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We study thek-space fluctuations of the wave action about its mean spectrum in the turbulence of dispersive
waves. We use a minimal model based on the random phase approximation(RPA) and derive evolution
equations for the arbitrary-order one-point moments of the wave intensity in the wave-number space. The first
equation in this series is the familiar kinetic equation for the mean wave-action spectrum, whereas the second
and higher equations describe the fluctuations about this mean spectrum. The fluctuations exhibit a nontrivial
dynamics if some long coordinate-space correlations are present in the system, as it is the case in typical
numerical and laboratory experiments. Without such long-range correlations, the fluctuations are trivially fixed
at their Gaussian values and cannot evolve even if the wave field itself is non-Gaussian in the coordinate space.
Unlike the previous approaches based on smooth initialk-space cumulants, the RPA model works even for
extreme cases where thek-space fluctuations are absent or very large and intermittent. We show that any initial
non-Gaussianity at small amplitudes propagates without change toward the high amplitudes at each fixed wave
number. At each fixed amplitude, however, the probability distribution function becomes Gaussian at large
time.
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I. INTRODUCTION

The concept of wave turbulence(WT), which describes
an ensemble of weakly interacting dispersive waves, signifi-
cantly enhanced our understanding of the spectral energy
transfer in complex systems such as the ocean, the atmo-
sphere, or in plasmas[1–5]. This theory also became a sub-
ject of renewed interest recently(see, e.g., Refs.[6–9]). Tra-
ditionally, WT theory deals with derivation and solutions of
the kinetic equation(KE) for the mean wave-action spectrum
(see, e.g., Ref.[1]). However, all experimentally or numeri-
cally obtained spectra are noisy, i.e., exhibitk-space fluctua-
tions which contain a complimentary to the mean spectra
information. Thesek-space fluctuations always develop in
numerical experiments even though, typically, most numeri-
cal experiments(e.g., Refs.[6,7]) start with initial wave-
action fields in thek-space which have random phases but
which have no amplitude fluctuations. How fast and why do
these amplitude fluctuations get developed? Are they a nu-
merical artifact or a real physical phenomenon? Are they
Gaussian, or some intermittent bursts of Fourier amplitudes
can be expected? These questions remain unanswered be-
cause the wave-action fluctuations have not been studied be-
fore. Such a study involves description of the higher one-
point moments of the Fourier amplitudes and it will be the
main focus of the present work. We will show that when
these one-point moments are not Gaussian the coordinate
space fields are long correlated. Such fields are very common
in WT, and the numerical initial conditions discussed above
is a typical example. Thus, we will have to generalize WT to
include such long correlated fields.

II. RANDOM PHASES VS GAUSSIAN FIELDS

The random phase approximation(RPA) has been popular
in WT because it allows a quick derivation of KE[1,3]. We

will use RPA in this paper because it provides a minimal
model for description of thek-space fluctuations of the wave
action about its mean spectrum, but we will also discuss
relation to the approach of Ref.[2] which does not assume
RPA.

Let us consider a wave fieldasx ,td in a periodic box1 of
volume V and let the Fourier transform of this field beak.
Later, we take the large box limit in order to consider homo-
geneous wave turbulence. Let us write the complex function
ak asak=Akck, whereAk is a real positive amplitude andck
is a phase factor which takes values on the unit circle cen-
tered at zero in the complex plane. By definition, RPA for an
ensemble of complex fieldsak means the following.

(1) The phase factorsck are uniformly distributed on the
unit circle in the complex plane and are statistically indepen-
dent of each other,

kck1
c̄k2

l = d2
1,

whered2
1 is the Kronecker symbol.

(2) The phases are statistically independent from the am-
plitudesAk,

kck1
Ak2

l = 0.

Thus, the averaging over the phase and over the amplitude
statistics can be performed independently.

