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ABSTRACT

An iterative four-dimensional objective analysis scheme is described. The method is derived by approximating
a variational algorithm which should give an optimal four-dimensional analysis. The complete set of operationally
available observations, and operational analysis and forecast codes, are used. In this the scheme differs from
most other studies of optimal four-dimensional analysis, which make fewer approximations in the algorithm,
but use simplified models and data.

The scheme was developed using the optimal interpolation analysis, nonlinear normal-mode initialization,
and nested-grid forecast model from the Regional Analysis and Forecast System of NMC. To these were added
an approximate adjoint model of the forecast, and a code to implement a simple descent algorithm. Tests used
the operational observation database.

The scheme was successful in producing a dynamically consistent four-dimensional analysis that fit the
observations without totally impractical computer costs. However for the one test case studied, the forecast
from the scheme’s analysis was slightly worse than that from the operational analysis.

The tests highlighted some deficiencies of the current operational analysis, initialization, and forecast codes.

" They also indicated areas where further development of the scheme is desirable; in the adjoint forecast model
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and analysis error estimation.

1. Introduction

The objective of this work is to try to implement,
in a practical environment, some of the four-dimen-
sional analysis theory, which has been developed theo-
retically and tested in simple models. If errors intro-
duced by a forecast over the period spanning the ob-
servations are neglected, then the “optimal” analysis
is defined by the three-dimensional, balanced, state
which simultaneously best fits a background state, and
the observations over a period of time, when forecast
using the standard model. The full solution to this
variational problem has been derived and tested with
a very simple model in Lorenc (1988).

The aim here is to construct an approximation to
the theoretically correct method, using if possible ex-
isting programs for three-dimensional analysis (3DOI),
forecasting, etc. By using the full observational dataset
available for operational forecasting, and the opera-
tional forecast model, we hope to demonstrate that the
scheme is capable of practical implementation. Com-
.pared to the “three-and-a-half” dimensional analy-
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sis given by currently operational data-assimilation
schemes, a four-dimensional scheme should more cor-
rectly use tendency information in the observations,
and be more readily adaptable to the use of asynoptic
data. We also hope to indicate a way in which the cur-
rent methods can be modified to become more nearly
four-dimensional, without a disruptive sudden change
to a conceptually different scheme. By using available
programs as components in the new scheme, we will
be able to switch to up-to-date versions as they become
available, and to transfer the method easily to other
models, allowing this research to proceed in parallel
with other developments. We also minimize the
amount of new code required. In particular all the
handling, sorting, selection, and spatial interpolation
of observations, which take the bulk of the effort in
coding a practical analysis scheme, are kept unchanged
in the 3DOI component.

An ideal four-dimensional scheme should be able to
use the tendency information in observations, for in-
stance observations indicating that a low is deepening
should generate upper flows which would cause the
model forecast fields to similarly deepen. As well as
this, the method has potential in alleviating the prac-
tical “spinup” problem of current operational forecasts.
If successful, the scheme will well fit the observations
at the end of the 4D analysis period with a forecast
from the beginning. This forecast will be consistent
with the model’s dynamics and physical parameteriza-
tions and can be extended into the future, avoiding
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some of the spinup problems, in parameters like con-
vective rainfall, which occur when initializing a forecast
from a three-dimensional analysis.

The scheme has not been developed for operational
implementation in the near future; current computer
constraints rule that out. One practical use might be
to produce dynamically consistent four-dimensional
analyses of research datasets, for diagnostic study.

A review of analysis methods for numerical weather
prediction, which discusses the relationship between
so-called optimal interpolation (OI), constrained vari-
ational minimization, the Kalman-Bucy filter, and the
adjoint equation method, has been published by Lorenc
(1986). We shall not repeat this review here, however
it is appropriate to list research which actually at-
tempted to perform a four-dimensional analysis con-
strained by nonlinear prediction equations. For a
method to be truly four-dimensional, the use made of
any observation must depend on whether there are
similar observations at other times, defining tendencies,
and on what these tendencies are. Lewis and Bloom
(1978) used a variational technique on gridded fields.
Ghil et al. (1981) used the Kalman-Bucy filter method
for a simple one-dimensional example. Lewis and Der-
ber (1985) and Courtier and Talagrand (1987) used the
adjoint method. Hoffmann (1986) solved the mini-
mization problem in a straightforward (computation-
ally expensive) way for a very simple model. None of
these examples used an observational database which
approached in magnitude the operational database used
for this work.

The method used here can be considered a combi-
nation of OI with the adjoint equation method. Equa-
tions for this were derived and tested in a simple one-
dimensional model by Lorenc (1988). This work uses
the same notation and basic equations, set out in sec-
tion 2. Section 3 shows how, with some approxima-
tions, the 3DOI program which is used operationally
can be modified to calculate some terms in the equa-
tions. Approximations are needed especially in esti-
mating the analysis error covariances. Since we do not
have available the adjoint of the operational forecast
model, it must be approximated. Section 4 describes
how this is done by integrating backwards an adiabatic
perturbation form of the model. Many of the afore-
mentioned approximations are only valid for “bal-
anced” fields; the concept of balance also provides use-
ful information for constraining the analysis. Section
5 discusses this aspect. Section 6 sets out the iterative
procedure which results from all the preceding discus-
sion. This procedure might indeed have been arrived
at as a2 “common sense” reasonable thing to do; readers
not interested in the mathematical justification may
skip the intervening detailed equations. Section 7 de-
scribes the test scheme implemented using the opera-
tional analysis and forecast programs, gives results from
test analyses and forecasts for a single case, and dis-
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cusses how the approximations made have affected re-
sults. Finally in section 8 we give our conclusions.

