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[1] Communities of benthic organisms can form very rough surfaces (canopies) on the
seafloor. Previous studies have shown that an oscillatory flow induced by monochromatic
surface waves will drive more flow inside a canopy than a comparable unidirectional
current. This paper builds on these previous studies by investigating how wave
energy is attenuated within canopies under spectral wave conditions, or random wave
fields defined by many frequencies. A theoretical model is first developed to predict how
flow attenuation within a canopy varies among the different wave components and
predicts that shorter-period components will generally be more effective at driving flow
within a canopy than longer-period components. To investigate the model performance,
a field experiment was conducted on a shallow reef flat in which flow was measured
both inside and above a model canopy array. Results confirm that longer-period
components in the spectrum are significantly more attenuated than shorter-period
components, in good agreement with the model prediction. This paper concludes by
showing that the rate at which wave energy is dissipated by a canopy is closely linked to
the flow structure within the canopy. Under spectral wave conditions, wave energy
within a model canopy array is dissipated at a greater rate among the shorter-period wave
components. These observations are consistent with previous observations of how
wave energy is dissipated by the bottom roughness of a coral reef.
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1. Introduction

[2] Dissipation due to bottom friction is an important
mechanism affecting the propagation and transformation of
surface waves in nearshore environments, especially when
the morphology of the benthos is considered hydraulically
‘‘rough.’’ Through dimensional arguments, Jonsson [1966]
proposed that wave friction factors, which relate maximum
bed stresses and rates of wave energy dissipation to near-
bottom orbital velocities, depend on the ratio of the hori-
zontal wave excursion amplitude A1 to some roughness
length scale kw. Numerous experiments conducted in the
following decades confirmed this assertion, producing
robust empirical relationships capable of relating wave
friction factors for rough bottoms to this dimensionless
ratio, A1/kw [Madsen, 1994; Nielsen, 1992; Swart, 1974].

[3] Dalrymple et al. [1984] provided an alternative ap-
proach to modeling the dissipation of wave energy over
very rough surfaces, termed ‘‘canopies,’’ by calculating the
work done by a wave-driven flow on an idealized canopy
formed by an array of vertical cylinders. Their model could
be used to derive wave friction coefficients on the basis of
simple geometric properties of a canopy, thereby linking
large-scale dissipation of wave energy directly to small-
scale flow interactions with individual canopy elements. A
key assumption in their model, however, was that the local
velocity field within a submerged canopy was equal to the
free-stream velocity above the canopy. Moreover, the
Dalrymple et al. [1984] formulation predicts that the wave
friction coefficient depends only on the canopy geometry
and is thus independent of the wave conditions (i.e.,
independent of A1/kw). This assumption contradicts deca-
des of studies on wave dissipation over rough surfaces,
including measurements through vegetated canopies [e.g.,
Dubi and Torum, 1997]. As a consequence, Mendez and
Losada [2004] later modified the Dalrymple et al. [1984]
model by forcing the drag coefficient in the model to be a
function of A1/kw, where in their study kw was taken as the
canopy element diameter. However, other than producing
good agreement between the predicted and observed dissi-
pation for this data set, no physical explanation was offered
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for why the drag coefficient should depend so strongly on
A1/kw.
[4] Recently, Lowe et al. [2005b] (hereinafter referred to

as LKM) conducted laboratory experiments and developed
an analytical model to investigate the flow structure induced
inside a submerged canopy by wave-driven oscillatory flow.
Their model was developed by considering the momentum
balance around individual canopy elements within a larger
canopy, which for their case was constructed from an array
of staggered circular cylinders. LKM demonstrated that
flow inside a canopy was always less than above the
canopy, and that the degree of flow attenuation varied as
a function of canopy geometry parameters, for example, the
height and spacing of the elements, as well as coefficients
that parameterize the effects of various forces exerted by the
canopy elements. LKM further showed that A1 was the
single relevant wave parameter affecting the attenuation of
flow inside the canopy, and identified three flow regimes
governing the balance of momentum within a canopy:
(1) one in which A1was sufficiently small such that inertial
forces dominate flow attenuation, resulting in the minimum
attenuation of flow inside the canopy; (2) another where A1
was sufficiently large (i.e., quasi-unidirectional) such that
the shear stress at the top of the canopy balances the canopy
drag force, resulting in the maximum attenuation of the in-
canopy flow; and (3) a final regime in which canopy drag,
inertial and shear forces all made significant contributions to
the momentum balance, leading to intermediate attenuation
of the canopy flow.
[5] The attenuation of flow inside canopies is an impor-

tant aspect of canopy flows which, to the best of our
knowledge, has not yet been incorporated into prior models
of dissipation by rough surfaces (canopies). We hypothesize
that if dissipation of wave energy by canopies occurs mostly
through interactions of the in-canopy flow with individual
canopy elements, then the dynamics controlling the atten-
uation of flow inside a canopy will ultimately control the
rate at which wave energy is dissipated. In order to test this
hypothesis, this paper has three objectives. The first objec-
tive is to validate the canopy flow model of LKM under
conditions in which drag, inertial, and shear forces all make
significant contributions to the momentum balance, condi-
tions that LKM were unable to create experimentally. The
second objective is to extend the monochromatic wave
model developed in LKM to spectral wave flows and then
to evaluate its performance using field observations of
spectral wave flow attenuation within a canopy. This is to
give the model greater utility, given that natural canopies are
generally exposed to random wave fields composed of a
continuous range of different frequencies. The final objec-
tive is to use the canopy flow model to investigate how
wave energy is dissipated by submerged canopies, and to
compare these results to previous observations of wave
dissipation over coral reefs.

2. Spectral Wave Canopy Flows

[6] In LKM, theory describing oscillatory flow through a
submerged canopy was developed on the basis of the
assumption that the oscillatory flow field could be charac-
terized by a single frequency f; that is, it was monochro-
matic. Equation (18) in that paper, governing horizontal

momentum inside the canopy, was numerically solved to
calculate a representative in-canopy velocity bUw as a
function of the imposed (above-canopy) wave velocity
U1,w and a collection of canopy geometry parameters. Note
that bUw was defined as the spatially averaged flow velocity
inside the canopy (i.e., the averaging volume excludes the
solid canopy elements) and the overhat symbol will be
similarly used throughout this manuscript to refer to vari-
ables spatially averaged over the canopy fluid volume.
Specifically, the governing canopy flow equation (now
repeated here) was

d bUw � U1;w

� �
dt

¼
U1;w

�� ��U1;w

Ls
�
bUw

��� ��� bUw

Ld
� CMlp

1� lp

� �
d bUw

dt
;

ð1Þ

where Ls is a canopy shear length scale defined as

Ls ¼
2hc

Cf

ð2Þ

and Ld is a canopy drag length scale defined as

Ld ¼
2hc 1� lp

� �
Cdlf

: ð3Þ

Here hc is the canopy height and Cf, Cd and CM are the
empirical canopy friction, drag and inertia coefficients,
respectively. The ‘‘lambda parameters’’ lf and lp in
equation (1) were defined as

lf ¼ Af =AT ; ð4Þ

lp ¼ Ap=AT ; ð5Þ

where Af is the canopy element frontal area, Ap is the canopy
element plan area, and AT is the underlying surface area
(total area divided by the number of elements). In both the
work of LKM and in this present study, the canopies used
for the experiments were constructed using an array of
circular cylinders having diameter d and spacing S, such that
lf = hcd/(S + d)2 and lp = (pd2/4)/(S + d)2. It is important to
note equation (1) was originally developed for oscillatory
flow where the free stream velocity was defined as

U1;w tð Þ ¼ Umax
1;w cos

2pt
T

� �
; ð6Þ

where U1,w
max is the velocity amplitude and T is the period.