1Periodic box is an essential intermediate step for formulating
RPA and for defining the new correlatorsMk

spd later in this paper.
This is related to the fact that, strictly speaking, the infinite-space
Fourier transform is a distribution, rather than a smooth function,
for the class of functions corresponding to statistically homoge-
neous fields. The previous theory considered a class of correlators
which are box-size independent and which could be formally ob-
tained via a direct manipulation with the infinite boxak’s.
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(3) The fluctuations of the amplitudesAk must also be
decorrelated at differentk’s.

kAk1

n Ak2

ml = kAk1

n lkAk2

ml, sm,n = 1,2,3, . . .d.

Properties 2 and 3 have typically not been mentioned explic-
itly before. The name RPA itself does not refer to the ampli-
tudes but to the phases only. However, this important as-
sumption about the amplitude statistics has always been
made implicitly when using RPA, often without even realiz-
ing it.

To illustrate the relation between the random phases and
Gaussianity, let us consider the fourth-order moment for
which RPA gives

kak1
ak2

āk3
āk4

l = nk1
nk2

sd3
1d4

2 + d4
1d3

2d + Qk1
d2

1d3
1d4

1, s1d

where

nk = kAk
2l

is the wave-action spectrum and

Qk = kAk
4l − 2kAk

2l

is a cumulant coefficient. The last term in this expression
appears because the phases drop out fork1=k2=k3=k4 and
their statistics poses no restriction on the value of this cor-
relator at this point. This cumulant part of the correlator can
be arbitrary for a general random-phased field whereas for
Gaussian fieldsQk must be zero. Such a difference between
the Gaussian and the random-phased fields occurs only at a
vanishingly small set of modes withk1=k2=k3=k4 and it
has been typically ignored before because its contribution to
KE is negligible. Therefore, if the mean wave-action spec-
trum was the only thing we were interested in, we could
safely ignore contributions from all(one point) moments,

Mk
spd = kuaku2pl sp = 1,2,3, . . .d.

However, it is precisely momentsMk
spd that contain infor-

mation about fluctuations of the wave action about its mean
spectrum. For example, the standard deviation of the wave
action from its mean is

jk = skuaku4l − kuaku2l2d1/2 = sMk
s2d − nk

2d1/2. s2d

This quantity can be arbitrary for a general random-phased
field whereas for a Gaussian wave field the fluctuation level
jk is fixed,jk=nk. Note that different values of momentsMk

spd

can correspond to hugely different typical wave field realiza-
tions. In particular, ifMspd=np then there is no fluctuations
and Ak is deterministic,jk=0. For the opposite extreme of
large fluctuations we would haveMspd@np which means that
the typical realization is sparse in thek space and is charac-
terized by few intermittent peaks ofAk and close to zero
values in between these peaks. Such an information about
the spectral fluctuations of the wave action contained in the
one-point momentsMspd is completely erased from the
multiple-point moments by the random phases and it is pre-
cisely why these new objects play a crucial role for the de-
scription of the fluctuations.

Will the wave-action fluctuations appear if they were ab-
sent initially? Will they saturate at the Gaussian leveljk
=nk or will they keep growing leading to thek-space inter-
mittency? To answer these questions, we will use RPA to
derive and analyze equations for the momentsMk

spd for arbi-
trary ordersp and thereby describe the statistical evolution of
the spectral fluctuations. Note that RPA, without a stronger
Gaussianity assumption, is totally sufficient for the WT clo-
sure at any order. This allows us to study wave fields with
momentsMk

spd very far from their Gaussian values, which
may happen, for example, because of the choice of initial
conditions or a non-Gaussianity of the energy source in the
system.

