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Underwater Noise Emissions From Bubble 
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Abstract-By means of an effective equation model for the propaga- 
tion of pressure waves in a bubbly liquid, the normal modes of oscilla- 
tion of regions of bubbly liquid in an otherwise pure liquid are calcu- 
lated for some simple geometries. It is shown that the frequencies of 
oscillation of snch bubble clouds can be very much lower than those of 
the constituent bubbles in isolation and fall well within the range where 
substantial wind-dependent noise is observed in the ocean. A compari- 
son with some experimental data very strongly supports the theoretical 
reSUltS. 

I. INTRODUCTION 
N THE OCEAN, bubble clouds are incessantly formed in I the upper layers by the breaking of waves and are trans- 

ported to depths of tens of meters by Langmuir circulation, 
turbulence, and other mechanisms [ 11, [2]. One might expect 
these bubbles to contribute substantially to the underwater 
ambient noise, since wave breaking is a catastrophic event 
that will certainly impart them an appreciable initial energy 
[3]-[7]. That a substantial part of this acoustic emission 
could be at frequencies well below a few kilohertz, however, 
may at first sight be surprising. Indeed, from the approximate 
relation 

relating the bubble radius a to its natural frequency vo = 
w0/27r, one finds, for example, Y,, = 2.8 kHz for a bubble 
having the radius of 1 mm in water (density p = 1 g/cm3) at 
normal ambient pressure (Po = 1 atm). However, bubbles in 
a cloud are in effect coupled oscillators, and one can there- 
fore expect the existence of normal modes of the cloud itself 
at a substantially lower frequency than that of the individual 
constituent bubbles. An alternative argument leading to the 
same conclusion may be based on the observation that the 
speed of sound in a bubbly mixture can be an order of 
magnitude smaller than in the pure liquid, even at gas-volume 
fractions less than 1 % . Therefore, to a first approximation, a 
region of bubbly liquid can be considered as enclosed by a 
rigid boundary and will then possess normal modes. How- 
ever, the fact that the boundary is not really rigid has the 
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consequence that the acoustic energy “trapped” in the bub- 
bly region will leak out into the pure liquid. 

The frequencies wk of these normal modes are readily 
estimated as follows [7]. Let the cloud have linear dimen- 
sions of order L. Then, from the analogy with similar 
systems [8], one expects eigenfrequencies of the order of 
wk 2: kc,/2L, k = 1,2; * -, where c, is the effective speed 
of sound in the bubbly mixture given approximately by the 
well-known expression [9] - [ 1 11 : 

PO c= = - 
P P  

where /3 is the gas-volume fraction. If the constituent bubbles 
have a radius of order a, the gas-volume fraction may be 
estimated by /3 - (a3/L3)N, where N is the number of 
bubbles in the cloud. In this way we find: 

(3) 

The volume fraction here is raised to such a low power that 
the result is nearly independent of this variable. Hence all the 
frequencies, and in particular the lowest one corresponding to 
k = 1, are predicted to decrease essentially as the cube root 
of the bubble number. For N - 1O00, the frequency reduc- 
tion with respect to the single-bubble case would be of one 
order of magnitude (71. 

The preceding estimate can be put on a firmer ground by 
means of a model of a bubbly liquid which is adequate up to 
gas-volume fractions of a few percent. The model, which 
regards the gas-liquid mixture as a continuum governed by 
effective equations, is essentially due to Foldy [12], and has 
been rederived by many others, in particular in [13]. Its 
predictions have been compared with experiment, most re- 
cently in [14], and a very good agreement was found. For 
completeness we briefly present the linearized version of this 
model in the next section. A series of papers containing 
detailed applications of it to the generation and scattering of 
sound by bubble clouds of different shape and in a number of 
situations is being prepared. The present study is a survey of 
the results on the generation of noise contained in these 
papers. 