2. Basic equations

a. Notation

X 4D analysis, represented as a single vector.

y observations, distributed in 4D, represented as
a single vector.

t subscript indicating “true”, hence:

X, “true” value of x, obtained by projecting the
true atmospheric state onto our finite basis
for x.

Y: “true” value of y, which would be obtained from
hypothetical error free instruments, with the
same resolution and averaging characteristics
as the actual instruments.

Yo observed data values.

n subscript to function, indicating that it can be
nonlinear.
generalized interpolation from x-representation

to y-representation, such that if we have an

estimate x; of x,, then y; = K,(x;) is the best

estimate of y,.

K Matrix of partial derivatives of K, with respect

to the elements of x.

w 3-D analysis at the initial time covered by the
4D representation x, with the same space-
representation. :

forecast model, used as prognostic constraint on
permitted values of x, by the relationship x
= G,(W).

G Matrix of partial derivatives of G, with respect

to the elements of w.

w, “true” w, as X,. Since we are assuming our fore-

cast model to be perfect, in order to justify

its use as a strong constraint, X, = G,(W,).

w,  background field for w; the best available esti-
mate of w, given our prior knowledge, without
using y,.

* adjoint. Hermitian transpose.

B background error covariance matrix. B = {(w,
— W) (wp — Wt)*>

(o] observation error covariance matrix. O = {(y,
= ¥)(¥o — ¥)*)

F representativeness error covariance matrix. F
= ((Ku(x)) — Y)(Ku(X,) — Yt)*>

v transformed control variable. v = B™!(w — w})

i iteration index; e.g. w; is the best estimate of w,
at the ith iteration.

dy; difference of current best estimate from observed
values. dy; = y; — ¥, = KuX;) = Yo= K(Gn(W))
- Yo = Kn(Gn(wb + BV,')) ~ Yo

J(w) penalty function, whose minimum defines the
“best™ analysis.

L(v) penalty function equivalent to J(w), expressed

in terms of the transformed variable v.
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I subscript for penalties J and L denoting the
component of the penalty measuring the fit
to observations. (NB in Lorenc, 1988, the
double subscript ,r was used for this, to in-
dicate its origin from the convolution of in-
strumental and representativeness error dis-
tributions.)

b subscript which when applied to xw or v denotes
the background prior estimate of the best
analysis, and when applied to penalties J or
L denotes the component of the penalty mea-
suring the fit to the background.

differentiation of function by argument.

m subscript distinguishing time-slice. (It is con-
venient for manipulation of the 4D represen-
tations x and y, to partition them into a finite
number (N) of time-slices denoted by sub-
script m).

S smoothing operator for the diagonal matrix of

normalized analysis errors. .
nominal validity time for observations in time-
slice m.

t, 0, n, b, f are mutually exclusive subscripts, and always

precede i (iteration) and m (time-slice), which are added

in that order.

T,

b. Penalty function and derivatives

Lorenc (1988) showed that, if Gaussian error statis-
tics are assumed, and errors in the forecast model dur-
ing the time spanned by the current observations are
ignored, the optimal analysis can be obtained by min-
imizing a penalty function J with respect to the three-
dimensional field (w) at the beginning of the current
period. The penalty function measures the deviation
dy from the observations of a forecast from w, plus the
deviation of w from the background information. (In
section 5 below we discuss an additional constraint
that w be balanced.)

dy = Kn(Gn(w)) — Y (1)
J(w) = dy*(O + F)~'dy/2 + (w — wp)*B (W — w;)/2.
(2

We use an iterative descent algorithm to search for
this minimum. Subscript i is used to indicate values at
a particular iteration. As explained in Lorenc (1988),
if we are to use only a few iterations of a simple descent
algorithm, and not deviate too far from the back-
ground, it is better to use a descent algorithm derived
in terms of a transformed variable v, rather than the
basic variable w. This makes differences between the
analysis and the background smoother, rather than
generating sharp spikes to fit closely the observations.
In the appendix we set out the equations defining the
terms which will be used in such a descent algorithm.
Note that, despite the use of v conceptually to derive
the equations, the fields need never be represented in
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terms of v. Indeed this would be impracticable since
we do not have a convenient representation for the
background error covariance matrix B or its inverse,
which enters in the transformation from w to v:

v; = B7H(w; — wp).

3

We call the penalty function in terms of this trans-
formed variable L. Expressions for L and its derivatives
are given in the appendix.

¢. Basic descent algorithm

For the approximately quadratic penalty functions
that we assume above, if all the terms above are known,
the best algorithm for finding the minimum of the
penalty function is that of Newton: If v; is an approx-
imate minimum of L, then a better approximation is
given by

Vi = Vi — {L"(v)} ' L(v)). (4)
For our basic variable w this gives
Wirr = W; — B{L'(v)} 'L(v)). &)

If this is accurately evaluated, the transformation from
w to v has no effect. We shall however introduce some
approximations below, which make B{L"(v;)} ' diag-
onal. This can only be justified for the transformed
equations, and gives the iteration some of the properties
of a preconditioned steepest-descent algorithm, so the
transformation of variables is important.