In Ref. [2], non-Gaussian fields of a rather different kind
were considered. Namely, statistically homogeneous wave
fields were considered in an infinite space which initially
have decaying correlations in the coordinate space and,
therefore, smooth cumulants in thek space, e.g.,

kak1
ak2

āk3
āk4

l = nk1
nk2

sdk3

k1dk4

k2 + dk4

k1d3
2d + C123dk3+k4

k1+k2,

whereC123 is a smooth function ofk1,k2,k3 and d’s now
mean Dirac deltas. On the other hand, by taking the large
box limit it is easy to see that our expression(1) corresponds
to a singular cumulantC123=Qk1

/Vdk2

k1dk3

k1. It tends to zero
when the box volumeV tends to infinity and yet it gives a
finite contribution to the wave-action fluctuations in this
limit.2 This singular cumulant corresponds to a small com-
ponent of the wave field which is long correlated—the case
not covered by the approach of Ref.[2]. On the other hand,
it would be straightforward to go beyond our RPA by adding
a cumulant part of the initial fields which tends to a smooth
function ofk1,k2,k3 in the infinite box limit(such as in Ref.
[2]). However, such cumulants would give a box-size-
dependent contribution to the wave-action fluctuations which
vanishes in the infinite box limit(e.g., it would changejk

2 by
Ckkk/V). Thus, in large boxes the wave-action fluctuation for
the fields with smooth cumulants is fixed at the same value
as for the Gaussian fields,jk=nk, and introduction of the
singular cumulant is essential to remove this restriction on
the level of fluctuations. On the other hand, the smooth part
of the cumulant has no bearing on the closure(as shown in
Ref. [2]) and on the large-box fluctuation and, therefore, will
be omitted in this paper for brevity and clarity of the analy-
sis.

III. TIME-SCALE SEPARATION ANALYSIS

Consider weakly nonlinear dispersive waves in a periodic
box. Here we consider quadratic nonlinearity and the linear
dispersion relationsvk which allow three-wave interactions.
Examples of such systems include surface capillary waves
[4] and internal waves in the ocean[9]. In Fourier space, the

2Thus, assuming a finite box is an important intermediate step
when introducing objects such asQk relevant to the fluctuations.
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general form for the Hamiltonian systems with quadratic
nonlinearity looks as follows,3

H = o
n=1

`

vnucnu2 + e o
l,m,n=1

`

sVmn
l c̄lcmcndm+n

l + c.c.d,

iċl =
]H
] c̄l

, cl = ale
−ivlt,

iȧl = e o
m,n=1

`

sVmn
l amane

ivmn
l tdm+n

l + 2V̄ln
māname−ivln

mtdl+n
m d,

s3d

wherean=asknd is the complex wave amplitude in the inter-
action representation,kn=2pn/L, L is the box side length,
n=sn1,n2d for two dimensions(2D), or n=sn1,n2,n3d in 3D
(similar for kl and km), vmn

l ;vkl
−vkm

−vkm
and vl =vkl

is
the wave linear dispersion relation. Here,Vmn

l ,1 is an inter-
action coefficient ande is introduced as a formal small non-
linearity parameter.

In order to filter out fast oscillations at the wave period,
let us seek for the solution at timeT such that 2p /v!T
!1/ve2. The second condition ensures thatT is a lot less
than the nonlinear evolution time. Now let us use a pertur-
bation expansion in smalle,

alsTd = al
s0d + eal

s1d + e2al
s2d.

Substituting this expansion in Eq.(3) we get in the zeroth
order al

s0dsTd=als0d i.e., the zeroth order term is time inde-
pendent. This corresponds to the fact that the interaction rep-
resentation wave amplitudes are constant in the linear ap-
proximation. For simplicity, we will write al

s0ds0d=al,
understanding that a quantity is taken atT=0 if its time
argument is not mentioned explicitly. The first order is given
by

al
s1dsTd = − i o

m,n=1

`

sVmn
l amanDmn

l dm+n
l + 2V̄ln

mamānD̄ln
mdl+n

m d,

s4d

where

Dmn
l =E

0

T

eivmn
l tdt = seivmn

l T − 1d/ivmn
l .

