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Abstract

The scope of this paper is to show the results obtained for simulating three-dimensional breaking waves by solving the
Navier—Stokes equations in air and water. The interface tracking is achieved by a Lax—Wendroff TVD scheme (Total Variation
Diminishing), which is able to handle interface reconnections. We first present the equations and the numerical methods used in
this work. We then proceed to the study of a three-dimensional plunging breaking wave, using initial conditions corresponding
to unstable periodic sinusoidal waves of large amplitudes. We compare the results obtained for two simulations, a longshore
depth perturbation has been introduced in the solution of the flow equations in order to see the transition from a two-dimensional
velocity field to a fully three-dimensional one after plunging. Breaking processes including overturning, splash-up and breaking
induced vortex-like motion beneath the surface are presented and disdisssiggtthisarticle: P. Lubin et al., C. R. Mecanique
331 (2003).
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Résumé

Simulation numérique directe tridimensionnelle du déferlement plongeantUne étude du déferlement tridimensionelle
est présentée sur la base de résultats obtenus par simulation numérique directe des équations de Navier—Stokes diphasiques.
Le suivi de l'interface est réalisé par I'utilisation du schéma TVD Lax—Wendroff (Total Variation Diminishing) qui permet de
gérer les reconnexions de l'interface. Le déferlement est obtenu a partir de l'initialisation dans un domaine semi-périodique
d’'une onde sinusoidale instable. Aprés présentation des équations et des méthodes numériques employées, une comparaison est
effectuée entre deux simulations tridimensionelles et une discussion est menée quant a la nécessité d'utiliser une perturbation
afin de destabiliser la symétrie du calcul. Les résultats obtenus sont alors comrRentéster cet article: P. Lubin et al.,
C. R. Mecanique 331 (2003).
0 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Keywords:Fluid mechanics; Navier—Stokes; Plunging breaker; Numerical simulation

Mots-clés :Mécanique des fluides ; Navier—Stokes ; Déferlement plongeant ; Simulation numérique

E-mail addressedubin@enscpb.fr (P. Lubin), stephane.abadie@univ-pau.fr (S. Abadie).

1631-0721/$ — see front mattell 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights
reserved.
doi:10.1016/S1631-0721(03)00108-6



496 P. Lubin et al. / C. R. Mecanique 331 (2003) 495-501

Version francaise abrégée

Le déferlement des vagues est un phénoméne fascinant qui joue un rdle de premiere importance dans les
processus cotiers. A la fois source de courants trés intenses et a l'origine de la majeure partie du transport
sédimentaire, il est en outre responsable d'événements critiques tels que I'érosion des plages ou la rupture
d’ouvrages cotiers. Or, bien que largement étudié depuis une vingtaine d’années, le déferlement reste encore un
probléme trés difficile & appréhender, aussi bien numériguement qu’expérimentalement.

Le probleme considéré est I'écoulement de deux fluides incompressibles non miscibles. Le systéeme d'équations
régissant I'’écoulement diphasique dans chacune des phases est les équations de Navier—Stokes, accompagnées de
la condition d’'incompressibilité (3), (4).

Il est a noter que la viscosité et la densité sont constantes dans les deux phases de I'écoulement. Ce sont des
fonctions du point que I'on détermine a partir de la position de I'interface entre les deux phases. Dans cette étude,
les équations de Navier—Stokes sont résolues par la méthode du lagrangien augmenté.

Du point de vue de l'interface, le déferlement se caractérise par des déconnexions et reconnexions créant de
nouvelles surfaces de toutes formes et de toutes tailles. Parmiles différentes méthodologies employées pour décrire
I’évolution temporelle de l'interface eau/air, nous utilisons un schéma explicite TVD Lax—Wendroff. L'interface
y est décrite par une fonction couledirtraduisant le coefficient de remplissage de I'eau dans chaque maille d’un
maillage fixe. Cette représentation permet de traiter naturellement le probleme de reconnexion de l'interface sur
elle-méme en comparaison a des méthodes a traceurs surfaciques. La valeur moyenne de laCf@ustiom
volume représente alors la fraction volumique d’eau dans ce volume.

