize that Egl1) is valid even for strongly

intermittent fields with big fluctuations.

V. ANALYSIS OF SOLUTIONS: GAUSSIANITY VS
INTERMITTENCY

Let us now consider the stationary solution of E#jl),
M'(‘p)zo for all p. Then forp=1 from Eq.(12) we have,
=vn,. Substituting this into Eq(11) we have

“The large box limit implies that sums will be replaced with inte-

PHYSICAL REVIEW E 69, 066608(2004)

M|(<p) = pM(kp_l)nka

with the solutionM(kp):p! nf. Such a set of moments corre-
sponds to a Gaussian wave fiedg. To see how such a
Gaussian steady-state forms in time, let us rewrite(EED).in
terms of relative deviations cWI(kp) from their Gaussian val-
ues,

M - p!nf
p!ng
By definition, F|(<1) is always zero. Fop=2, this expression
measures the flatness of the distribution of Fourier ampli-
tudes at eack. This quantity determines the rms of the fluc-

tuations of the wave actiofa/?), or the mean level of
“noisiness,”

FiP = , p=1,23,....

£=n22F2 +1).

Using Eq.(11), we obtain
|':(kp) — pn_”k(lz(kp-l) _ F(kp)), (14)
k

for p=2,3,4,....This result has a particularly simple form
of a decoupled equation fqr=2,

. 2
2) _ K (2
F(k)———F(k).
M

Taking into account thaty >0, we see from this equation
that deviations of theneanlevel of fluctuations from Gaus-
sianity always decay. In fact, deviatiof$? decay at each
fixed p This is easy to see from the general solution of Eq.
(14) (obtained recursively

F<p>(t)_e—pe§ ¢p! Fi)(t=0)

“ Zite-pr T
where 6=[{(n/n)dt’ is a “renormalized” time variable.
One can see that this expression decays exponentially as
t— oo for any fixedp.

However, an interesting picture emerges at higborre-
sponding to high wave amplitudes. Although the deviations
Ff(p) eventually decay at eacfixed p their initial values
propagate irp without decay toward the larger values mf
Indeed, one can approximate EHd4) for p>1 by a first-
order PDE,

(15

P

07|:(P) + —
thk Ny

JFP =0.

According to this equatiorl,:(kp) propagates toward higp's
as a wave. This wave does not change shape with respect to
coordinatex=In p and, therefore, it spreads ip without

grals, the Kronecker deltas will be replaced with Dirac’s deltas,change in amplitude. The speed of this wairex) is time

| .n— 6V, where we introduced short-hand notatiod,,

= 8(kj—km—ky). Further we redefian(p)/VpﬂM(kp).

*Note that NME(0,x)=T[78X)+iP(1/x)] and lim|A(x)|2
T

=27T8(X) (see,Tg.E., Refl.2)]).

independent for statistically steady states., whenn, and
7 are time independentNote that this dynamics occurs at
eachk practically independently, i.e., the only coupling of
differentk’s occurs in the propagation speed vja
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These solutions allow us to establish the character of in- Let us substitute ZF spectru(6) into Eq.(17), take the
termittency in wave turbulence systems, i.e., to describe howalues ofw, and V‘{z appropriate for the capillary waves on
high-amplitude “bursts” occur with greater than Gaussiandeep watefRef. [1], Egs.(5.2.1-3]. By changing the vari-
probabilities. In terms of the probability distribution function ables of integrations vik; =k¢&;,k,=ké&, we can factor out
(PDP), the wave of non-GaussianiE{(p) toward high values the k dependence ofy. Performing one of integrals ana-
of p corresponds to a wave propagating from low-amplituddytically with the use of the5 function inw's, we perform the
“bulk” part to the high-amplitude “tail” on the PDF profile. remaining single integral numerically to obtgiall the inte-
Indeed, a Gaussian PDF fag corresponds to a distribution grals convergg
of A=|af?> of form P(\)=n"'e™", and moment M(kp)

. S _ ) 4.30A

probes” this distribution in a range of around\,=pn with y= K3/4

a characteristic widtt\ ~ n. Lifting P(\) in this range by a 16mp>"

certain factor will result in an increase of momem{® by
the same factor. Thus, the wave propagating from small t
large p’s corresponds to a wave from low to higs. This
wave is such that the relative deviation from distribution
P()§)=n‘1e‘”“ remains _un(_:hanged, but the_range)\Cri_at y= 0.84/PI¢4/ g 1/4,

which such non-Gaussianity occurs moves into the(taith

speed) and spreadgproportionally to its position in\).  Consequently, our prediction for the fluctuations growth is
Note, however, that at eadixed A deviations fromP(\)

=n~le"M" decay, which corresponds to decayFéP at each E=nl(2FP + 1) = AL - e72nd), (18)
fixed p at large time.

Predictions(15) about the behavior of fluctuations of the
wave-action spectra can be tested by modern experiment
techniques which allow to produce surface water waves witiz1
random phases and a prescribed shape of the amplijde
[11]. It is even easier to test EGL5) numerically. Consider,
for example, capillary waves on deep water. If a Gaussia
forcing at lowk values is present, the steady-state solution o
the kinetic equation corresponds to the Zakharov-Filonenk
(ZF) spectrum of Kolmogorov typgl,4]. It is given by

where the dimensionless constant 4.30 was obtained by nu-
Pherical integration. Substituting the value Afwe finally
obtain

Note that fluctuations stabilize at Gaussian values faster
far high k values. One can also substitujg calculated for
e capillary waves into the solutions for the higlpés, Eq.
5). Again, the dynamics here is going to be faster at large
k's because they correspond to higher valuesfoft. In

articular, at largd there will be a faster wave toward higher

'F’s. For the particular type of initial conditions we have
aken no initial fluctuations, this wave will describe the for-
fhation of a Rayleigh distribution(corresponding to the
Gaussian statistics @) behind a propagating front on the
PDF profile. In a way, this dynamics is nonintermittent; zero
initial fluctuations grow to the Gaussian level but never ex-
ceed it.