Here we have taken into account thatal
s0dsTd=al and ak

s1d

3s0d=0. To calculate the second iterate, write

iȧl
s2d = o

m,n=1

`

fVmn
l dm+n

l eivmn
l tsam

s0dan
s1d + am

s1dan
s0dd

+ 2V̄ln
mdl+n

m e−ivln
mtsam

s1dān
s0d + am

s0dān
s1ddg. s5d

We now have to substitute Eq.(4) into Eq. (5) and integrate
over time to obtain

al
s2dsTd = o

m,n,m,n=1

`

f2Vmn
l s− Vmn

m anamanEfvnmn
l ,vmn

l gdm+n
m

− 2V̄mn
m anamānĒfvnm

ln ,vmn
l gdm+n

m ddm+n
l + 2V̄ln

ms

− Vmn
m ānamanEfvmn

ln ,− vln
mgdm+n

m − 2V̄mn
m ānamānEf

− vnnl
m ,− vln

mgdm+n
m ddl+n

m + 2V̄ln
msV̄mn

n amāmāndm+n
n Ef

− vlnm
m ,− vln

mg + 2Vnn
m amāmanEfvnm

ml ,− vln
mgdn+n

m ddl+n
m g,

s6d

where we usedak
s2ds0d=0 and introduced

Esx,yd =E
0

T

Dsx − ydeiytdt.

IV. STATISTICAL DESCRIPTION

Let us now develop a statistical description applying RPA
to the fieldsak

s0d. Since phases and the amplitudes are statis-
tically independent in RPA, we will first perform average
over the random phases(denoted ask. . .lc) and then we av-
erage over amplitudes(denoted ask. . .lA) to calculate the
moments,

Mk
spdsTd ; kuaksTdu2plc,A, p = 1,2,3, . . . .

First, let us calculateualsTdu2p as

ualsTdu2p = sal
s0d + eal

s1d + e2al
s2ddpsāl

s0d + eāl
s1d + e2āl

s2ddp

= ual
s0du2p + epual

s0du2p−2sal
s0dāl

s1d + āl
s0dal

s1dd

+ e2ualu2p−4fCp
2sal

s0dāl
s1dd2 + Cp

2sāl
s0dal

s1dd2

+ p2ual
s0du2ual

s1du2 + pual
s0du2sal

s0dāl
s2d + āl

s0dal
s2ddg + ¯ ,

whereCp
2 is the binomial coefficient.

Up to the second power ine terms, we have

kualsTdu2plc = ualu2p + e2ualu2p−2sp2kual
s1du2lc + pkal

s0dāl
s2d

+ āl
s0dal

s2dlcd. s7d

Here, the terms proportional toe dropped out after the phase
averaging. Further, we assume that there is no coupling to
the k=0 mode, i.e.,Vk1k2

k=0 =Vk1k=0
k1 =0, so that there is no con-

tribution of the terms likeksal
s0dāl

s1dd2lc. We now use Eqs.(4)
and (6) and the averaging over the phases to obtain

kual
s1du2lc = 2o

m,n

`

fuVmn
l u2dm+n

l uDmn
l u2uamu2uanu2

+ 2uVlm
n u2udl+m

n u2Dlm
n uanu2uamu2g,

3We will follow the RPA approach as presented by Galeev and
Sagdeev[3] but deal with a slightly more general case where the
wave field is not restricted by the conditionāskd=as−kd. We will
also use elements of the technique and notations of Ref.[2].
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kal
s0dāl

s2d + āl
s0dal

s2dlc = − 8ualu2o
m,n

`

fuVmn
l u2dm+n

l Es0,vmn
l duamu2

+ uVlm
n u2dl+m

n Es0,vlm
n dsuamu2 − uanu2dg.

Let us substitute these expressions into Eq.(7), perform am-
plitude averaging, and take the large box limit4 and then
largeT limit sT@1/vd.5We have

Mk
spdsTd = Mk

spds0d + Ts− pgkMk
spd + p2hkMk

sp−1dd, s8d

with

hk = 4pe2E dk1dk2n1n2fuV12
k u2d12

k dsv12
k d + 2uVk1

2 u2dk1
2 dsvk1

2 dg,

s9d

gk = 8pe2E dk1dk2fuV12
k u2d12

k dsv12
k dn2 + uVk1

2 u2dk1
2 dsvk1

2 dsn1

− n2dg. s10d

Now, assuming thatT is a lot less than the nonlinear time
sT!1/ve2d we finally arrive at our main result,