The oscillatory velocity field given by equation (6) is
notably both uniform over the water column (i.e.,
independent of z) and assumes no horizontal velocity
gradients exist (i.e., convective accelerations @U1,w/@x are
zero), so to apply equation (1) to surface wave conditions,
the following two conditions must be satisfied. First, for
surface waves the ratio of the convective acceleration
@U1,w/@x to local acceleration must be small, which
Trowbridge and Madsen [1984] showed scales as O(kA1)
where k is the wave number. In most cases, kA1 � 1 such
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that the effect of this nonlinear convective term can be
neglected (e.g., for the wave conditions described in the
field experiment below, kA1 � O(0.01)). Second, in the
general case where surface waves are not shallow, the
potential wave velocity amplitude U1,w

max is not uniform over
the water depth, as assumed in equation (6), and instead
decreases below the free surface. However, LKM showed
that for cases where khc is small (i.e., when the wave length
is much greater than the canopy height), the wave velocity
amplitude is roughly uniform over the depth of the canopy
such that the wave forcing can be accurately approximated
using equation (6) if U1,w

max is taken as the velocity measured
directly above the canopy (see section 2.2 in LKM for a
discussion of this issue). For submerged canopies that
occupy a small fraction of the water depth this condition is
generally satisfied (e.g., for the canopy and wave conditions
described in the field experiment below, khc � O(0.01)).
[7] To predict the in-canopy velocity bUw, LKM numeri-

cally solved equation (1) using the forcing provided by
equation (6), to calculate an attenuation parameter aw

defined as,

aw ¼
bUrms
w

Urms
1;w

; ð7Þ

where bUw
rms and U1,w

rms are the root-mean-squared (rms)
values of bUw and U1,w, respectively. Physically, the
parameter aw provides a measure of the reduction of the
in-canopy flow from its above-canopy potential flow value;
it thus takes a value aw � 1 (low attenuation) when flow
within the canopy region is negligibly influenced by the
presence of the canopy elements and a value aw � 0 (high
attenuation) when minimal flow passes through the canopy.
[8] Under spectral wave conditions, wave velocities are

characterized by the wave energy spectral density SU( f ),
which in practice is calculated in its discrete form SU,j( fj),
where the subscript j denotes the frequency component
index. Note that for simplicity this analysis assumes that
all of the wave energy propagates in the same direction (i.e.,
the spectrum is one-dimensional), which is often a good
assumption in many shallow sites, including the field site
chosen for the experiments discussed in section 3. A goal of
the present study is to model how the imposed wave
velocity spectrum SU,j above a canopy is attenuated inside
the canopy among the different frequency components. The
resulting spectrum inside the canopy, which will be denoted
ŜU,j, can then be used to define a frequency-dependent
attenuation parameter aw,j, analogous to aw in equation (7).
Since wave energy is proportional to velocity squared, in
order for aw,j to be consistent with equation (7), it is defined
as

aw;j ¼
ŜU ; j

SU ; j

 !1=2

: ð8Þ

It is worth noting that it may be tempting to apply the
monochromatic model developed in LKM to determine aw,j

by simply applying the monochromatic model to each fre-
quency component independently. While this would be per-
missible if the governing equation was linear, equation (1)
is inherently nonlinear owing to the quadratic drag and
shear stress terms. However, in the case discussed below

where the wave energy is concentrated in a relatively
narrow frequency band, the monochromatic canopy flow
model can be used to deduce a good estimate of the total
attenuation of the in-canopy flow.
[9] A modeling approach is now developed to predict

aw,j, given an above-canopy flow condition and the geom-
etry of a canopy. To model the in-canopy flow under
spectral wave conditions, we start by simulating a random
time series U1,w(t) based on a specified wave spectrum SU.
To achieve this, we use the freely distributed Matlab
toolbox Wave Analysis for Fatigue and Oceanography
(WAFO) [Brodtkorb et al., 2000], although another random
wave generator could alternatively have been used. For a
given canopy having known geometry properties (i.e., Ls,
Ld, CM and lp), the simulated time series U1,w(t) is used as
input into equation (1) and is numerically solved to generate
a time series bUw(t) of the in-canopy flow (for a detailed
description of this numerical technique see Appendix A).
Finally, this in-canopy velocity time series bUw(t) is used to
calculate the in-canopy wave spectrum ŜU,j and aw,j is
calculated using equation (8).
[10] To demonstrate the application of the model and to

introduce important features of spectral wave canopy flows,
an example is first considered where the wave spectrum has
a uniform distribution of the form

SU ¼ SO 0 < f < 1Hz

0 otherwise:

�
ð9Þ

While this distribution is strictly theoretical, it provides a
useful demonstration of how wave energy is attenuated
among different frequency components. For spectral waves,
the rms wave velocity U1,w

rms is obtained by integrating the
wave spectrum according to [Massel, 1996]

Urms
1;w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Z 1

0

SUdf

s
: ð10Þ

Substituting the form of SU given in equation (9) into
equation (10) shows that SO (in units of m2/s) is directly
related to U1,w

rms (in units of m/s) by

SO ¼
Urms

1;w

� �2
2Hz

: ð11Þ

For a specified value of U1,w
rms , the calculated spectrum SU,j

given in equation (9) was input into the WAFO Matlab
toolbox using the function ‘‘spec2sdat.m,’’ which simulated
a 5000 second velocity time series using a 0.1 s time step.
Note that for these simulations the canopy is defined such
that it has identical properties to the cylinder array used for
the experiment in section 3. Figure 1a shows a short
segment of this time series for the case where U1,w

rms = 1m/s.
This time series then served as the input forcing for
equation (1), and the initial value problem was numerically
solved to simulate a time series of the in-canopy velocitybUw(t) (Figure 1b). With bUw(t), the WAFO function
‘‘dat2spec2.m’’ was used to calculate the in-canopy spectra
ŜU,j. Given the random nature of bUw(t), this calculated
ŜU,j represents only one statistical estimate of the actual
in-canopy spectrum, so this procedure was repeated
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1000 times and the resulting spectra were averaged.
[11] For this example four different simulations were

conducted, each defined according to equation (9), but
using four different values of U1,w

rms : 0.01, 0.1, 1 and 10 m/s.
For each of these cases, aw,j is plotted in Figure 2. These
curves exhibit two important features of spectral wave
canopy flows. First, for each value of U1,w

rms , Figure 2
predicts that aw,j will decrease as the period Tj = 1/fj of
the component increases. Second, the curves in Figure 2
reveal that increasing the total flow energy (i.e., increasing
SO by increasing U1,w

rms ) will also cause the in-canopy flow
to become more attenuated across all frequency compo-
nents. Note that for monochromatic waves LKM showed
that the attenuation parameter aw is bounded by a maximum
inertial-force-dominated value ai (given by equation (24) in
LKM), and a minimum unidirectional flow value ac (given
by equation (26) in LKM). In this example, for all frequency
components considered, aw,j falls between these limiting
values ac = 0.15 and ai = 0.77.
[12] In physical terms, the dependency of aw,j on both the

wave period and velocity of the component can be
explained in terms of the effect these parameters have on
the momentum balance within the canopy. For oscillatory
flows, the horizontal pressure gradient @Pw/@x responsible
for driving flow within a canopy is expressed in the second
term on the left side of equation (1), since it is directly
proportional to @U1,w/@t. If we first consider U1,w(t) to
have the monochromatic form given by equation (6), then
@Pw/@x � U1,w

max/T. However, according to equation (1), the
canopy drag forces that attenuate the flow are governed by a

quadratic drag law based on the in-canopy velocity bUw,
such that the drag force is proportional to (awU1,w

max )2. If we
assume that the oscillatory pressure gradient is balanced by
this canopy drag force then aw � 1/(U1,w

maxT)1/2, revealing
that the in-canopy will become more attenuated as either

U1,w
max or T increases, or equivalently as the horizontal wave

excursion amplitude A1 increases given that A1 � U1,w
maxT.