It is also interesting to test our predictions when the initial
) X conditions, or forcing, are non-Gaussian, as in most practical
surface tension of water, ar@=9.85(7]. The simplest ex- g ations. Our theory predicts that non-Gaussianity of the
pe_nment would be to start with a zero-fluctugt@etermm- _ low-amplitude(bulk) part of the PDF will propagate without
istic) spectrum and to compare the fluctuation growth Withye oy into the high-amplitude tail at each fidedrhe speed
the predictions of Eq(11). Note that such no-fluctuations .t s propagation is proportional ta, and, therefore, will
initial conditions were used in Ref§5,7]. be higher for largds in the case of the capillary waves. This

Lﬁt. us Icalcucllate the rate at V(;’h'Ch qu_ctuafuodns gr(()jw for means higher intermittency in the lokwange in the case of
such initial conditions. Sinca, and 7 are time independent - g~ ionary forced turbulence.

in this case, we havé=nt/n.=ydt. Thus, the only quantity

we need to calculate ig,. Let us take into account that the
spectrunmy is isotropic, that is, it depends only on the modu- VI. DISCUSSION
lus of the vector, not on its directions. We then can perform
an angular averaging of E¢10) obtaining

= Ak (16)

with A=\Pp¥2C/ o4, whereP is the value of flux of energy
toward high wave numberg and o are the density and

In this paper, we derived a hierarchy of equati¢hb for
the one-point moment " of the wave actiora 2 This
system of equations has a “triangular” structure: the time
Y = 87é? f klkZdkldkzs;&ikz[|vlj(_2|25(w§2)n2+ |V51|25(wﬁ1) derivative of thepth moment depends (_)nly on the moments
of order p,p—1, and 1(spectrun. Their evolution is not
X(ny = ny)], “slaved” to the spectrum or any other low moments and it
depends on the initial conditions. RPA allows the initial con-
ditions to be far from Gaussian and deviationptti moment
from its Gaussian value. Among two allowed extreme limits
Sﬂz:f Ak —k; ~kz)d,d6, are the wave field with a detegrministic amplitugg| (for
which M(kp):nﬁ) and the intermittent wave fields character-
ized by sparsé-space distributions ofg,| (for which M(kp)

(17 >np).

= 22 (Kky)? + (Kkp)? + (kokp)?] — K* = Ki — K3
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Equations(14) for the deviations from Gaussianity have these rare bursts and they will evolve as predicted by the WT
an interesting property that the nonlinear coupling betweemlosure. We have showed that this kind of intermittency in-
different modesk occurs only via a rate constamt/n. By  evitably occurs atll wave numberk provided some initial
removing this dependence into a “renormalized” tithene  non-Gaussianity is present in the PDF core. Referghog
gets a linear system of equation which can be easily solvegonsiders a different and a more dramatic kind of intermit-
in the general case, see H@5). Analyzing these solutions tency which occurs simultaneously with the strong nonlin-
we showed that the deviation from Gaussianity decreases @syity of the typical wave from the PDF core. This kind of

at each fixed amplitudg,|. At the same time, we showed intermittency is more seldom and it takes place only in some
that any initial non-Gaussianity at small amplitudes propa-,

gates as a nondecaying wave toward the high-amplitude t pecial parts of th& space(e.g., at very small scalgsin
. . y rticular, it never rs for th illary wav nsider
of the PDF. This process describes the character of the Wa?Pa ticular, it never occurs for the capillary waves considered

turbulence intermittency when high-amplitude wave bursts tf(ys pzper [raer\fnde_d that (?nly weakly nonlinear waves are

occur in the system more frequently than predicted forpro uced at the forcing sca €.

Gaussian fields. On the other hand, the assumption about t The present paper deals with the three-wave systems only.
) y ’ . plio }ﬁe four-wave resonant interactions are slightly more com-

weak nonlinearity breaks down when a high-amplitude burs

occurs in the system, leading to a failure of the RPA closur licated in that the nonlinear frequency shift occurs at a
Y ! 9 ower order in nonlinearity parameter than the nonlinear evo-

to describe the PDF tails. One can conjecture that the resul ution of the wave amplitudes. To build a consistent descrip-
ing phase. cohe_rence will lead to a nonllmear amplitude Satut'ion of the amplitude moments one has to perform a renor-
ration which will stop the wave predicted by our theory malization of the perturbation series taking into account the

Wh'Ch’ n turn, will lead tq a stagngt!on and accumulation N honlinear frequency shift. This will be done in a future pub-
this region on the PDF tail. Thus, it is natural to expect eVel|i.ation

stronger intermittency when the higher-order nonlinear ef-
fects are taken into account.

We would like to emphasize that the type of intermittency
discussed in the present paper appears within the weakly
nonlinear closure and not as a result of its breakdown as in Authors thank Alan Newell for enlightening discussions.
Ref. [10]. This intermittency is quite subtle and it occurs Y.L. was supported by NSF CAREER Grant No. DMS
only in the PDF tails and not in its cor@vhich tends to a 0134955 and by ONR YIP Grant No. N000140210528. S.N.
Gaussian stajeAs a result, the lower moments will not feel thanks ONR for the support of his visits to RPI.
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