3. Use of the three-dimensional analysis program
3DOI

a. Use of increments, error, and fit of observations to
guess

The four-dimensional analysis problem is difficult
to handle in practice for operational resolutions. How-
ever there is considerable experience with a reasonable
approximation to the equivalent three-dimensional
problem, the so called optimal interpolation method
(OI). At time T, OI gives an approximate minimum
for:

Jm(xm) = dy?;n(om + Fm)—linm
+ (Xm - xbm)*B—l(xm - Xbm)~

6

Here K,,, is assumed linear, so the minimizing field
X,m 18 given explicitly by

Xam — Xpm = —J ,r,n(xbm)_l-] ,m(xbm)
Xam — Xpm = (K%(O,, + Fm)-le + B_l)_l
X K;kn(om + Fm)_l(yom -

)

®

We call the programs for doing this the 3DOI. They
actually use the equivalent form (Lorenc 1986):

wr(Xom))-
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Xam — Xbm
= BK;kn(om +F,+ Kra:zBKm)_l(YOm - Knm(xbm))- (9)

They approximate this large matrix inverse problem
by many smaller ones, each for a small selection of the
data, and each providing only a few elements of the
analysis increment vector X, — Xpm-

3DOI programs also usually calculate the estimated
analysis error variance; the diagonal of A,

A, = <(xam = Xpm)(Xam — xtm)*>
= (K}(Op + F,) 'Ky, + B™) 7L (10)

Or else they calculate the normalized error variance;
the diagonal of A,,, divided by the diagonal of B.

Third, since they calculate all the observation incre-
ments dy,, [defined as y,,, — K,.{(Xpm)], they can readily
calculate the observation penalty Js, for the back-
ground field x,,,.

If, instead of the background field x;,,, we feed such
a 3DOI program with the current best estimate x;,,
from an iteration of a four-dimensional analysis, then
it will give us estimates of the observation penalty for
X;m, and expressions involving its first and second de-
rivatives. Using dx,, to denote the analysis increment
from the 3DOI program, we get:

me(xim) = dy;';n(om + Fm)_ldymz (11)
dx,, = —(K%(O,, + F,) 'K,y + B7')!
X K;:I(om + Fm)—ldyim (12)

and the (normalized) diagonal of A,,,.

b. Approximations to covariances

Our intention is to use a 3DOI program to calculate
the values just described, as a component of an iterative
procedure for finding an approximate minimum to
L(v), our four-dimensional penalty function. We neéd
first to justify some further approximations in our han-
dling of BA,, and G,,,, since we cannot store and ma-
nipulate these matrices for a full resolution NWP
model. Let us first nondimensionalize x by a diagonal
normalization matrix Z, such that (Zx)*Zx is a measure
of energy. The normalized background error covari-
ance is then given by:

<Z(Xb - X,)(Xb - X,)*Z*> = ZBZ*
= EbE*

where E is a matrix whose columns are the normalized
eigenmodes of the background error covariance, and
b is a diagonal matrix of error energies for each mode;
E is self-inverse. If both the truth and the background
are balanced, then a linearization of the balance rela-
tionship leads to some of the elements of b being near
zero. The same, unbalanced, modes should also then
be near zero in results from the 3DOI program, both
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in A, and dx,,. We neglect these modes, and concen-
trate on the balanced modes. Applying the normaliza-
tion to the linearized forecast model G,,;, and expressing
it as a sequence of time-steps, gives

Gm = z_leMm_l s M2MIZ. (13)

It seems plausible to assume that the error structure of
the forecast background can be described as a random
distribution of energy among modes of the model.
Phillips (1986) suggested equipartition of energy among
Rossby modes, with random phases. If this is so, then
the modes in E must be expressible as simple sums
and differences of the modes of M, in complex con-
jugate pairs. If the partition of energy in b is equal
within each pair, then M and b will commute:

bM = Mb. (14)
Hence B and G,,, also commute:
BG,, = G,B. (15)

These assumptions are only valid for spatially ho-
mogeneous error distributions. (Otherwise the random
phase assumption above is not correct.) If B has some
spatial variability, for instance from variations in ob-
servation density at earlier times, then we are neglecting
the advection of this structure in the errors during the
forecast.

We need also to make some assumptions about A,,,
since the OI program only provides information about
its diagonal. The correlation structure of the analysis
errors is a function of observation distribution. Where
there are no observations, analysis errors are identical
to background errors. Where there are observations,
the spatial correlation of analysis errors will tend to
drop to zero at about the observation separation dis-
tance. We make the convenient, but rather gross, as-
sumption that the structure of A,, is similar to that of
B, so that

BA, ' =a,! (16)

where a,, is a diagonal matrix made from the nor-
malized error variances calculated by the Ol program.
The validity of this assumption depends on the rep-
resentation chosen for x. We are not at liberty to allow
any arbitrary values for the elements of a. For instance
B is often modelled (see section 7 below) using the .
geostrophic assumption and a fixed horizontal corre-
lation structure. This determines the local relationship
between height and wind error variances. Since we are
assuming that the analysis is similarly balanced, and
has similar error correlations, we must ensure that the
analysis error variances implied by a obey the same
relationship. Thus locally, the elements of a for height
and wind must be approximately equal. The 3DOI es-
timates of normalized analysis error variance have no
such constraint; they allow large differences between
the implied correlation structures of the analysis errors
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and the background errors. Thus before use in this ap-
proximate scheme as the elements of a, these normal-
ized analysis errors should be locally averaged over
height and wind, and spatially smoothed. -