II. MATHEMATICAL FORMULATION 
The averaged continuity and momentum equations applica- 

ble to a bubbly liquid at small gas-volume fraction may be 
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written (see, e.g., [14, and references therein]): 

1 ap a0 -- + v - u = -  
p ~ 2  at at (4) 

au 

at 
p- + V P  = 0 

where U and P denote the average local center-of-mass 
velocity and pressure fields in the mixture, and c is the speed 
of sound in the pure liquid. In the present study, for simplic- 
ity, we assume the bubbles to have all the same equilibrium 
radius, and therefore the instantaneous gas volume fraction 0 
is given by 

4 '  
p(x, t )  = - 7 r n ~ ~ ( x ,  t )  

3 

where n denotes the number of bubbles per unit volume, 
which can be taken to be a constant at small @ [13]. Here 
R ( x ,  t )  denotes the instantaneous radius at position x and 
time t of a bubble having the equilibrium radius a. 

Since in this study we shall confine ourselves to linear 
waves, there is no need to give in full detail the nonlinear 
formulation of a bubble response model that can be found in 
[14]. Let us simply set, 

and note that, as shown in [l5], for a time dependence 
proportional to exp i d ,  the internal pressure p has the form: 

R = a(l + X) 

P = Pe(1 - ax) 

(7) 

(8) 
where pe is the equilibrium value 

20  
a 

pe = Po + - (9) 

with U the surface tension, and 

with y the ratio of specific heats and 

D 
w a2 X = -  

in which D is the thermal diffusivity of the gas. With these 
results, it can be shown [14], [15] that the response of the 
bubbles to a harmonically oscillating average pressure field is 
given by 

where Po is the undisturbed static pressure in the medium, 
and the natural frequency of the bubble oo and effective 
damping constant b are given by 

w i =  - Re@ - - $( :;) 
w2a 2P 

pa2 2pwa2 2c 
+- Im@ + -. b = -  
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If the effect of surface tension is disregarded and the low- 
frequency result Re @ = 3 is used, (13) reduces to the result 
(1) quoted before. As for the damping constant b, its three 
contributions arise from viscosity, heat transfer, and acoustic 
radiation, respectively. 

Upon elimination of the velocity field between (4) and (5), 
use of (6) and (12), and linearization, we find the following 
effective wave equation valid for a time dependence propor- 
tional to exp i w  t : 

(15) V 2 P  + k k ( P  - Po) = 0 

where k, is the effective wave number in the mixture given 
by the dispersion relation, 

oL na 
C2 

kk = - + 4uw2 (16) o; - o2 + 2ibw 

The effective speed of sound in the mixture c ,  = o / k ,  is 
given by 

C 2  4xc2na 
(17) _ -  - 1 +  

oi - o2 + 2ibo  
' 

Cm 

The second term in the right-hand side is usually much larger 
than 1. With this approximation, and noting that at low 
frequencies the denominator can be approximated simply by 
w$ if (1) is used for this quantity, the result (2) previously 
quoted is recovered. 

We show in Fig. 1 a graph of the phase velocity V of the 
waves as predicted by (17) as a function of the frequency v 
in water at 1 bar pressure for bubbles with equilibrium radii 
of 0.1, 1, and 3 mm. (It should be noted that, upon writing 
c /c ,  = U - iv, the actual phase velocity of the waves is 
given by C / U ,  rather than Re c,.) The low-frequency limit is 
essentially given by (2), with the slight differences due to 
deviations from perfectly isothermal conditions. The high- 
frequency limit is the speed of sound in pure water, approxi- 
mately 1500 m/s. The rapid dips in the curves occur near the 
resonance frequencies of the bubbles equal, from (13), to 
31.6, 3.24, and 1.09 kHz, respectively. In general appear- 
ance, these results are very reminiscent of those for the 
dielectric constant of materials in the neighborhood of the 
region of anomalous dispersion and arise, of course, from 
similar physical reasons [ 161. 