[13] For spectral wave conditions, the velocity field is
better characterized in the frequency domain by the wave
velocity spectrum SU,j. Horizontal wave orbital excursion
motions for spectral wave conditions are likewise described
by the wave orbital excursion spectrum SA,j, which is related
to SU,j by [e.g., Madsen et al., 1988]

SA; j ¼
SU ; j

w2
j

¼
SU ; jT

2
j

2pð Þ2
: ð12Þ

Thus, drawing an analogy to monochromatic waves where
aw decreases as the wave excursion length A1 increases, for
spectral waves the attenuation parameter aw,j of frequency
component j will likewise decrease as the spectral density
SA,j of the wave orbital excursion increases. This is
demonstrated in Figure 2, which shows that as SA,j is
increased, either by increasing SU,j or Tj via equation (12),
the in-canopy flow associated with that wave component is
reduced.

3. Experimental Setup

[14] A field experiment was conducted using an array of
the same plastic cylinders described in LKM. Each cylinder
had height hc = 10 cm and diameter d = 5 cm and was
mounted on a 2.4 m	 1.2 m sheet of plywood in a staggered
array with a cylinder spacing S = 7.5 cm (Figure 3a). In their
laboratory experiments, LKM used spacings S = 5.0, 10.0,
and 15.0 cm, such that the spacing used for this field study
fall within the range used in the laboratory experiments.
Note that a spacing S = 7.5 cm was specifically chosen for

Figure 1. (a) Example time series U1,w(t) generated from
the spectrum SU defined in equations (9)–(11) for U1,w

rms =
1 m/s. (b) The corresponding in-canopy velocity time seriesbUw derived from the canopy flow model based on
equation (1).

Figure 2. Parameter aw,j calculated as a function of the
period Tj of the wave component, as predicted using the
model for a uniform spectrum given by equations (9)–(11).
Simulations were run for U1,w

rms = 0.01, 0.1, 1, and 10 m/s.
Shaded regions denote the 95% confidence intervals of the
simulations.
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this field study because it was the densest spacing that would
permit measurement of the flow inside the canopy using the
type of acoustic Doppler velocimeter (ADV) that we had
(see below). Given these geometry parameters, the lambda
parameters for the field canopy, calculated using equations (4)
and (5), were lf = 0.32 and lp = 0.13.
[15] The experiment was conducted on the reef flat region

of the Kaneohe Bay barrier reef, Oahu, Hawaii (21�290N,
157�480W). For a detailed description of the field site, refer
to Lowe et al. [2005a]. To ensure that the plywood sheet
would lie flat on the seafloor, a site was chosen that had a
very flat limestone foundation, yet was covered by a thin
(�2 cm thick) layer of sand. Waves on the Kaneohe reef flat
propagate in a highly predictable direction set by the
shallow reef bathymetry [Lowe et al., 2005a], hence making
the 1-D wave assumption discussed in section 2 valid at this
site. The plywood sheet was arranged such that its length-
wise direction was oriented into the wave direction (�225�).
In order for the canopy flow to sufficiently develop, it is
important that the cylinder array be sufficiently large to
ensure that edge effects can be ignored. As discussed in
section 2, the wave parameter that determines the canopy
flow attenuation is the horizontal wave orbital excursion
length. For random waves a wave excursion length A1

R can
be defined on the basis of a representative period T R and
velocity U1,w

R (see section 4 for definitions), according to
A1
R = U1,w

R T R/(2p) [Madsen, 1994]. A1
R was calculated to

be 28 cm during the experiment, much smaller than the
2.4 m length of the cylinder array, so the in-canopy

velocities measured near the center of the canopy can be
assumed to be fully developed.
[16] A sawhorse instrument frame straddled the cylinder

array and supported two Nortek Vector ADVs (Figure 3a),
which measured velocities at roughly the center of the array.
Both ADVs were cabled to a laptop computer located on a
boat anchored near the site. The upper ADV sampled at a
height z = 60 cm above the plywood base (located at z =
0 cm). The lower ADV sampled within the cylinder array at
the midcylinder height (z = 5 cm), and the ADV probe was
carefully oriented such that its three acoustic beams fit
between the cylinders with no interference (Figure 3b).
Note that the velocity bUw in equation (1) is the spatially
averaged in-canopy velocity, while the velocity measured in
the experiment is at a single midcanopy height location.
LKM showed that under wavy conditions, the in-canopy
flow is mostly uniform throughout the canopy such that the
velocity measured at this midcanopy height is expected to
well-approximate this spatially averaged velocity. During
the experiment, the ADVs each sampled velocity and
pressure synchronously at 16 Hz for 2 hours. Over this
time, the tide was rising such that the depth h varied
between 1.5 m and 1.8 m. Time-averaged current speeds
were measured to be very weak during the experiment
(<2 cm/s), such that the near-bottom flow was effectively
dominated by wave-orbital motion.

4. Measurement and Prediction of the Spectral
Wave In-Canopy Flow

[17] The complete ADV time series was divided into
twelve, 10-min records, each having 9600 velocity samples.
For general wave-current flows, the instantaneous velocity u
can be decomposed as

u ¼ Uc þ Uw þ u0; ð13Þ

where Uc is the steady velocity associated with the current,
Uw is the unsteady wave motion, and u0 is the turbulent
velocity. To compare the attenuation of wave energy within
the canopy we should therefore remove the effect of
turbulence, which is also an unsteady quantity. To achieve
this, the linear filtration technique proposed by Benilov and
Filyushkin [1970] was used, which treats the wave
velocities as any unsteady velocity that is correlated with
the free surface elevation (or in our case the instantaneous
pressure Pw measured by the upper ADV). It should be
noted that the residual, uncorrelated signal will be labeled
‘‘turbulence,’’ even though this signal may include both
turbulence and noise effects, since both will be uncorrelated
with the free surface elevation. Application of the Benilov
filtration approach allows the measured instantaneous
velocity spectrum Su to be decomposed into a wave
spectrum SU and turbulence spectrum Su0. As shown below,
if it is assumed that the measured instantaneous spectrum Su
is equal to the wave spectrum SU, some error can be
introduced, particularly among the higher-frequency com-
ponents where Su’ can be a significant fraction of the total
flow energy.
[18] For each 10-min record, the Benilov and Filyushkin

[1970] method was used to decompose Su into SU and Su0.