Le déferlement est étudié a partir de l'initialisation dans un domaine semi-périodique d’une onde sinusoidale
instable. Une condition de symétrie est imposée sur les limites latérales et inférieure, tandis qu’une condition libre
est laissée en limite supérieure du domaine de calcul. Les premiéres simulations tridimensionelles effectuées ont
montré la nécessité de I'introduction d’'une pertubation dans les équations de I'écoulement afin de déstabiliser
le calcul. En effet, 'onde incidente étant initialisée a partir d'une solution bidimensionelle projetée sur
'axe transversal, nous avons constaté un comportement parfaitement symétrique de notre écoulement, celui-
ci ne produisant spontanément aucune structure purement tridimensionelle. Une simulation, effectuée avec une
perturbation numérique longitudinale, est alors analysée : on peut y voir un ensemble de structures comparables
avec celles identifiées par d’autres auteurs. L'écoulement dans I'air attire en outre notre attention.

1. Introduction

The problem of wave breaking has been widely studied in the last two decades, as it has implications in coastal
engineering, oceanography and naval hydrodynamics. As we can see in the works of Peregrine [1] and Christensen
et al. [2], great progress has been made in the knowledge of the breaking problem. The three-dimensional and two-
phase character of the problem and its turbulent behaviour make experimental and theoretical research difficult to
achieve. Since fully three-dimensional experimental techniques do not exist, three-dimensional flow structures
are therefore complicated to obtain with certainty. The recent progress in applied mathematics and computer
architecture offer the possibility of developing a numerical model based on the three-dimensional Navier—Stokes
equations to study the breaking phenomenon. The interest of this approach is to provide a complete descrition of
free surface and velocity evolutions in the two phases, which must lead to the understanding of energy dissipation
and turbulent flow structures.

Since breaker types are not only visually different in shape, but also in the kind of vortices they induce and in
the way turbulence will affect sediment transport, it is important to investigate and to demonstrate the ability of
the numerical tool to accurately describe the breaking phenomenon, considering the two media, air and water. This
is indeed a great difference between previous published works and the study we present in this paper. Moreover,
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we tried to investigate the possibility to see fully three-dimensional structures by introducing a pertubation we can
control in our flow equations, as the main goal of our future work is to study turbulence induced by breaking waves.

2. Conservation equations and approximation method
2.1. Single fluid formulation of Navier—Stokes equations

Let us consider the wave propagation problem as a two-phase flow involving a liquid phase (water) and a gaseous
phase (air).

A general Navier—Stokes model for all fluids is designed by convolving the incompressible Navier—Stokes
equations in each phase and the jump conditions across interface by an indicator fGretidty filtering the set
of equations thanks to a volume integral operator. This function characterises one of the fluids, water for example,
assuming the value 1 in the water zones and 0 in the others. The air parts are directly obtained as the complementary
1 — C of the water parts. Assuming the interface between the fluids as the discontinuity of the indicator function, it
is practically located by” = 0.5 isoline. Several correlation terms are discarded in the single fluid model assuming
the sliding between the phases to be negligible and no phase change occurs. The corresponding free surface flow
admits a continuous velocity field through the free surface and is locally isovolume.

Let u be the velocity fieldg the gravity vectorp the pressures the surface tension, the curvaturey the
viscosity ando the density. In a uniform Cartesian coordinate systen), associated with a bounded domain
the one-fluid model can be expressed as follows

w=up1, p=p1 ifC>05 (1)

mw=po, p=po ifC<05 (2)

V-u=0 3)
au

p(E"F(U'V)U):pg—Vp—i—V'[/L(VU-FVTU)]-FCTK&'HZ' (4)
aC

—+u-vC=0 5
o+ (5)

wheres; is a Dirac function indicating the location of the interfangis the unit normal to the interface apg, p1,
o andu are the respective densities and viscosities in each phase. Egs. (1) and (2) corresponds to a discontinuous
estimate of the physical characteristics. We proved this method to be less diffusive than the usual linear formula
used in the literature.

The evolutions of the free surface and the physical characteristics of the fluids are simultaneously represented
by means of Egs. (1)-(5). The free surface flow is analysed in terms of an equivalent single fluid whose variable
propertieso andyu are related teo, p1, no andus of the real two phases by the colour functién

2.2. Numerical methods

2.2.1. Interface capturing method and surface tension discretisation

All interface capturing methods are dedicated to solving the advection equation of a discontinuous indicator
function C through the reformulation of the transport equation with a smooth function. We choose to implement
the explicit Lax-Wendroff TVD (LWT) time-stepping scheme dedicated to volume fraction advection, widely
explained in Vincent and Caltagirone ([3] and [4]). This approach allows us to solve precisely free-surface flows
inducing strong tearing and stretching of interface which will occur in breaking water waves.

Due to the volumic representation of interface, the geometrical properties of intetrfégeand n; are not
directly accessible. To avoid calculating explicitly these free surface properties, they are modeled as a function
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of the volume fraction. The Continuum Surface Force (CSF) method of Brackbill et al. [5] is used to model the
surface tension acting in the Navier—Stokes equations (4).