The fact that both the expressions for k ,  ,and c ,  are 
complex indicates that the propagation of sound in the mix- 
ture is accompanied by an exponential attenuation. The en- 
ergy lost by the wave is used to overcome the viscous and 
thermal dissipation affecting the oscillation of the individual 
bubbles as described by the first and second terms of (14) for 
b. However, as described by the last term of (14), each 
bubble is also a scatterer of sound. Contrary to the other two, 
this mechanism does not lead to a dissipation of the acoustic 
energy into heat, but merely to the transformation of part of 
the acoustic energy contained in the coherent field into acous- 
tic energy of the incoherent field. 

In the situations modeled in the following, we shall assume 
that the bubbly mixture is separated from the pure liquid by 
geometric surfaces. Suitable continuity conditions at these 
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I a = O l m m  _.... I 
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v I k H z )  
Fig. 1.  Phase speed of pressure waves in bubbly water containing 1 % air 

concentration by volume as a function of the waves’ frequency. The dotted 
line is for a bubble radius a = 3 mm (with a corresponding natural 
frequency of 1.087 WIZ), the solid line for a = 1 mm (3.24 kHz), and the 
dashed line for a = 0.1 mm (31.55 IrHZ). 

surfaces have been given in [14] and [17]. Here we shall just 
quote those results. If the superscript “0” denotes quantities 
pertaining to the pure liquid, we shall require that 

u - n = u 0 . n  (18) 

PO = P (19) 
where n is the unit normal to the interface. These two 
relations derive from the requirements of conservation of 
mass and momentum across the interface to the same first 
order in fi at which the averaged field equations (4) and (5) 
are valid. A more convenient formulation of (18), valid in the 
present time-harmonic case, can be obtained from (3, and is 

V P - n = V P o - n .  (20) 

III. BUBBLE LAYERS 
The simplest case is that of a layer of bubbly liquid 

bounded by two infinite planes a distance L apart and parallel 
to the (U, z )  plane. By restricting our attention to pressure 
waves propagating only in the x direction, we are thus 
dealing with effectively one-dimensional situations. We con- 
sider two cases: A screen in an infinite liquid, and a screen 
adjacent to a pressure-release surface. In the ocean, the first 
situation would model, for example, the bubbles transported 
downward by descending Langmuir currents [2] .  The second 
case would instead correspond to the bubbly layer that nearly 
permanently covers the Ocean surface [ 11. We take the bub- 
bly liquid to occupy the region 0 < x C L, with the liquid 
extending to infinity in the positive x-direction. In the mix- 
ture region, @e solution of the effective wave equation (15) is 

P = Po + B, sin ( k , x )  + B2 cos ( k , x ) .  (21) 

Since we are considering the normal-mode situation in which 
the acoustic source is the screen, we need only be concerned 
with outgoing waves, and therefore the solution in the pure 
liquid to the right ( x  > L )  of the screen is 

P!= Po + A,exp [ - i k ( x  - L ) ]  

where k = w/c is the wave number in the pure liquid. 
For the first. case of a layer in an infinite liquid, the region 

- 00 < x < 0 is also occupied by pure liquid and, here, 
outgoing waves have the form: 

P ! =  Po + A, exp [ ikx] . ( 2 3 )  

Upon application of the boundary conditions (19) and (20) to 
(2 1)- (23), one finds a linear homogeneous system that admits 
two classes of solutions. Modes of oscillations with a pres- 
sure distribution symmetric about the screen’s midplane have 
the characteristic equation, 

km 
cos ( k , L / 2 )  + i-  sin ( k , L / 2 )  = 0. 

k (24) 

Antisymmetric modes have instead the characteristic equa- 
tion, 

k 
cos ( k , L / 2 )  + i-  sin ( k , L / 2 )  = 0. (25) 

For the case of a bubbly layer adjacent to the free surface, 
the plane x = 0 is a pressure-release surface, and the bound- 
ary conditions (19) and (20) must be applied only at x = L, 
while at x = 0 we simply impose, 

km 

P =  Po. (26) 

(27) 

In this way we are led to the characteristic equation: 

k 
cos ( k , L )  + i-  sin ( k , L )  = 0. 

km 

It is clear that this solution corresponds to the odd one of the 
previous case for a screen twice as thick, as could have been 
anticipated, and need not be considered specifically. 