Figure 3. (a) Photograph of the model canopy at the field
site and the lower acoustic Doppler velocimeter (ADV)
used to measure the velocity inside the canopy. The ADV
sample volume was 15 cm below the probe at the midheight
of the canopy. (b) Diagram illustrating how the ADV probe
was oriented to sample between the cylinders.
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Figure 4 shows the average spectra measured by the lower
and upper ADVs, obtained by averaging all twelve individ-
ual spectra. For the upper ADV, virtually all of the energy Su
is due to the wave contribution SU; this is expected since
turbulence levels should be relatively weak away from the
canopy roughness. The resulting wave spectrum SU shows a
well-defined peak period of Tp = 7.8 s, and the spectrum
gradually tapers below and above this period. Note that 95%
of the wave energy is contained in the frequency range
0.04–0.5 Hz, so in the subsequent analysis we will focus on
waves with periods between 2 and 25 s.
[19] Figure 4 shows that the equivalent spectra ŜU mea-

sured inside the canopy has noticeably different character-
istics than the above-canopy spectrum SU. First, the total
wave energy measured inside the canopy is significantly
reduced from the above canopy value. Second, turbulence
levels are generally higher inside the canopy, as expected
owing to the interaction of the flow with the cylinders. This
causes the wave spectrum ŜU to be slightly reduced from the

spectrum Ŝu. This difference between ŜU and Ŝu is more
significant in the high-frequency region, where very little
wave energy exists such that turbulence levels become
comparable to the wave energy.
[20] For non–shallow wave conditions, the magnitude of

the wave orbital velocities will decay below the free surface
at a rate that varies among the frequency components [Dean
and Dalrymple, 1991]. To calculate aw,j, we are only
interested in the attenuation resulting from the interaction
of the oscillatory flow with the canopy elements, such that
the effect of the vertical decay of the potential wave velocity
field should be removed (note that this was also done for the
monochromatic wave case in section 4.2 of LKM). As a
result, a correction factor fj is calculated, which represents
the ratio of the velocity predicted from linear wave theory
for the upper ADV at height z = dhigh, to the velocity
predicted for the lower ADV at height z = dlow, for each

Figure 4. Decomposition of the spectrum measured above
and within the canopy (shaded regions denote the 95%
confidence intervals of the calculations). (a) Spectra derived
from the original velocity time series. (b) The decomposed
wave contribution. (c) The decomposed turbulence con-
tribution (note the order of magnitude difference in the
vertical scale).

Figure 5. (a) Spectral wave attenuation parameter aw,j as a
function of the wave period Tj of the spectral component.
(b) Same data plotted as a function of the spectral density of
the wave orbital excursion length SA,j. Circles denote field
measurements, dotted lines denote the boundary of the 95%
confidence limits of measured aw,j, solid lines denote
predicted aw,j calculated from the model using the measured
wave spectrum SU above the canopy as the model input
(shaded region denotes the 95% confidence limits in the
calculations), and dashed lines denote the unidirectional
and inertial force dominated values for this canopy
geometry, ac = 0.15 and ai = 0.77, respectively.
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frequency component j; that is [Dean and Dalrymple,
1991],

fj ¼
cosh kjdhigh

� �
cosh kjdlow

� � ; ð14Þ

where kj is the wave number of the jth component. The
spectral wave attenuation parameter was then calculated as

aw;j ¼ f2
j

ŜU ;j

SU ;j

 !1=2

; ð15Þ

where ŜU,j and SU,j are the wave velocity spectra measured
by the lower and upper ADVs, respectively. Note that fj

was relatively small for all frequencies considered (i.e., at
most �1.1 at the highest frequency 0.5 Hz). Figure 5a
shows that for short-period components, aw,j attains a
maximum value near 0.7 and gradually decreases with
increasing wave period to a minimum value of roughly 0.3
for T = 25 s. The longest-period components are therefore
more than twice as attenuated as the shorter-period
components. More precisely, the theory developed in
section 2 predicts that aw,j will decrease as the spectral
density of the wave-orbital excursion SA,j increases
(Figure 5b) which generally corresponds to longer-period
components (equation (12)).
[21] In order to test the ability of the model developed in

section 2 to predict aw,j, the coefficients Cf, Cd and CM that
parameterize the various canopy forces in the model must
first be specified. While values of Cd and CM are well-
established for infinitely long cylinders in isolation, little is
known about how these coefficients are modified when
cylinders reside inside a submerged canopy. In this case the
cylinders are of finite length (thereby introducing three-
dimensional flow effects) and any forces exerted on them
may be influenced by the wakes generated from neighbor-
ing elements [Ghisalberti and Nepf, 2004]. Unfortunately,

general empirical formulas for Cd and CM that incorporate
these effects do not currently exist, which would need to be
derived from data incorporating a wide variety of flow
conditions and canopy geometries. However, given that
the canopy used in this field experiment was constructed
using the exact same canopy elements used in LKM, and
also arranged to have a similar density, we therefore assume
the same values for these coefficients (i.e.,Cf = 0.02,Cd = 2.5,
CM = 2.0), which are based on the best data available in
the literature for these particular cylinder arrays (see LKM,
p. 8, for a discussion of this issue).
[22] To predict aw,j the WAFO toolbox was used to

simulate 1000 independent time series, each 5000 s long,
on the basis of the input spectrum SU,j. These time series
served as the forcing for equation (1), and the initial value
problem was numerically solved for each time series. This
procedure generated a set of bUw time series, which were
converted to a set of in-canopy flow spectra ŜU,j and were
then averaged. Figure 6 shows the resulting ŜU,j predicted
by the model. This spectrum was used with equation (8) to
calculate aw,j (Figure 5). The model predicts that at T = 2 s,
aw,j � 0.75 and decreases as the wave period increases to a
minimum value aw,j � 0.30 at T = 25 s. The model result
therefore agrees very well with measured aw,j, confirming
that longer period waves are indeed significantly more
attenuated than shorter-period motions. The close agree-
ment with the observations also suggests that the values
chosen in LKM for the empirical force coefficients (Cf =
0.02, Cd = 2.5 and CM = 2.0) accurately predict flow
attenuation for this canopy in the regime between the
unidirectional and inertial force dominated limits where all
canopy forces are important, which could not be tested in
the laboratory experiments of LKM.
[23] Finally, we conclude our discussion of these exper-

imental observations by investigating whether the much
simpler monochromatic canopy flow model developed in
LKM can provide a reasonable estimate of the attenuation
of the total wave energy inside the canopy. This would be
useful, for example, if only the rms velocity inside the
canopy is required and not necessarily how the wave energy
is distributed among the different frequency components. To
make this comparison, we first must define representative
velocities for the in-canopy and above-canopy flows, bUw

R

and U1,w
R respectively, as well as a representative wave

frequency f R. Following Madsen et al. [1988], we take
these representative velocities to be the rms values, bUw

rms

and U1,w
rms , respectively, and fR to be the energy weighted-

averaged frequency, defined by

f R ¼

PN
j¼1

fjSU ;j

PN
j¼1

SU ;j

; ð16Þ

which is related to a representative period by T R = 1/f R.
Given SU,j measured in Figure 4, we find that T R = 5.7 s for
the above-canopy flow. The representative velocities for the
measured above- and in-canopy flows, calculated using
equation (10), are U1,w

rms = 31 cm/s and bUw
rms = 19 cm/s,

respectively. The ratio of these two velocities can be used to
define a representative value of the attenuation parameter