2.2.2. Navier—Stokes solver

A Finite-Volume method on a staggered mesh is carried out to discretise the Navier-Stokes equations and
an augmented Lagrangian technique is investigated to solve the coupling between pressure and velocity in the
equations of motion (3), (4).

The discretisation of these equations is achieved through a second-order Euler scheme, or GEAR scheme, on
the time derivatives while a second order Hybrid Centered-Upwind scheme is devoted to the non-linear convective
terms and a second order centered scheme is chosen for the approximation of the viscous and the augmented
Lagrangian terms. The linear system resulting from the previous implicit discretisation is solved with an iterative
BICGSTAB (Bi-Conjugate Gradient Stabilised) algorithm, preconditioned under a Modified and Incomplete LU
(MILU) algorithm. All the references concerning the numerical methods can be found in [3] and [4].

3. Three-dimensional simulation of plunging wave breakers over a flat bottom

All our calculations are made with the densities and the viscosities of air and water.1768 kg- m—2 and
pw=1000kg m~3, u, =1855kg-mt-standu, =1"3kg-m*.s1), ando =7.5x 102N-mL.

The numerical method has been validated on different cases, as shown by Abadie et al. [6] and Lubin et al. [7],
such as dam-break flows, propagations of nonlinear steady water waves or solitary waves over horizontal beds in
periodic domains.

3.1. Definition sketch

As already shown in Vinje and Brevig [8], Abadie et al. [6], Chen et al. [9], Abadie [10], Lubin et al. [7], we
use initial conditions corresponding to unstable periodic sinusoidal waves of large amplitude, the initial quantities
being calculated from the linear theory. Such a wave cannot remain steady as the initial velocity field in water is
not stable with the initial wave profile. As it is not a steadily travelling wave and it is steeper than an irrotational
steady wave, these initial conditions lead to breaking waves. The overturning motion is therefore controlled by the
initial steepness and the dispersion parameter, which makes our approach interesting as we are then able to study
any breaker type by only varying these two parameters introduced latter on. We can study accurately the breaking
phenomenon in a smaller numerical domain, as it is periodical in the flow direction, compared to simulations
involving a shoaling wave breaking over a sloping beach.

The calculation domain is periodic in the flow direction (one wavelength long), with a symmetry boundary
condition in the lower and lateral limits, and a free boundary condition in the upper limit. The reference variables
of the initial incident wave are the celeritythe periodl’ and the wavelength, the densities and viscosities of air
and water media. The depth is defineddsnd the waveheight is referred Bs The flow motion is driven by the
Reynolds numbeRe= pcL/u,, the Froude numbeFr = c¢/\/gL, the density ratiop, /p., the viscosity ratio,
Wa/llw, the initial steepnesdi /L, and the dispersion parametdy,L. The last two dimensionless numbers are
respectively representative of the non linearity degree of the wave and the influence of the bottom on oscillatory
movement. Two ratios are constant in our woplg,/ 1, = 1.85x 10~2 and p,/pw = 1.1768x 102, as we are
only interested in simulating breaking waves in real conditions.

Three-dimensional simulations are realised with the two-dimensional iitial) solution spread in the-
direction. As a periodic condition is imposed in the direction of wave propagation, the wave moves out of the
domain on the right side to re-enter on the left side.
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3.2. Free surface and vortex analysis

Once we validated the breaking process described briefly in terms of wave overturning and splash-up occurrence
[7], which is in accordance with the general observations found in the literature, we then proceed to the study of
another plunging breaking wave by the same method. We choose to simulate and present a plunging breaker with
H/L =0.13andd/L =0.17, as shown hereafter (Fig. 1(a)). We present the initial condition@ith0.5, without
the velocity field vectors, in order to see the water medium. The interface is chosen 6 be(b. We recall that
the full Navier—Stokes equations are solved both in air and in water.

Two simulations are carried out with the same parameters, but the first one was done without pertubation and
the second one with a long-shore depth perturbation, so we could compare the different structures we get. We use
a regular cartesian grid of 250100x 25 points. The time step is approximately 0.1 ms.