Equations (24) and (25) are to be solved for the complex 
eigenfrequencies , 

o = 27rv + i a  

of the oscillations of the bubbly layer. The task is far from 
trivial in view of the complexity of the roots, and it has been 
accomplished by a preliminary analysis based on the Nyquist 
criterion later refined by a secant method. Reference [18] 
contains details of the technique. We present a number of 
results in Figs. 2 to 7 .  

In Fig. 2 we show the real part v of the eigenfrequencies 
of the first four normal modes as a function of the gas-volume 
fraction f i .  Odd-numbered modes are obtained from (25), 
and even-numbered ones from (24). The layer thickness is 
0.1 m and the bubble radius 1 mm. Each bubble in isolation 
would have a frequency of 3.24 kHz, but it is obvious from 
the figure that the collective effects lead to dramatically 
smaller frequencies for the cloud as a whole. The imaginary 
part CY of the eigenfrequencies (i.e., the decay rate) is plotted 
for the same case in Fig. 3 .  

To illustrate the effect of the bubble radius, we include in 
Fig. 4 a comparison of the first and third mode for bubbles 
having radii of 1 and 0.1 mm. For mode 1 the eigenfrequen- 
cies are away from resonance for both radii, and the results 
for the values of the radii are very close. For mode 3, 
however, the eigenfrequencies are close to the natural fre- 
quency of the 1-mm bubbles, and the corresponding large 

(28) 

I I 
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0 1 : : : : : : : : : : :  1 

5 ( 1 )  
The first four eigenfrequencies of a 0.1-m-thick bubbly layer in 

water according to equations (24) and (25) as a function of the air-volume 
fraction. The bubble radius is 1 mm. 
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Fig. 3. Decay rate of the first four eigemodes shown in the preceding 
figure as a function of the. air-volume fraction. 
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Fig. 4. Effect of the bubble radius on the eigenfrequencies of modes 1 and 
3 for the case of the previous two figures. 

effect on the phase velocity visible in Fig. 1 is reflected in the 
large difference between the two results. A similar picture 
emerges from Fig. 5 ,  showing the damping rate for the same 
cases. Fig. 6 compares the results given by use of the correct 
expression (17) for c, for the case of bubbles with radii of 2 
and 4 mm (resonance frequencies of 1.63 and 0.816 kHz, 
respectively) with those obtained from the simple approxima- 
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Fig. 5 .  Effect of the bubble radius on the decay rate of modes 1 and 3 for 
the case of Figs. 2 and 3. 
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The eigenfrequency of the lowest mode as predicted by the correct 

equation (17) for bubble radii of 2 and 4 nun, and by the simple 
approximation (2), for the case of Figs. 2 and 3. 

Fig. 6. 
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Fig. 7. Effect of the layer thickness on the eigenfrequency of the first three 
modes for an air-volume fraction of 1 % . 

striking and extends well into the region of oceanic ambient 
noise dominated by shipping [ 191. 

IV. SURFACE CLQUD 
Another situation that is readily amenable to analysis is the 

case of a hemispherical cloud of radius R ,  at a pressure-re- 
tion (2). The results are in close agreement at the larger 
values of 6 ,  where the eigenfrequencies are small, but differ 
markedly for 6 + 0. Finally, in Fig. 7, we show the effect of 
the layer's thickness on the first three eigenmodes, again for 
6 = 1% and a = 1 mm. The very rapid decrease is quite 

lease plane surface. In an oceanic environment, this may be 
regarded as a very simple model of the bubble plume gener- 
ated by an isolated wave-breaking event, and is therefore of 
particular relevance to the problem of underwater-noise gen- 
eration. Since the problem is linear we can consider the 
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different modes separately, and we therefore write the solu- 
tion of the Helmholtz equation (15) inside the plume in the 
form: 