Figure 6. The dotted line denotes the measured in-canopy
wave velocity spectrum ŜU (shaded region denotes the 95%
confidence limits). The solid line denotes the predicted in-
canopy spectrum ŜU obtained from the model using the
above canopy spectrum SU as input.
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aw
R = 0.62. Therefore, to compare this observed attenuation

with the value predicted from the monochromatic model in
LKM, we assume that the imposed wave field is mono-
chromatic having a velocity U1,w

rms = 31 cm/s and period
T R = 5.7 s. Following the approach outlined in LKM,
equation (1) is solved for this monochromatic condition
giving 0.63, which agrees very well with aw

R = 0.62
measured. These results demonstrate that the monochro-
matic model can be used to accurately predict the
attenuation of the total wave energy in a spectral wave
flow, assuming that the wave conditions are similar to those
encountered during experiment; that is for conditions where
the wave energy is within a relatively narrow frequency
band. However, this may not always be the case, for
example, when wave conditions are derived from two or
more energy sources having different dominant periods,
causing the resulting spectrum to have multiple peaks.

5. Dissipation of Wave Energy by Canopies

[24] We now demonstrate how the rate at which wave
energy is dissipated by a submerged canopy is closely
linked to the in-canopy flow structure. Using results from
the preceding flow attenuation study, we first investigate
how wave energy is dissipated under monochromatic con-
ditions and then expand the scope of the analysis to
incorporate general spectral wave forcing.

5.1. Monochromatic Wave Dissipation

[25] The rate of dissipation per unit plan area e of an
oscillatory flow propagating over a rough surface is gener-
ally parameterized according to [e.g., Jonsson, 1966]

e ¼ 2

3p
rfe Umax

1;w

� �3
; ð17Þ

where fe is the wave energy dissipation factor and U1,w
max is

the maximum horizontal wave velocity above the rough-
ness. To predict wave dissipation by canopies, Dalrymple et
al. [1984] presented a simple model that could be used to
calculate fe by determining the rate of work done by the
flow against the canopy drag forces. However, a key
assumption in their approach when it is applied to
submerged canopies, is that the local flow field inside a
canopy is not modified by the presence of the canopy
elements, which we have shown in the preceding sections is
not the case. Therefore we present an alternative canopy
dissipation model that explicitly accounts for the effect of
this in-canopy flow attenuation.
[26] The average rate of dissipation by a canopy can be

determined by first spatially averaging the conservation of
energy equation over a control volume formed by a repeat-
ing canopy element, and then time-averaging over a wave
period (details of the approach are presented in Appendix B).
The resulting equation shows that wave dissipation is
directly related to the rate of work done by the in-canopy
flow against the forces exerted by the canopy elements.
LKM showed that three canopy forces will act (i.e., shear,
drag, and inertial) such that the total rate of dissipation
within the canopy per unit plan area e can be decomposed
into its respective force contributions; that is,

e ¼ es þ ed þ ei; ð18Þ

where es, ed, and ei are the rates of dissipation due to shear
at the top of the canopy, drag and inertial forces,
respectively. In Appendix B each of these terms is
evaluated, which are

es ¼
2

3p
rCf Umax

1;w

� �3
ð19Þ

for the shear stress contribution,

ed ¼
2

3p
rCdlf a3

w Umax
1;w

� �3
ð20Þ

for the drag contribution, and

ei ¼ 0 ð21Þ

for the inertial contribution, owing to the inertial force and
velocity being 90 degrees out of phase. Results from
equations (19), (20), and (21) can then be substituted into
equation (18) giving

e ¼ 2

3p
r Cf þ Cdlf a3

w

� �
Umax

1;w

� �3
: ð22Þ

Finally, comparison of equation (22) with equation (17)
shows that the energy dissipation factor fe for a canopy can
be determined using the simple expression

fe ¼ Cf þ Cdlf a3
w: ð23Þ

Equation (23) reveals that fe will attain a minimum value
fe = Cf when the in-canopy flow is weak (i.e., aw is small),
but increases as an increasing amount of flow passes
through the canopy (i.e., as aw increases).
[27] As an example application, we can use results from

section 4 with equation (23) to calculate a value of fe for the
canopy used in the experiment. It was shown that if to an
approximation the spectral wave field is treated as a
monochromatic wave with all of its energy contained in
the representative wave period T R, then the representative
value of aw was 0.62. Substituting this into equation (23)
gives fe = 0.21, which is much greater than the canonical
value of fe = O(0.001) associated with smooth beds
[Dronkers, 1964]. This value is in fact quite similar to
previous values of fe cited for coral reefs, which have been
obtained by measuring the decrease in wave energy flux
across a section of reef, for example, fe = 0.28 [Gerritsen,
1981], fe = 0.15 [Nelson, 1996], fe = 0.22 [Falter et al.,
2004], and fe = 0.24 [Lowe et al., 2005a].
[28] It should be emphasized that equation (23) is equiv-

alent to the model by Dalrymple et al. [1984] if aw is
assumed to always equal one (i.e., that the in-canopy flow is
not attenuated). Note that for aw = 1, equation (23) predicts
that fe = 0.82, which is 4 times greater than value obtained
with flow attenuation accounted for. In addition, the model
by Dalrymple et al. [1984] predicts that fe for a given
canopy will be constant under varying A1, a characteristic
inconsistent with decades of studies on wave dissipation
over rough bottoms (see Nielsen [1992] for a review) as
well as for vegetated canopies [e.g., Dubi and Torum,
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1997]. To incorporate this observed dependency of fe on
A1, Mendez and Losada [2004] modified the model by
Dalrymple et al. [1984] by replacing Cd with an empirical
‘‘modified’’ drag coefficient ~Cd that decreased as A1 is
increased [i.e., see Mendez and Losada, 2004, Figure 4].
While Mendez and Losada [2004] showed that their ap-
proach could be used to accurately determine dissipation
rates in canopies, ~Cd needed to be empirically corrected for
each canopy and wave condition considered. Interestingly,
for cases where canopy drag forces dominate, fe in
equation (23) is equivalent to ~Cd in the work of Mendez
and Losada [2004], since both are used to parameterize
wave dissipation as a function of the above-canopy wave
condition; therefore equation (23) specifically predicts that
~Cd (or fe) will scale as Cdlfaw

3 . In both LKM and in the
present study, it was found that aw will decrease for a given
canopy as the wave excursion length A1 is increased. Thus
~Cd (or fe) should also decrease as A1 is increased, which is
consistent with the observations of Mendez and Losada
[2004]. Therefore, while the submerged canopies evaluated
by Mendez and Losada [2004] are somewhat different from
those used in the present study (i.e., most notably they are
composed of flexible vegetation), our study provides a
physical mechanism to explain why the dissipation of wave
energy by a canopy becomes less efficient as A1 increases:
a trend consistent with a majority of the prior literature on
wave dissipation over rough bottoms.