¢. Use of 3DOI results in four-dimensional scheme

Using the above approximations, we can now use
the results from the three-dimensional analysis program
in the four-dimensional scheme. Note that we use the
current best estimate x;,, as “guess” for the 3DOI, rather
than the background field x;,,, so the actual three-di-
mensional analysis produced will not be an optimal
combination of background and observations. For each
time-slice m the 3DOI program gives us the contri-
bution to the observation penalty Jj,, the analysis in-
crements dx;,, and the normalized analysis error vari-
ance a,,. Using these we get:

Lfm(vi) = me(xim)

= dy*(O,, + F.) 'dyim. (17)
The first derivative of this is
Ls(v)) = BGEKE(O,, + F) 'dyim (18)
which with our approximations is given by
Lilv) = ~Glan, 'dXpp. (19)

Similar approximations give an expression for the sec-
ond derivative:

Liv) = Gi(@, ' — DG,B. (20)

This is still impracticable for computation for large
operational models; we have to make a further ap-
proximation as to the effect of operating on the nor-
malized error matrix by the linearized forecast model
G. We will make the gross approximation that this can
be modelled as a simple spatial smoothing similar to
that used in obtaining an estimate of a from the nor-
malized analysis error variances. We denote this by
S,,. So finally we get

L}m(vi) = sm(am_1 - I)B- (21)

These expressions can be substituted into a Newton
iteration to find the minimum of L(v), our four-di-
mensional analysis problem. (Strictly, because we have
ignored second derivatives of G, in our expression for
Lj,, we are using a Gauss-Newton algorithm). If v; is
- an approximate minimum, a better estimate v, is
given by

N
Vi1 = Vit BH( X Sw@n =)+ 137!

m=1

N
X {(Z Ghan, 'dx,) — Bvi}.

m=1

(22)
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For our basic variable w the matrix B conveniently
cancels, giving:

N
Wir1 = W; + {( z sm(am_1 - l)) + |}_1

m=1

N
X{(2 Gran 'dx,) + w, —w;}. (23)
m=1

4. Adjoint model G*

We have already assumed that the analysis we re-
quire can be expressed in terms of balanced, slowly
varying, modes. Furthermore, in the arguments used
to justify the commutability of B and G we have im-
plicitly assumed that these modes are normal, and the
same for all the forecast timesteps M,,,. Each complex
normal mode of M,, has associated with it a complex
frequency w — i/, so that multiplication of a state by
M,, is equivalent to multiplication of each of its modes
by exp((iw + [)dt). Multiplication by the adjoint M% is
thus equivalent to multiplying each mode by exp[(—iw.
+ [)df]. This can be thought of as running energy con~
serving parts of the model backwards, while retaining
diffusion and damping terms. The nonlinear model
M,,, can easily be modified to do this for its dynamical
terms, and for simple physical parameterizations such
as diffusion and friction. We denote this modified
model by H,,. Multiplication by the adjoint of the
linearized model, M}, can thus be approximated by

M:am_—ldxm = {Hnm(xim + kam—ldxm) - Hnm(xim)}/k~
(24)

Here k is a small scaling factor chosen so as to improve
the approximation we are making in using a pertur-
bation to a nonlinear model instead of the linearized
model. Theoretically it should be infinitesimal, but in
practice, because of numerical truncation errors in the
computation of H,, a small finite value is used. This
multiplication by M}, gives weighted increments valid
at time T,,_,, further multiplications by M%*_, etc. are
required to give the equivalent of multiplication by
G},; weighted increments valid at the initial time of w.
However, because we are approximating a linear ad-
joint model, it is valid to combine these further mul-
tiplications with those necessary for the weighted in-
crements from time T,,-;, and so on, so that all the
adjoint model integrations G} can be implemented by
a single series of integrations of M¥, - -+« M¥,
My, - - - MT.

5. Initialization

We have based many of the preceding approxima-
tions on the assumption that both the background and
the estimates to the “best” analysis should be balanced.
The 3DOI program, although it attempts to maintain
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a linear geostrophic balance to the increments, does
not necessarily ensure full balance. Neither will our
approximated adjoint integration, nor the descent al-
gorithm for finding the state which minimizes L(v). It
is necessary therefore to include in the procedure a
step which explicitly ensures balance, either by non-
linear normal-mode initialization, or some equivalent
means.

In an ideal optimal analysis scheme our prior
knowledge that the atmosphere is balanced should be
used in the analysis. This can be done linearly, through
the eigenmodes of B, or nonlinearly, through an ad-
ditional penalty in the variational minimization, for
instance adding a factor proportional to the mean
square change during the first time-step of the forecast
to the penalty function J. This would then lead to an
additional term containing the adjoint of the forecast
model in the iterative analysis. However since we do
not have the adjoint of the model operator, we cannot
include such a nonlinear penalty. Instead, between it-
erations, we initialize the new estimate w;,; using an
existing nonlinear normal-mode initialization program.
This method of combining initialization with 3DOI in
an iterative analysis is a generalization of the unified
analysis-initialization technique of Williamson and
Daley (1983). Their technique did not include the
background field except to start the first iteration, so
that iterated indefinitely it tends to the balanced field
which fits closest to the observations, independent of
the initial background. Qur new scheme does include
the background, so that in the degenerate case of a
single time-period, it will tend to the balanced field
which fits closest the observations and the background,
with the relative weight for each determined by the
3DOL

6. Organization of the iterative four-dimensional anal-
ysis
a. Basic iteration

The preceding equations and approximations lead
to a procedure for the iterative search for an approxi-
mate minimum to J(w) as follows:

1) Initialize the current best estimate w;, to ensure
balance.