P ( r , e ,  4) = B,nj,(kmr)Y,n(e, 4) (29) 

where the requirement of vanishing pressure on the plane 
0 = fu requires that I + n be odd. A suitable form for the 
pressure field in the surrounding pure liquid is 

Po(r ,e ,4)  = A,,h$2'(kr)Y,n(0,4).  (30) 

The imposition of the interface conditions (19) and (20) at 
r = R ,  gives the characteristic equation, 

where x = k,R,  and s = kR,. This equation is solved 
numerically in the same way as in the previous case. 

To illustrate these results, we study only axisymmetric 
modes for which n = 0, and are therefore forced to consider 
odd values of 1. Figs. 8 and 9 show the eigenfrequency and 
the decay rate for the modes I = 1,3 ,5  as a function of the 
gas-volume fraction for a cloud radius of 1 m and bubbles of 
1-mm radius. Again, the very low frequencies of oscillation 
predicted by these results are quite striking. The following 
figure shows the damping rates defined by (28). The effect of 
the cloud radius on the I = 1 mode, both real and imaginary 
parts, is shown in the Figs. 10 and 11. The scaling (3) is very 
well supported by these results. 

V. CYLINDFUCAL CLOUD 

We now turn to the case in which the bubble cloud is 
bounded by a cylindrical surface of radius R,. From the 
point of view of oceanic noise sources, such a configuration 
looks rather artificial. Our only reason for addressing it here 
is the fact that some recent experiments have been conducted 
with this geometry [20], so that a comparison with the 
theoretical predictions is possible. 

Again we consider the different modes separately and write 
the solution of the Helmholtz equation (15) in the bubbly 
region in the form: 

P = B , , J f l ( r ~ ~ ) e i K z e ' " B .  (32) 
To simulate the experimental situation to be described shortly, 
we take the surrounding pure-liquid region to be bounded by 
a rigid concentric circular wall of radius R f ,  on which the 
condition, 

u o . n  = O (33) 
must be imposed. The solution in the pure liquid may be 
written as 

where 

0 . 0 4 :  : : : : : : ~ : :  : 
1 2 3 4 5 

B 1 % )  

Fig. 8. The 6rst three eigenfrequencies of a 1-m-radius hemispherical 
bubble cloud at the water surface according to equation (31) as a function 
of the air-volume fraction. The bubble radius is 1 nun. 

0 2  0 4  0 6  0 8  I O  
0 0 1  : : :  : : : : : : L 

0 0  
R, ( m )  

Fig. 10. Effect of the cloud radius R ,  on the frequency of the lowest 
eigenmode of the hemispherical cloud considered in the previous two 
figures. The air-volume fraction is 1 %. 

Upon imposing the interface conditions (19) and (20) at R, ,  
we then find the characteristic equation: 

with 

X =  d V R ,  

S =  m R c  
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0 2  0 4  0 6  0 8  I O  
v -  . 
0 0  

R, ( m l  

Fig. 11. Effect of the cloud radius R ,  on the damping of the lowest 
eigenmode of the hemispherical cloud considered in Figs. 8 and 9. The 
air-volume fraction is 1%.  

y = dk2 - K’ R ,  

and 

. . . .  

These equations can be somewhat simplified in the case of 
n = 0, in which they become: 

and 

Hi2’( y )  Hi1)(  s) 

Hi]) (  y )  Hi”( s) . 
K =  -- (39) 

Details of the experiment will be published elsewhere [20]; 
a brief summary is adequate here. The data were taken in a 
square tank with sides of 1 m. A circular bank of hypodermic 
needles was placed in the center of the tank, with the tip of 
the needles at a depth h below the free surface. High-pres- 
sure air was fed through the needles, and different gas-volume 
concentrations in the resulting bubble column were obtained 
by varying the air flow rate. The bubble radius was in the 
range of 1.5-2.5 mm. The underwater sound in the tank was 
recorded with a hydrophone and was Fourier-analyzed. The 
spectrum always contained a prominent low-frequency peak, 
which is interpreted as being due to the self-induced oscilla- 
tions of the bubble column. Measurement of the mode shape 
in the vertical z-direction shows a pressure profile very close 
to a sinusoidal half-wave, and accordingly we shall take 
K = r / h  in (38). 