5.2. Spectral Wave Dissipation

[29] Madsen et al. [1988] developed a model (later
modified by Madsen [1994]) that could be used to predict
dissipation of spectral wave energy by rough beds, on the
basis of theory originally developed for monochromatic
waves. This model has been used to predict spectral wave
transformation in a number of near shore studies [e.g.,
Ardhuin et al., 2001] and has been found to accurately
describe spectral wave dissipation in both laboratory and
field studies [e.g., Lowe et al., 2005a; Mathisen and
Madsen, 1999]. In this model, the spectral wave field is
assumed to be characterized by a single representative
velocity U1,w

R , such that the frequency-dependent dissipa-
tion function ef,j is modeled according to

ef ;j ¼
1

4
rfe;jUR

1;wU
2
1;j; ð24Þ

where fe,j is the frequency-dependent energy dissipation
factor and U1,j is the velocity amplitude associated with the
jth frequency component. U1,j can be obtained from the
wave velocity spectrum using

U1;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SU ;jDfb

p
; ð25Þ

where Dfb is the discrete frequency bandwidth. Importantly,
equation (24) is compatible with equation (17), since for
monochromatic waves (i.e., when U1,j = U1,w

max ) the
appropriate representative velocity is U1,w

R = (8/3p)U1,w
max

[Kajiura, 1968; see also Madsen et al., 1988]. For spectral
wave conditions, following earlier work by Collins [1972],
Madsen et al. [1988] showed that the relevant representative
velocity is the root-mean-squared velocity; that is,

UR
1;w ¼ Urms

1;w; ð26Þ

which can be computed using equation (10). Given an
incident wave spectrum SU,j, equation (24) can be used to
calculate the dissipation function ef,j if the energy dissipa-
tion factor fe,j is known. For monochromatic waves, an
expression governing fe was developed above, on the basis
of properties of the canopy and the magnitude of the in-
canopy oscillatory flow (see equation (23)). In Appendix C,
an expression for fe,j associated with spectral waves is
derived for use in equation (24), which gives,

fe;j ¼ Cf þ Cdlf aR
wa

2
w;j: ð27Þ

which is similar to equation (23). It is, however, a function
of the frequency-dependent flow attenuation parameter aw,j

defined in equation (8) and a representative flow attenuation
parameter aw

R defined as the ratio of bUw
rms and U1,w

rms (see
Appendix C). Therefore equation (27) predicts that
components of a spectral wave flow that can penetrate
more readily into a canopy will be more efficient at
dissipating their energy.
[30] Using results from section 4, we can apply equation (27)

in conjunction with data from Figure 5 to estimate fe,j for
this model canopy. The resulting fe,j plotted in Figure 7a
varies from fe,j � 0.3 for the T = 2 s component to fe,j � 0.1
for the T = 25 s component, indicating that the wave energy
will indeed be dissipated more efficiently among the
shorter-period motions owing to the enhanced in-canopy
flow they generate. This trend is quite similar to previous
observations of spectral wave energy dissipation on the
Kaneohe Bay reef flat measured over natural roughness by
Lowe et al. [2005a]. The variation of wave dissipation
among the wave components during this experiment was
measured over a two-week period at the same location on
the reef where the model canopy was located for the present
study. During the experiment of Lowe et al. [2005a], the rms
wave velocity was U1,w

rms = 27 cm/s, which is very near the
U1,w
rms = 31 cm/s measured for this present experiment.

Figure 7b shows that fe,j calculated for this natural reef
roughness decreases as the period of the component
increases, achieving its largest values �0.3 � 0.4 among
the shortest-period components and smallest values �0.1
among the longest-period motions (Figure 7b). This sup-
ports the notion that wave energy is dissipated more
efficiently by the reef among the shorter-period components
since these motions more readily penetrate into the rough-
ness features on the reef flat. Moreover, the shape of fe,j
measured on the reef is itself remarkably similar to the fe,j
curve for the model canopies in Figure 7a, despite the fact
that the geometry of the coral roughness is much more
complex than a simple cylinder array. Given that the wave
conditions were roughly the same between experiments, the
close agreement between Figure 7a and 7b may suggest that
wave energy is dissipated on the reef by roughness features
having length scales similar to that of the model canopy. In
fact, the hydraulic roughness length kw of the reef flat
measured by Lowe et al. [2005a] was 16 cm, which is
comparable to the 10 cm height and 7.5 cm spacing of the
cylinders.

6. Summary and Conclusions

[31] By building on ideas originally developed in LKM
for monochromatic waves, a modeling approach was
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developed in section 2 to predict how a spectral wave flow
is attenuated within a submerged canopy. The theory
predicts that the flow will be attenuated differently among
the spectral components, with greater flow occurring among
the components that have smaller orbital excursion lengths;
these components generally correspond to the shorter-period
wave motions. To investigate the model performance, a
field experiment was conducted using the same model
canopies used in the laboratory study of LKM. Results
confirmed that shorter-period wave motions can indeed
penetrate more readily into a canopy, and the model was
shown to accurately predict the spectral distribution of flow
attenuation. This close agreement between the model pre-
diction and the observations not only has implications for
the present study, but also for the monochromatic wave
study of LKM. A shortcoming of the work by LKM was
that the flume used in their study could only verify the
model performance under a very limited range of wave
conditions. By conducting experiments in the field during

the present study, where the waves were larger and their
energy was distributed over a broad range of frequencies,
the general theory behind the LKM model was effectively
tested over a wide range of different wave conditions. Given
that both the spectral model and the monochromatic LKM
model are governed by the same equation, the close
agreement between the field observations and model pre-
dictions suggests that equation (1) properly captures the
physics responsible for wave attenuation within submerged
canopies, and moreover suggests that the values specified
for the empirical coefficients Cf, Cd, and CM correctly
parameterize the effect of the force terms for this canopy.
[32] Section 5 focused on the issue of wave energy

dissipation by canopies, and showed that the rate of dissi-
pation is governed by the in-canopy flow structure, thereby
linking large-scale dissipation to in-canopy flow mechanics.
A model for monochromatic wave dissipation was first
presented, which predicts that rates of wave dissipation will
increase as increasing flow passes through a canopy, that is,
as aw increases. Following Madsen et al. [1988], an
analogous spectral wave dissipation model was developed,
which predicts that dissipation will be higher among wave
components that more readily pass into the canopy, that is,
those components having higher aw,j. Results from the first
part of the paper revealed that as the orbital excursion length
A1 of a wave (or wave component) is increased, the flow
inside a canopy will become increasingly attenuated. There-
fore dissipation of wave energy by canopies, or more
specifically the energy dissipation factor fe, will generally
be a strong function of A1. This result is consistent with
several decades of empirical studies on wave-energy dissi-
pation over rough bottoms.
[33] In order to apply the models (of both flow and

dissipation) to arbitrary canopies, the primary challenge
remains choosing appropriate values for the coefficients
used to parameterize the canopy force terms. Even for the
simplest case where the canopy is formed using a cylinder
array, the issue is still not straightforward. Natural canopies
formed by benthic organisms are further complicated by the
complex geometries these organisms form. Typically, these
canopies are inhomogeneous (e.g., the coral community in
Figure 1a of LKM) and in some cases may be flexible (e.g.,
for canopies formed by sea grass or macroalgae). The
models proposed above could be extended to incorporate
such effects, however, additional data must first be collected
to provide appropriate values for the empirical canopy force
coefficients. For inhomogeneous canopies experiencing
unidirectional flow, Coceal and Belcher [2005] proposed
to define the geometry on the basis of weighted-averaged
properties of the entire canopy. A further complication for
modeling flow and dissipation within flexible canopies is
that the canopy may change its geometry (and hence
resistance properties) as the flow conditions change. For
example, sea grass blades may increasingly deflect into a
unidirectional flow as the flow speed increases. Further-
more, under wave conditions a flexible canopy may also
change its geometry considerably over a wave period,
thereby altering the drag and inertial forces the canopy
elements experience. Some studies have proposed using
modified force coefficients to incorporate this effect [e.g.,
Denny and Gaylord, 2002], and similar formulations could
eventually be included in the models proposed above.