2) Forecast G,,,(w;) to obtain the estimates x;,, at
each time-period m = 1, N.

3) Clear accumulators for the weighted increments,
and weights. Loop back through the time-periods m
=N, 1, —1:

(i) Run the 3DOI program using x;, as guess.
Calculate the observational penalty Lg,(v,), the anal-
ysis increment dx,,, and smooth the normalized
analysis error variance to give a,,.

(i) Weight the analysis increment by the inverse
of the normalized error variance, to give a,,”'dx,,.
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(iii) Add this to the accumulated weighted incre-
ments.

(iv) Add (a,, ! — 1) to the accumulated sum of
weights. Smooth this with a spatial filter to model
the effect of pre- and post-multiplying by the adjoint
model matrix.

(v) Add the accumulated weighted increments to
X;m, initialize, and integrate using the dynamically
backward model H,,, to get a field valid at time 7,,—,.

(vi) Similarly initialize and backcast x;,, and
subtract from the results of 5, to get accumulated
weighted increments valid at time 7,,-;.

4) Add the forcing towards the background, w, — w;,
to the accumulated weighted increments valid at time
T,.

5) Add the weight (I) given to the background to
the accumulated sum of weights.

6) Divide the accumulated weighted increments by
the accumulated sum of weights, and add to w; to give
a new estimate.

b. First iteration

It seems natural to start the iteration procedure just
outlined from the background value w,. However, in
order to save time, it is desirable to reduce the number
of iterations required by starting from the best available
estimate. If the nominal time 7 of the first time-period
of observations is the initial time at which w; is valid,
then x;, is identical to w; and a better starting estimate
can be obtained by a conventional 3DOI of the time-
period 1 data, using the background w, as guess. The
3DOI used in this way finds the w; which minimizes
Jr(wy) + Jy(w,), or equivalently minimizes L (v,)
+ Lx(v;). Hence we have the relationship:

L(vi) + Ly(v;) = 0. (25)

Using this enables us during the first iteration to omit
the calculation of these terms. That is, steps 3(i), 3(i1),
3(iii), for the first time-period of observations, and step
4, which would cancel with them, can be omitted. The
normalized analysis error a, is still needed, but this is
available from the 3DOI done to make w;. Thus, by
performing a zeroth iteration which consists solely of
the 3DOI, we get a better guess for the first iteration
at no net computational cost, since we can omit that
3DOI from the first iteration.

¢. Alternative descent algorithms

Our use of the 3DOI program, and the approximate
adjoint model, has given us the following information
about the components of L(v;) and their derivatives:

Ly(v) given by adding the terms Lg,(v;) from each
3DOL .
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Lyv}) unknown. However it was shown by Lorenc
(1988) that this should remain small for a
few iterations with v as control variable.

Ly(v;) given approximately from the adjoint model
integration.

Li(v;) given by w; — w,.

Li(v;)) approximated by the diagonal matrix of the
accumulated sum of weights, multiplied by
B.

Li(v;) the identity I, multiplied by B. -

The Newton descent algorithm is optimal if the pen-
alty function is near quadratic, and if the Hessian is
accurately known. We have some gross approximations
in our estimation of L¢, and the forecast model is non-
linear, making the penalty function non-quadratic. The
simplest modification to the method is the addition of
a step-length s, which has to be determined so as to
ensure that the method is converging.

Virr = Vi = S{L'(v)} 7' LI(v). (26)

This “damped” Newton method is globally conver-
gent even for nonquadratic penalty functions (Gill et
al. 1981). Ideally the step-length should be chosen, us-
ing an iterative search, to ensure that the penalty func-
tion decreases each main iteration. In the example
given in the next section, we have used this method,
but with a fixed value for s initially chosen in prelim-
inary tests to be 0.5. .

If we were to regard our approximation to Ly as
worthless, and instead used the identity matrix | as
Hessian, then the above algorithm would become the
method of steepest descent, which is known to converge
slowly. An improvement on this, which uses infor-
mation about L and L' remembered from previous it-
erations, is the method of conjugate gradients (Navon
and Legler 1987). This method is related to limited-
memory quasi-Newton methods (Gill et al.,, 1981),
which take our approximation to L” as a first estimate
of the Hessian, and refine it in subsequent iterations
using differences between L' at different iterations in a
finite-difference approximation to a second derivative.

7. Experimental test

a. Details of method

As discussed in the Introduction, one objective of
this work was to use operational datasets and programs
as much as possible, in order to test the four-dimen-
sional ideas in a practical environment. The scheme
which we chose to adapt was the Regional Analysis
Forecast System (RAFS) of the National Meteorolog-
ical Center (NMC), as operational during March 1987.
This consists of an optimal interpolation (OI) analysis,
nonlinear normal-mode initialization (NNMI), and
Nested-Grid Model (NGM) forecast. The background

MONTHLY WEATHER REVIEW

VOLUME 116

field for the analysis comes from a 6-hour forecast from
the global data-assimilation system; it is interpolated
from a rhomboidal-40 spectral representation to the
180 X 60 longitude-latitude, 16 sigma-level grid used
for the hemispheric analysis. Details of the analysis are
given by DiMego (1987). It is an OI scheme, multi-
variate in geopotential height, and wind components.
Humidity is analyzed univariately. Height, wind, and
humidity data are used to calculate analysis incre-
ments at the forecast model’s sigma levels, but on a
longitude-latitude analysis grid. The height increments
are converted to equivalent temperature and surface
pressure increments, and the increments are added to
the background, which has been interpolated to the
same grid. The background error variances used in the
analysis are estimated in a simple fashion from the
data distributions at the previous analysis in the global
data assimilation scheme, using its estimated analysis
errors. They thus vary significantly between data-sparse
and data-dense areas. The height error correlation is
modelled as a function of separation in horizontal dis-
tance and pressure. Wind error correlations are cal-
culated to be geostrophically consistent with this model.
These estimated error variances and correlations define
our background error covariance matrix B. The pro-
grams which perform this analysis are referred to col-
lectively as the 3DOI.