Fig. 12 shows a comparison between the lowest mode 
predicted by (38) and the measured results for bubble columns 
of three different radii-70, 54, and 46 mm. Here the bubble 
radius has been taken to be 1.5 mm, and the “equivalent” 
cylindrical tank radius R f  7 0.75 m. As shown in Fig. 13, 
in which the effect of Rf is Illustrated, and in Fig. 14, which 
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- R, = 7.0 c m  
R, - 5 . 4  c m  
R.. = 4 . 6  c m  
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0 0  0 5  1 0  1 5  2 0  2 5  3 0  

6 ( % I  
Fig. 12. Measured values of the lowest eigenfrequencies of a cylindrical 

bubble cloud compared with theory, equation (38). The squares and the 
continuous line are for a cloud radius R ,  = 70 mm, the triangles and the 
dotted line for R, = 54 mm, and the diamonds and dash-and-dot line for 
R ,  = 46 mm. Column height h = 0.82 m. 

0 6  
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............. 
- R, = 75 c m  

R, = 65 cm 

R, 55 crn .. 

0 0  : : : : : : : : : : :  1 
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6 ( % I  
Fig. 13. Effect of the tank radius on the results of the previous figure for 

R ,  = 70 m, U = 1.5 mm, and h = 0.82 m. 

0 6  I\ - a = 1 .5  mrn 
a = 2.0 mm 
a = 2.5 mm 

............. 
. 

t t 
0 0  : : : : : : : : : : :  1 

0 0  0 5  1 0  1 5  2 0  2 5  3 0  

E I%)  

Fig. 14. Effect of the bubble radius on the results of Fig. 12 for R ,  = 0.75 
m, R ,  = 70 mm, and h = 0.82 m. 

indicates the dependence of the results on the bubble radius, 
both quantities have a negligible effect on the results. There- 
fore it may be fairly stated that the exceptionally favorable 
comparison of theory and data in Fig. 12 involves no ad- 
justable parameter. Such a result is extremely gratifying and 
lends considerable support to the validity of the theory de- 
scribed in this paper. 

The decay rate of the oscillations is, as in the previous 
case, in the range of a few tens of s-I. The corresponding 
decay time is relatively short, but the prominence with which 
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the peak appeared in the Fourier transform of the recorded 
signal indicates that the oscillations were relatively energetic. 
This may be somewhat unexpected, because the only source 
of energy in the system was the process of bubble detachment 
from the needles and the upward motion of the bubbles. This 
circumstance suggests that cloud resonances are easily ex- 
cited and that an appreciable amount of noise is likely to be 
emitted by the clouds produced by such energetic events as 
wave breaking. 

VI. CONCLUSIONS 
We have presented an analysis of the oscillations of bubble 

clouds of simple geometrical shapes. In one case for which 
data are available, the predictions of the theory agree remark- 
ably well with experiment. Qualitatively, the most important 
conclusion which can be drawn from our analysis is the 
existence of collective modes of oscillation of the clouds one 
or two orders of magnitude below the natural frequency of 
the constituent bubbles. This is the range below 1 kHz where 
considerable wind dependence of oceanic ambient noise is 
found [19], [21]. 

Before the hypothesis that these bubble clouds contribute 
significantly to oceanic ambient noise can be unambiguously 
proven, it is necessary to study in detail the manner in which 
these clouds are energized, the spectrum and intensity of the 
acoustic emission from real wave-breaking events, the bubble 
content of the plume, etc. This is clearly a major experimen- 
tal task. Our objective here was simply to show that the 
possibility is a real one, and is compatible with the limited 
data presently available. 
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