Figure 7. (a) Energy dissipation factor fe,j for the model
canopy obtained using the data in Figure 5a with
equation (27), as a function of the period of the spectral
component Tj. Circles denote the result based on the field
measurements. Dotted lines denote the boundary of the 95%
confidence limits for the measurements. Solid lines denote
the predicted fe,j from the model simulation (shaded region
denotes the 95% limits of the calculation). (b) Energy
dissipation factor fe,j measured on the Kaneohe Bay barrier
reef as a function of the period of the spectral component
(dotted lines denote the 95% confidence intervals). The data
points were obtained by averaging the measured fe,j between
the three pairs of sites shown in Figure 13 of Lowe et al.
[2005a]. Note the qualitative similarity between the two
figures.
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Therefore this present study can be viewed as a first step
toward developing a mechanistic model of how a wave-
driven flow is attenuated and dissipated within submerged
canopies. Future versions of the present model could be
modified to include the complicating effects associated with
flexibility and canopy inhomogeneity, when additional
experimental data becomes available.

Appendix A: Numerical Solution of the Canopy
Flow Equation Under Spectral Wave Conditions

[34] A model was developed in section 2 to predict the
wave spectrum ŜU inside a canopy, given geometric prop-
erties of a canopy and the wave spectrum SU above the
canopy. This model relies on the numerical solution of
equation (1) using the time series of U1,w(t) output from
the WAFO toolbox. Equation (1) is first rearranged as

1þ Cð Þ d
bUw

dt
¼ jU1;wjU1;w

Ls
� jbUwjbUw

Ld
þ dU1;w

dt
; ðA1Þ

where

C ¼ CMlp

1� lp

: ðA2Þ

Equation (A1) is then discretized using forward differencing
according to

1þ Cð Þ
bU iþ1ð Þ
w � bU ið Þ

w

Dt

" #
¼

jU ið Þ
1;wjU iþ1ð Þ

1;w

Ls
� jbU ið Þ

w jbU iþ1ð Þ
w

Ld
þ
dU ið Þ

1;w

dt
;

ðA3Þ

where the nonlinear terms are linearized by staggering the
time steps. Finally, equation (A3) can be rearranged to give

bU iþ1ð Þ
w ¼ 1

D

1þ Cð Þ
Dt

bU ið Þ
w þ

jU ið Þ
1;wjU iþ1ð Þ

1;w

Ls
þ
dU ið Þ

1;w

dt

" #
; ðA4Þ

where

D ¼ 1þ Cð Þ
Dt

þ jbU ið Þ
w j
Ld

: ðA5Þ

Equation (A4) is solved by marching forward in time given
an initial condition and the spectral wave forcing U1,w(t)
output from the WAFO toolbox. The resulting in-canopy
velocity time series bUw(t) for the spectral wave condition is
used to calculate the in-canopy wave energy spectrum ŜU,
enabling aw,j to be calculated from equation (8).

Appendix B: Dissipation of Monochromatic
Wave Energy by Submerged Canopies

[35] The dissipation of wave energy by a canopy can be
calculated from the integral form of the conservation of
mechanical energy equation, expressed in indicial notation

where repeated indices imply summation [Kundu and
Cohen, 2002],

d

dt

Z
EdVþ
I

Z
EUidAi

II

¼
Z

rgiUi

III

dVþ
Z

UitikdAk

IV

�
Z

fV dV

V

:

ðB1Þ

Here E  rUiUi/2 is the kinetic energy (KE) per unit
volume, tik is the stress (normal or shear) acting on the
control surface area dAk, and fV is the rate of viscous
dissipation per unit fluid volume. Physically, term I
represents the rate of change of KE within the control
volume, term II represents the rate of outflow of KE across
the control surfaces, term III is the rate of work done by the
gravitational body force, term IV represents the rate of work
done by surface forces, and term V is the rate of dissipation
of KE within the control volume. To determine the rate of
dissipation within a canopy, a control volume (Figure B1)
can be defined that incorporates a repeating canopy element
unit (in this case a single cylinder), and equation (B1) can
be used to calculate the rate of dissipation inside. Note that
this control volume does not incorporate the volume
occupied by the solid cylinder and hence occupies the fluid
volume AThc(1 � lp).
[36] To apply equation (B1), the velocity within and

above the canopy must be known. For monochromatic
waves, we assume that the velocity above the canopy
U1,w(t) is defined according to equation (6) and within
the canopy is defined by a single representative value bUw(t).
As discussed in LKM, bUw(t) may not be perfectly sinusoi-
dal owing to the nonlinear canopy resistance terms (e.g.,
owing to the drag and shear stress terms). However, for

Figure B1. Control volume (indicated by the dashed line)
used to calculate dissipation within the canopy, which
represents a repeating canopy element unit of plan area
AT = (S + d)2. (a) Section view. (b) Plan view.
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simplicity, we assume that it can be approximated by a
sinusoidal function in phase with the above-canopy flow;
that is,

bUw tð Þ ¼ awU
max
1;w cos

2pt
T

� �
: ðB2Þ

In equation (17), e is defined as the rate of energy
dissipation per unit plan area averaged over a period T,
while fV in equation (B1) represents the instantaneous rate
of dissipation per unit fluid volume. Therefore e is simply
equal to term V in equation (B1), averaged over a wave
period and divided by the plan area of the repeating canopy
element unit AT; that is,

e ¼ 1

AT

Z
fV dV ; ðB3Þ

where the overbar denotes temporal averaging over a wave
period. Dissipation e is then determined by averaging terms
I through IV in equation (B1) over a wave cycle and
dividing by AT. It can be shown that, on the basis of
equation (B2), terms I through III averaged over a period are
each zero. Equation (B1) reduces to

e ¼ 1

AT

Z
fV dV ¼ 1

AT

Z
UitikdAk ; ðB4Þ

which shows that the rate of dissipation is equal to the rate
of work done by the flow against the forces acting on the
control surface.
[37] As discussed in LKM, three forces act on the control

surface: (1) a shear stress which acts at the top of the
canopy, (2) a drag force exerted by the canopy elements,
and (3) an inertial force also exerted by the canopy
elements. To evaluate equation (B4) these forces must be
quantified, which were parameterized in LKM during the
development of equation (1). The total rate of dissipation
within the canopy e can then be decomposed as

e ¼ es þ ed þ ei; ðB5Þ

where es, ed, and ei are the shear, drag, and inertial force
contributions, respectively. The shear stress at the top of the
canopy was parameterized in equation (14) of LKM using a
quadratic friction law; hence

es ¼ twU1;w ¼ 2

3p
rCf Umax

1;w

� �3
: ðB6Þ

Similarly, the drag contribution can be determined from the
quadratic drag law in equation (16) of LKM; that is,

ed ¼ rhc 1� lp

� �
f̂d bUw ¼ 2

3p
rCdlf a3

w Umax
1;w

� �3
; ðB7Þ

where f̂ d is the canopy drag force per unit canopy fluid.
Finally, the inertial force contribution can be calculated
from equation (17) of LKM as

ei ¼ rhc 1� lp

� �
f̂i bUw ¼ 0; ðB8Þ

where f̂ i is the canopy inertial force per unit canopy fluid
mass (defined in equation (17) in LKM). Given that f̂ i is
proportional to dbUw/dt (and hence is 90 degrees out of
phase with bUw), the inertial force will not directly contribute
to wave energy dissipation. However, the inertial force
cannot altogether be neglected since, from equation (1) it
will serve to reduce bUw (or aw), and per equation (B7) will
thus indirectly influence the rate at which energy is
dissipated by drag.