During our simulations, we observed the velocity field did not develop spontaneously any three-dimensional
flow structures and we did not see any difference with two-dimensional simulations proceeded with the same
parameters. As a matter of fact, it seemed obvious to conclude that we would not be able to study turbulence
induced by breaking waves if no pertubation is introduced one way or another in this already unsteady wave. It
seems natural to consider any physical parameter we can control in our problem, a pertubation coming from a
numerical scheme would not be acceptable as it would be hard to evaluate and so to rely on. That is why we

(b)

(d)

Fig. 1. Three-dimensional simulationd,/L = 0.13,d/L =0.17,C > 0.5. (a)r =0s, (b)r =0.18 s, (c)f =0.28 s, (d) =0.35s, (ey =0.42s.
Fig. 1. Simulations tridimensionelle& L. = 0,13,d/L =0,17,C > 0,5. (@)t =0s, (b)r =0,18 s, (c)f = 0,28 s, (d) = 0,35 s, (¥ = 0,42 s.
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naturally consider a change of depth as we initialise our flow equations: the free surface is kept uniform in shape
and the velocity field (6) has the information of a variation of depth from the pertubed bdttena + ¢, ¢ being

a small quantity chosen to vary linearly along thexis. This numerical perturbation leads to an unsymmetrical
flow with respect to the long-shore axis.

wH chkz <% wH shkz
2 shkar 0% YT T shiar
with o being the angular frequency akhdhe wave number.

We checked no difference appeared before the jet impact between the two simulations, the distance of the
impact being the same. The perturbation does not influence the overturning motion. Before plunging, the flow
remains two-dimensional. The splash-up generated rises as high as the initial waveheight. A second jet is then
generated and this process is observed to repeat, each successive splash-up being weaker than the preceeding one.
The perturbation starts to grow when the second jet is falling down. We can then comment fully three-dimensional
big-scale structures that appear as, for example, the two counter-rotative vortices showed in different vertical slices
(Fig. 2), the interface being located with= 0.5.

When the first jet is formed and falls down, a large amount of air is entrained in the water (Fig. 1(b)). The air
resists, as it is envelopped by the tongue of water, and induces a great shear rate at the free-surface. A first vortex is
then formed. This topologically generated vorticity is one of the greatest source of turbulence. The flow becomes
very turbulent and violent in both media. We can then see that we got a high splash-up (Fig. 1(c)) generating two
counter-rotative vortices (Figs. 2 and 3), as observed by Bonmarin [11], and three co-rotative vortices (Figs. 1(e)
and 3), as observed by Miller [12] or Sakai et al. [13]. We could see some gas pockets rising to the free surface and
the air exploding as a spout (Fig. 1 (d) and (e)). We show the velocity field in both media at the instad0 s
(Fig. 2). We can see the dipole formed by the two counter-rotative vortices separating as one of them is stretching
and rising to the surface (Figs. 2(a) and 3(b)), due to the buoyancy effect. We can notice the topologically generated
vorticity, the flow between the two counter-rotative vortices being due to the impact of the projected tongue of
water. The air entraped in the biggest vortex is rising on one side of the domain as it is still sinking and rotating at
the other side. The tube is then twisting along thaxis, whereas in the nonperturbed case the tube stays straight

ug = sinkx (6)

@ (b)
Fig. 2. Anisotropy of the counter-rotative vortices and the velocity field alongytagis — zoom, vertical slices. (a) Frontside, (b) middle,
(c) backside.

Fig. 2. Vortex contra-rotatifs et champs de vitesse — gros plan, coupes vert€aed,5,r = 0,40 s.

(@) (b)

Fig. 3. Counter-rotative and co-rotative vortices — zoom, frontside view of the domain=@)35 s, (b)r =0.41 s.
Fig. 3. Vortex contra et co-rotatifs — gros plan, vue de coté: €ap,35 s, (b)r = 0,41 s.
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as it is dragged to the bottom. We can also notice on the pictures (Fig. 2) that we can see through the tube of air
entraped in the volume.

The next step will be to study the effect of the size of our computational domain ip-theection with a
periodic boundary condition. Great care will be taken to ensure that enough room is left to let any three-dimensional
structures develop without being constrained by an artificial box effect. We will also vary the long-shore pertubation
in order to investigate its influence on the flow. The flow induced in the air will also be investigated in details.

4. Concluding remarks

As the purpose of our future work is to improve the understanding of turbulence induced by breaking waves,
we have obtained promising results, assuming that three-dimensional simulations without a turbulence model of
any kind would give a reasonable indication of the processes which happen when waves break, considering that
the initial flow is irrotational. We used an artificial way of making the wave break as it is not a real bathymetric
variation that leads to the overturning motion, but an unsteady initial condition. The next step will be to describe
turbulence induced by solitary waves breaking on beaches by large eddy simulation, as Watanabe et al. [14] and
Christensen and al. [15].
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