The analysis is converted to a rhomboidal-80 spectral
representation, and initialized in a hemispheric non-
linear normal-mode initialization (Sela, 1980). The in-
itialized field is interpolated horizontally to the nested
polar stereographic grids of the NGM, which have res-
olutions varying from 366 km for the hemispheric out-
ermost grid to 91.5 km for the grid covering North
America.

To use the 3DOI in our scheme, it was modified
slightly to provide, in convenient form, the observation
penalty Jg,(X;), the analysis increment dx;,,, and the
normalized analysis error variance a,,. The observa-
tional penalty included deviations from the guess of
all height and wind data, normalized by the observa-
tional error variance assigned to them in the OI scheme.
Data which were rejected by the quality control scheme,
which is part of the 3DOI, were assumed to give a
constant contribution to the penalty, equal to that of
data on the borderline of rejection.

The basic control variable w was taken to be the
vector of the analysis variables on the latitude-longi-
tude-sigma grid. In order to do a forecast from this
using the NGM, it was interpolated horizontally to the
model’s grid points, via the spectral representation used
for initialization. Three programs not used operation-
ally complete our iterative scheme:

(1) abackcast model made by removing all physical
parameterizations except the diffusive filter and dry
adiabatic adjustment from the NGM,
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(2) a bi-linear horizontal interpolation from the
NGM grids to the analysis grid,

(3) anew program to process the fields, increments,
and errors, and implement the descent algorithm.

Since our scheme assumes “balance” in its deriva-
tion, and forces balance by incorporation of the NNMI
each iteration, an additional step was included to ensure
that the background was balanced according to the
same criterion. This was achieved by interpolating the
background on the analysis grid, as obtained from the
global data-assimilation system, via the spectral ini-
tialization, to the NGM grid, and then immediately
back to the analysis grid.

The observations used in our experiments were also
taken from the operational RAFS, which runs every
12 hours. They were thus partitioned into sets nomi-
nally valid at the main synoptic hours 00Z and 12Z,
including asynoptic observations from up to 3 hours
before and about 2 hours after these times.

The computational cost of the scheme was domi-
nated by that of the constituent 3DOI, initialization,
and forecasts. The cost per iteration was between one
and two times the cost of a conventional forward anal-
ysis-forecast cycle assimilation of the same data.

b. Experiments performed

A series of experiments were performed to test the
scheme, and its sensitivity to changes in some of its
components. Those presented here used the observa-
tions for 00Z and 12Z 27 February 1987. They are
listed in Table 1.

Experiment A was the basic scheme, with a step-
length chosen on the basis of an earlier experiment to
be 0.5. This was run for four iterations. The step-
length was then halved to 0.25, and a further four it-
erations performed.

Experiments B and C were three-dimensional anal-
yses incorporating iteratively a nonlinear normal-mode
balance relationship, as discussed in section 5. The
background for experiment C was interpolated from
the global data-assimilation system background valid

TABLE 1. Experiments performed.

A basic scheme: iterative four-dimensional analysis.

B as A, but only using 7; observations, Equivalent to iteration of
3DOI and NNMI at 7.

C as B, iteration of 3DOI and NNMI at T5.

D as A, but only using T, observations.

E as A, with persistence replacing backward NGM in adjoint
model. :

F as A, without NNMI.

G “periodic spinup”: 3DOI(7T;) — NNMI — forecast
— 3DOKT>).

H as A, then NNMI — forecast — 3DOKT>).

I as A, without NNMI of final analysis.
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at the second time: 12Z 27 February 1987. The first
iteration of experiment B or C was almost identical to
the current (March 1987) operational regional analysis
system. Further iterations should improve the nonlin-
ear balance, while maintaining the fit to the observa-
tions.

Each iteration of experiment B actually performed
a forecast to 7>, and measured the fit to the data, to
calculate the observational penalty function. Thus, ex-
periment B can be regarded as identical to A except
that the observations at the T, were given zero weight.
Experiment D was the other extreme from this; the
observations at T, were given zero weight. It can be
thought of as attempting to find the field valid at 7}
which, when forecast, best fits the observations at 75,
subject to constraints on balance and fit to the back-
ground at 7. After two iterations of experiment D it
was found that the iteration was not converging, so the
steplength s was halved to 0.25.

Experiments E and F were identical to A except that
one aspect of the scheme was replaced by a simple
dummy version. Thus experiment E used persistence
instead of the backcast model in the adjoint calculation,
and F omitted all nonlinear normal-mode initializa-
tions.