Appendix C: Dissipation of Spectral Wave
Energy by Submerged Canopies

[38] In Appendix B, dissipation of wave energy by a
submerged canopy was shown to be equal to the rate of
work done by the flow against canopy forces, namely shear,
drag and inertial. Madsen et al. [1988] (later modified by
Madsen [1994]) derived a spectral dissipation model by
specifically calculating the work done by an oscillatory flow
against shear stresses exerted by a bed. We now apply ideas
developed in their work to decompose spectral wave energy
dissipation by a canopy into both a shear and drag contri-
bution.
[39] Hasselmann and Collins [1968] first developed an

analytical model to predict how frictional dissipation rates
vary among different spectral components by directly eval-
uating twU1;w, where they assumed a quadratic form for
the shear stress, that is, tw = 1

2
rCf jU1;wjU1;w, and treated

U1,w as a random variable. However, the dissipation
function they developed included a complex nonlinear
interaction term that limited its practical use. Therefore
Collins [1972] proposed a simplified version, by linearizing
tw using a velocity ‘‘representative’’ of the spectral wave
field U1,w

R ; later Madsen et al. [1988] incorporated this
representative velocity concept into their spectral dissipa-
tion model. Under this assumption, the unsteady shear stress
tw,j of frequency component j can be expressed as (see
equation (26) of Madsen et al. [1988]),

tw;j tð Þ ¼
1

2
rCf U

R
1;wU1;j cos wjt

� �
; ðC1Þ

where for our canopy flow case Cf is the canopy friction
coefficient. From equation (B6), the rate of dissipation by
shear stresses at the top of the canopy es,j for wave
component j is

es;j ¼ tw;j tð ÞU1;j cos wjt
� �

¼ 1

4
rCf U

R
1;wU

2
1;j ðC2Þ

which is identical to equation (26) of Madsen et al. [1988].
Note that equation (C2) assumes that the shear stress is in
phase with the near-bottom velocity, which was also
assumed by Madsen et al. [1988]. However, Madsen
[1994] showed that this phase difference qj for each
component j introduces a factor cos(qj) into equation (C2),
which will slightly reduce dissipation. This effect is
neglected, however, given that a typical maximum value
for qj is generally assumed to be 30� [Madsen, 1994], which
introduces at most a �10% error in es,j among the frequency
components.
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[40] Up to this point, the analysis exactly follows Madsen
et al. [1988]. However, on the basis of equations (B4) and
(B5) in Appendix B, for a canopy the contributions of drag
and inertial forces must also be considered. Analogous to
the monochromatic wave case, for spectral waves it can also
be shown that dissipation by inertial forces will be zero
since this force will be 90 degrees out of phase with the
local velocity. Dissipation by canopy drag can be calculated
following the same approach that was used above for the
shear contribution, since the canopy drag force is governed
by the same quadratic law (see equation (1)). From
equation (C1), the canopy drag force per unit canopy fluid
mass f̂ d given by equation (16) in LKM) can be linearized
using the representative velocity concept; that is,

f̂d;j tð Þ ¼
Cdlf

2hc 1� lp

� � bUR
w
bUj cos wjt

� �
; ðC3Þ

where bUj is the in-canopy velocity of component j, and bUw
R

is a representative velocity equivalent to the rms in-canopy
wave velocity bUw

rms. Note that to predict the spectral
distribution of drag forces on a cylinder, Borgman [1967]
similarly linearized the force of component j using a
representative, rms wave velocity. Following equation (B7),
the rate of dissipation by canopy drag forces ed,j is

ed;j ¼ rhc 1� lp

� �
f̂d;j tð ÞbUj cos wjt

� �
¼ 1

4
rCdlf

bUR
w
bU2
j : ðC4Þ

Equation (C4) is very similar to equation (C2), except
dissipation by drag in this case is parameterized in terms of
the in-canopy flow. The goal of the analysis, however, is to
relate ed,j to the above-canopy flow field. Equation (8)
showed that the in-canopy flow is related to the above-
canopy flow through the attenuation parameter aw,j, such

that bUj = aw,jU1,j. Similarly, the representative in-canopy
velocity can be related to the representative above-canopy
velocity through the use of a representative attenuation
parameter aw

R, defined as

aR
w ¼

bUR
w

UR
1;w

¼
bU rms
w

Urms
1;w

: ðC5Þ

The total rate of dissipation by a canopy ej = es,j + ed,j can
then be determined using equations (C2) and (C4), leading
to

ej ¼
1

4
r Cf þ Cdlf aR

wa
2
w;j

h i
UR

1;wU
2
1;j: ðC6Þ

Comparison of equation (24) with equation (C6) shows that
the energy dissipation factor fe,j is governed by a simple
expression governed by properties of the canopy and the in-
canopy flow,

fe;j ¼ Cf þ Cdlf aR
wa

2
w;j: ðC7Þ

Notation

Af canopy element frontal area.
Ap canopy element plan area.

A1 horizontal wave orbital excursion amplitude.
Cd canopy drag coefficient.
Cf canopy friction coefficient.
CM canopy inertial force coefficient.
d cylinder diameter.
E flow kinetic energy per unit volume.
f wave frequency.

f̂ d drag force per unit canopy fluid mass.
fe energy dissipation factor.
f̂ i inertial force per unit canopy fluid mass.
hc height of the canopy.
k wave number.
kw bottom roughness length scale.
Ld canopy drag length scale.
Ls canopy shear length scale.
P pressure field.
S cylinder spacing.
SA wave orbital excursion spectrum.
Su spectrum based on raw measured velocity

time series.
Su0 turbulent contribution to Su.
SU wave spectrum above canopy.
ŜU wave spectrum inside canopy.
t time.
T wave period.
Tp peak wave period.
u instantaneous velocity in x direction.

Uc time-averaged current velocity.
Uw phase-varying wave velocity.bUw spatially averaged wave velocity inside the

canopy.
U1,w free-stream wave velocity.

z vertical elevation measured from the canopy
base.

ac unidirectional canopy flow attenuation para-
meter.

ai attenuation for inertial dominated flow.
aw wave canopy flow attenuation parameter.
Dfb discrete frequency bandwidth.

e dissipation per unit plan area.
f linear wave decay correction parameter.
fV dissipation per unit fluid volume.
lf frontal area canopy geometry parameter.
lp plan area canopy geometry parameter.
qj phase difference between velocity and shear

stress for component j.
r fluid density.
t canopy shear stress.
w radian wave frequency.

Subscripts
c parameter associated with current.
j discrete frequency component j.
w parameter associated with waves.

Superscripts
max velocity amplitude.

R representative value.
rms root mean squared value.

’ turbulent contribution.
Other

^ overhat canopy-averaged value.
- overbar denoting time average operator.

j j absolute value.
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