Ṁspd
k = − pgkMk

spd + p2hkMk
sp−1d. s11d

In particular, for the wave-action spectrumMk
s1d=nk, Eq. (11)

gives the familiar kinetic equation(KE)

ṅk = − gknk + hk = e2Jsnkd, s12d

whereJsnkd is the “collision” term[1,3],

Jsnkd =E dk2dk1sR12
k − Rk2

1 − R1k
2 d,

with

Rk12 = 4puV12
k u2d12

k dsv12
k dfn2n1 − nksn2 + n1dg. s13d

The second equation in the series(11) allows to obtain the
rms of the fluctuations of the wave actionkuaku2l, jk

2=Mk
s2d

−nk
2. We emphasize that Eq.(11) is valid even for strongly

intermittent fields with big fluctuations.

V. ANALYSIS OF SOLUTIONS: GAUSSIANITY VS
INTERMITTENCY

Let us now consider the stationary solution of Eq.(11),
Ṁspd

k =0 for all p. Then for p=1 from Eq. (12) we havehk

=gnk. Substituting this into Eq.(11) we have

Mk
spd = pMk

sp−1dnk,

with the solutionMk
spd=p! nk

p. Such a set of moments corre-
sponds to a Gaussian wave fieldak. To see how such a
Gaussian steady-state forms in time, let us rewrite Eq.(11) in
terms of relative deviations ofMk

spd from their Gaussian val-
ues,

Fk
spd =

Mk
spd − p ! nk

p

p ! nk
p , p = 1,2,3, . . . .

By definition, Fk
s1d is always zero. Forp=2, this expression

measures the flatness of the distribution of Fourier ampli-
tudes at eachk. This quantity determines the rms of the fluc-
tuations of the wave actionkuaku2l, or the mean level of
“noisiness,”

jk
2 = nk

2s2Fk
s2d + 1d.

Using Eq.(11), we obtain

Ḟk
spd =

phk

nk
sFk

sp−1d − Fk
spdd, s14d

for p=2,3,4, . . ..This result has a particularly simple form
of a decoupled equation forp=2,

Ḟk
s2d = −

2hk

nk
Fk

s2d.

Taking into account thathk.0, we see from this equation
that deviations of themeanlevel of fluctuations from Gaus-
sianity always decay. In fact, deviationsFspd decay at each
fixed p. This is easy to see from the general solution of Eq.
(14) (obtained recursively),

Fk
spdstd = e−puo

j=2

p
up−jp!

j ! sp − jd!
Fk

s jdst = 0d, s15d

where u=e0
t shk/nkddt8 is a “renormalized” time variable.

One can see that this expression decays exponentially as
t→` for any fixedp.

However, an interesting picture emerges at highp corre-
sponding to high wave amplitudes. Although the deviations
Fk

spd eventually decay at eachfixed p, their initial values
propagate inp without decay toward the larger values ofp.
Indeed, one can approximate Eq.(14) for p@1 by a first-
order PDE,

]tFk
spd +

phk

nk
]pFk

spd = 0.

According to this equation,Fk
spd propagates toward highp’s

as a wave. This wave does not change shape with respect to
coordinatex=ln p and, therefore, it spreads inp without
change in amplitude. The speed of this wave(in x) is time
independent for statistically steady states(i.e., whennk and
hk are time independent). Note that this dynamics occurs at
eachk practically independently, i.e., the only coupling of
different k’s occurs in the propagation speed viahk.