Experiments G, H and I were actually by-products
of experiment A. They are included in the forecast re-
sults, presented in section e below, to provide com-
parisons simulating possible alternative practical
schemes. Experiment G tested a scheme (called the
“periodic spinup”), which is currently being investi-
gated as a compromise between having a completely
independent data-assimilation cycle for the regional
model, and the operational system which performs each
3DOI with a background interpolated from the lower
resolution global model. The UK Meteorological Office
(Bell, 1986), and the US Navy (Barker, personal com-
munication) have implemented such schemes with
success. Because the basic experiment A had a “zeroth™
iteration using only T, the analysis produced while
calculating the 3DOI increments for iteration 175 was
the product of: 3DOI (7)) — nonlinear normal-mode
initialization — forecast — 3DOI (T3). This T analysis,
from the first iteration of experiment A, is thus the
“periodic spin-up” analysis of experiment G. It is the
closest analog in this work of an analysis from a con-
ventional data assimilation scheme which performs an
indefinitely repeated analysis-forecast cycle. The sim-
ilar analysis, from the eighth iteration of experiment
A, was called experiment H. This experiment can be
thought of as using our four-dimensional scheme to
provide an improved background, consistent with ob-
served tendencies, to a conventional three-dimensional
analysis of the data at the final time. Experiment I tested
whether the balance achieved by the iterative scheme
was sufficiently good to permit the omission of the
nonlinear normal-mode initialization of the final anal-
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ysis from A, before the forecast described in section d
below.

¢. Fit to observations

A necessary property of a good analysis is that it
should fit the observations used, within a tolerance
governed by the expected observational error. In our
formalism this property is measured by the observa-
tional penalty J;. The wind observational penalties for
experiments A-F (see Table 1) are plotted in Fig. 1 as
a function of iteration. The penalty plotted is that of
the current best estimate at the beginning of the iter-
ation; for iteration 0 it is that of the background field.
The penalty function was evaluated during each iter-
ation, so that for the latest estimate at the end of the
last iteration is not shown. The behavior of the geo-
potential height observational penalties was similar to
that of the wind observations; unfortunately because
of a coding error not all values are available for plotting.

If our analysis were the true field, then, because of
the definition of the observational errors, the mean ob-
servational penalty per datum should be Ny/2, where
Ny is the number of data. It is easy to show for the OI
equations that this is an upper limit; an analysis which
has available less than the perfect observation set nec-

-essary to analyze the true field, should fit the obser-
vations used in the analysis more closely than the true
field would. This result only holds if the statistical es-
timates of observational error variances used in the
calculation of J,are correct. The obsérvational penal-
ties are plotted in Fig. 1 scaled by 2/N,, so the values
should be between zero and one. This is clearly not
true. In an effort to obtain a close fit to the data by the
analysis, the observational errors specified to the 3DOI
program have been reduced below the theoretically
correct values, and the resulting observational penalties
are higher than expected. However for our purposes
this is not important, since the values are approximately
correct, and we are more interested in the relative re-
duction in penalty than the actual value.

The zeroth iteration of experiments A, B and E were
identical; the observations for 7', were used to update
the (initialized) background field. Figure la shows at
iteration 0, the fit of these observations to the back-
ground, and at iteration 1, their fit to the resulting in-
itialized analysis. The effect of the NNMI can be seen
by comparing these with the values for experiment F;
without a balance constraint a closer fit to the obser-
vations is possible. Figure 1b shows the fits of the ob-
servations at 7,. At iteration 1 we can compare the
values for experiments A, B and E, for a forecast from
the iteration 0 analysis, with that for experiment F,
which omitted initialization. The NNMI, which de-
graded the fit to the T, data, slightly improved that to
the T, data. Fit to data which have been used in the
analysis is often, as in this case, a poor measure of the
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FiG. 1. Observational penalties for wind observations, for the anal-
ysis fields valid at times 7, and T, plotted against iteration for the
experiments listed in Table 1. The penalty is scaled by 2/N,, where
N, is the number of data included, and is thus the mean square
deviation of the fields from the observations, normalized by the es-
timated observational error variance, as used in the 3DOI. Values
plotted are for the fields at the beginning of each iteration. See Table
1 for details of each experiment.

likely accuracy of a forecast from the analysis. We can
also compare with experiment D iteration 1, a forecast
from the initialized background. As we would expect,
the T, observations do improve the subsequent fore-
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cast. Experiment C only used T3; its iteration 0 value
measures the fit of the appropriate six-hour forecast
from the global data assimilation cycle, and its iteration
1 value that of a 3DOI analysis at 7>.

Let us now consider the improvements in fit gained
by iterating. We can see from both experiments A and
D in Fig. 1b that the scheme is managing to find a state
at T, which, when forecast, better fits the observations
at T,. Hence in a basic way the iteration is working,
although the reduction in steplength at iteration 5 of
A and iteration 3 of D was necessary for this. Some
initialization is necessary, as evidenced by experiment
F. Our approximate adjoint of the model integration
was also beneficial, as compared to simple persistence
used in experiment E. This is particularly true for the
wind data penalties shown in Fig. 1, which reflect
smaller scales than the geopotential height penalties
(not shown). However the success is only partial; the
four-dimensional analyses were not as good as the
3DO! of experiment C at fitting the data at T,. There
was no demonstrable benefit at 7, from the use of the
T, observations; experiment D fields at T, did not fit
the observations (which it never used) any better than
did the background. The improvement in fit to the T,
observations, seen in experiment A Fig. 1b, was
achieved at the expense of the fit to the observations
at 7, (Fig. 1a), so that the total observation penalty
(not shown) for experiment A stayed almost constant.
That for experiment E slightly increased. We can at
present only speculate on the improvement in these
results which might be achieved by a better approxi-
mation to the adjoint of the forecast model.