4The large box limit implies that sums will be replaced with inte-
grals, the Kronecker deltas will be replaced with Dirac’s deltas,
dm+n

l →dmn
l /V, where we introduced short-hand notation,dmn

l

=dskl −km−knd. Further we redefineMk
spd /Vp→Mk

spd.
5Note that lim

T→`
Es0,xd=Tfpdsxd+ iPs1/xdg and lim

T→`
uDsxdu2

=2pTdsxd (see, e.g., Ref.[2]).
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These solutions allow us to establish the character of in-
termittency in wave turbulence systems, i.e., to describe how
high-amplitude “bursts” occur with greater than Gaussian
probabilities. In terms of the probability distribution function
(PDF), the wave of non-GaussianityFk

spd toward high values
of p corresponds to a wave propagating from low-amplitude
“bulk” part to the high-amplitude “tail” on the PDF profile.
Indeed, a Gaussian PDF forak corresponds to a distribution
of l= uaku2 of form Psld=n−1e−l/n, and moment Mk

spd

“probes” this distribution in a range ofl aroundlp=pn with
a characteristic widthdl,n. Lifting Psld in this range by a
certain factor will result in an increase of momentMk

spd by
the same factor. Thus, the wave propagating from small to
large p’s corresponds to a wave from low to highl’s. This
wave is such that the relative deviation from distribution
Psld=n−1e−l/n remains unchanged, but the range ofl’s at
which such non-Gaussianity occurs moves into the tail(with
speedh) and spreads(proportionally to its position inl).
Note, however, that at eachfixed l deviations fromPsld
=n−1e−l/n decay, which corresponds to decay ofFspd at each
fixed p at large time.

Predictions(15) about the behavior of fluctuations of the
wave-action spectra can be tested by modern experimental
techniques which allow to produce surface water waves with
random phases and a prescribed shape of the amplitudeuaku
[11]. It is even easier to test Eq.(15) numerically. Consider,
for example, capillary waves on deep water. If a Gaussian
forcing at lowk values is present, the steady-state solution of
the kinetic equation corresponds to the Zakharov-Filonenko
(ZF) spectrum of Kolmogorov type[1,4]. It is given by

nk = Ak−17/4, s16d

with A=ÎPr3/2C/s1/4, whereP is the value of flux of energy
toward high wave numbers,r and s are the density and
surface tension of water, andC.9.85 [7]. The simplest ex-
periment would be to start with a zero-fluctuation(determin-
istic) spectrum and to compare the fluctuation growth with
the predictions of Eq.(11). Note that such no-fluctuations
initial conditions were used in Refs.[6,7].

Let us calculate the rate at which fluctuations grow for
such initial conditions. Sincenk andhk are time independent
in this case, we haveu=hkt /nk=gkt. Thus, the only quantity
we need to calculate isgk. Let us take into account that the
spectrumnk is isotropic, that is, it depends only on the modu-
lus of the vector, not on its directions. We then can perform
an angular averaging of Eq.(10) obtaining

gk = 8pe2E k1k2dk1dk2Skk1k2

−1 fuV12
k u2dsv12

k dn2 + uVk1
2 u2dsvk1

2 d

3sn1 − n2dg,

Sk12 =E dsk − k1 − k2ddu1du2

= 1
2
Î2fskk1d2 + skk2d2 + sk1k2d2g − k4 − k1

4 − k2
4.

s17d

Let us substitute ZF spectrum(16) into Eq. (17), take the
values ofvk andV12

k appropriate for the capillary waves on
deep water[Ref. [1], Eqs.(5.2.1–2)]. By changing the vari-
ables of integrations viak1=kj1,k2=kj2 we can factor out
the k dependence ofgk. Performing one ofj integrals ana-
lytically with the use of thed function inv’s, we perform the
remaining single integral numerically to obtain(all the inte-
grals converge),

g =
4.30A

16pr3/2k3/4,

where the dimensionless constant 4.30 was obtained by nu-
merical integration. Substituting the value ofA we finally
obtain

g = 0.84ÎPk3/4/s1/4.

Consequently, our prediction for the fluctuations growth is

jk
2 = nk

2s2Fk
s2d + 1d = A2k−17/2s1 − e−2gktd. s18d

Note that fluctuations stabilize at Gaussian values faster
for high k values. One can also substitutegk calculated for
the capillary waves into the solutions for the higherp’s, Eq.
(15). Again, the dynamics here is going to be faster at large
k’s because they correspond to higher values ofu=gt. In
particular, at largek there will be a faster wave toward higher
p’s. For the particular type of initial conditions we have
taken no initial fluctuations, this wave will describe the for-
mation of a Rayleigh distribution(corresponding to the
Gaussian statistics ofak) behind a propagating front on the
PDF profile. In a way, this dynamics is nonintermittent; zero
initial fluctuations grow to the Gaussian level but never ex-
ceed it.

It is also interesting to test our predictions when the initial
conditions, or forcing, are non-Gaussian, as in most practical
situations. Our theory predicts that non-Gaussianity of the
low-amplitude(bulk) part of the PDF will propagate without
decay into the high-amplitude tail at each fixedk. The speed
of this propagation is proportional togk and, therefore, will
be higher for largek’s in the case of the capillary waves. This
means higher intermittency in the low-k range in the case of
stationary forced turbulence.

VI. DISCUSSION

In this paper, we derived a hierarchy of equations(11) for
the one-point momentsMk

spd of the wave actionuaku2. This
system of equations has a “triangular” structure: the time
derivative of thepth moment depends only on the moments
of order p,p−1, and 1(spectrum). Their evolution is not
“slaved” to the spectrum or any other low moments and it
depends on the initial conditions. RPA allows the initial con-
ditions to be far from Gaussian and deviation ofpth moment
from its Gaussian value. Among two allowed extreme limits
are the wave field with a deterministic amplitudeuaku (for
which Mk

spd=nk
p) and the intermittent wave fields character-

ized by sparsek-space distributions ofuaku (for which Mk
spd

@nk
p).
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Equations(14) for the deviations from Gaussianity have
an interesting property that the nonlinear coupling between
different modesk occurs only via a rate constanth /n. By
removing this dependence into a “renormalized” timeu one
gets a linear system of equation which can be easily solved
in the general case, see Eq.(15). Analyzing these solutions
we showed that the deviation from Gaussianity decreases as
at each fixed amplitudeuaku. At the same time, we showed
that any initial non-Gaussianity at small amplitudes propa-
gates as a nondecaying wave toward the high-amplitude tail
of the PDF. This process describes the character of the wave
turbulence intermittency when high-amplitude wave bursts
occur in the system more frequently than predicted for
Gaussian fields. On the other hand, the assumption about the
weak nonlinearity breaks down when a high-amplitude burst
occurs in the system, leading to a failure of the RPA closure
to describe the PDF tails. One can conjecture that the result-
ing phase coherence will lead to a nonlinear amplitude satu-
ration which will stop the wave predicted by our theory
which, in turn, will lead to a stagnation and accumulation in
this region on the PDF tail. Thus, it is natural to expect even
stronger intermittency when the higher-order nonlinear ef-
fects are taken into account.

We would like to emphasize that the type of intermittency
discussed in the present paper appears within the weakly
nonlinear closure and not as a result of its breakdown as in
Ref. [10]. This intermittency is quite subtle and it occurs
only in the PDF tails and not in its core(which tends to a
Gaussian state). As a result, the lower moments will not feel

these rare bursts and they will evolve as predicted by the WT
closure. We have showed that this kind of intermittency in-
evitably occurs atall wave numbersk provided some initial
non-Gaussianity is present in the PDF core. Reference[10]
considers a different and a more dramatic kind of intermit-
tency which occurs simultaneously with the strong nonlin-
earity of the typical wave from the PDF core. This kind of
intermittency is more seldom and it takes place only in some
special parts of thek space(e.g., at very small scales). In
particular, it never occurs for the capillary waves considered
in this paper provided that only weakly nonlinear waves are
produced at the forcing scale.

The present paper deals with the three-wave systems only.
The four-wave resonant interactions are slightly more com-
plicated in that the nonlinear frequency shift occurs at a
lower order in nonlinearity parameter than the nonlinear evo-
lution of the wave amplitudes. To build a consistent descrip-
tion of the amplitude moments one has to perform a renor-
malization of the perturbation series taking into account the
nonlinear frequency shift. This will be done in a future pub-
lication.
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