d. Fit to background

Our prior knowledge about the true state w, can be
expressed by w,, the most likely state, and (for a Gaus-
sian system) by B, the error covariance matrix of w,,
defining which modes are more likely to be in error.
We have w,, from a forecast from the global data as-
similation system, but we do not have an explicit def-
inition of B. Instead we have an estimate of the pre-
diction error variance, the diagonal of B, and a cor-
relation model used in the 3DOI which implicitly
defines the rest of B. Thus we cannot easily calculate
the background penalty function. We can however cal-
culate the mean-square deviation from w;, normalized
at each gridpoint by the background error variance;
this is plotted in Fig. 2. The correlation model used in
the 3DOI is based on assuming smoothness and ap-
proximate linear balance in the background errors. We
can get a measure of balance from the changes made
during the NNMI. These are shown in Fig. 3, also nor-
malized at each gridpoint by the background error
variance. Since the background is made to be balanced
in these experiments by applying the NNMI to it, im-
balance in the analysis implies an imbalance in the
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deviations from w;. As for Fig. 1, the values plotted
are for the estimate at the beginning of the iteration.
The NNMI is applied as the first step in each iteration;
Fig. 3 shows the changes made during this NNMI. For
iteration zero Fig. 3 shows the changes made during
the NNMI of the background. These changes were
largely due to imbalances introduced when changing
the orography in the background representation, since
a forecast field from the global data assimilation system
(which has its own NNMI) should otherwise be rea-
sonably balanced.

Lorenc (1988) showed how the transformation to
control variable v, from the model variables w, means
that during the first few iterations of a descent algorithm
the background penalty should remain small. This is
partly borne out by Fig. 2 and Fig. 3, however by it-
eration 5 of experiment A and iteration 3 of experiment
D values have got quite large. This deviation from our
prior assumptions about the atmosphere was also vis-
ible in the corresponding plotted fields. There was a
very sharp trough in a strong upper westerly flow at
50°N off the west coast of Canada, with associated
maxima and minima in vorticity and vertical motion.
This pattern looked very “‘unmeteorological”, indeed
without the halving of descent steplength to 0.25 in
experiments A and D the NGM forecast failed in the
next iteration. With the halved steplength, most of the
extremes were removed in the subsequent iterations.
The position of the anomalous feature was such that
it was probably associated with advection, by the strong
upper flow, of 3DOI increments which at 7, were
caused by coastal observations. The approximate ad-
joint model used in this work would advect these back
along the flow to the oceanic position at T;, where
there were few other data. Our neglect of model ad-
vection in the corresponding approximate adjoint
forecast of the error covariances meant that the incre-
ments would then be given inappropriate weights. Ex-
periment E, which did not use the approximate adjoint,
instead using a persistence approximation consistent
with that used for the error variances, had no such
feature. Note however that despite this shortcoming,
the net effect of the approximate adjoint was positive.

Experiment F had no NNMI; the small changes
plotted in Fig. 3 were caused by the spectral grid trans-
formations. Without its controlling effect, “unmeteo-
rological” features such as that discussed above grew
each iteration, adversely affecting the fit to observations
(Fig. 1) and the fit to the background (Fig. 2).

e. Forecast results

The ultimate test of any analysis scheme for NWP
must be the accuracy of the subsequent forecasts. The
RAFS system was developed for short range forecasts
for the USA. Our analyses have therefore been tested
by running the NGM for 48 hours. For all except ex-
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periments F and 1, nonlinear normal-mode initializa-
tion was performed on the analyses before integrating
the forecast model. The forecasts were verified against
available observations from the 850, 500, 250 and 100
mb levels, from a standard set of 110 stations in North
America. Results, averaged for these levels, are plotted
in Fig. 4. In keeping with operational nomenclature,
the nominal time of the latest observations available
to the analysis (our T3) is called O hours. Curves are
labeled with the experiment and cycle number. In
keeping with our nomenclature on earlier figures, the
cycle number refers to the estimate at the beginning of
the cycle. Thus curve Al is for a forecast from the
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F1G. 2. Mean square deviation from the background field, for the
T, analysis fields, plotted against iteration for the experiments listed
in Table 1. The deviations are normalized by the estimate background
error variance, as used in the 3DOI, and averaged for the northern
hemisphere. Values plotted are for the fields at the beginning of each
iteration. See Table 1 for details of each experiment.

output field from the zeroth iteration of our basic ex-
periment, which was the input field for iteration 1.
Apart from an extra NNMI of the background field,
this is equivalent to the operational RAFS analysis valid
at T, (—12 hours). Curve A9 is from the basic experi-
ment after 8 iterations of the four-dimensional analysis
scheme. This analysis has used the 0 hours observa-
tions, and hence verifies better against them. The im-
provement is maintained throughout the forecast.
Curve D9 is from a similar four-dimensional analysis
only using the 0 hours observations. This forecast is
almost as skilful at later times as A9, indicating that
the —12 hours observations are in this case adding little
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skill to the forecast, except at the earliest time. (It should
be remembered that the four-dimensional analysis is
defined by a forecast from the field at the initial time,
so these forecast experiments run from —12 hours.)
We saw in Fig. 1b that neither of these experiments
achieved as good a fit to the time 7, (0 hours) wind
observations as could be achieved by a simple 3DOI.
This is borne out by curves C1, G1 and HS8 in Fig. 4b.
These were all forecasts from 3DOI analyses at 0 hours,
using various backgrounds. The C1 used the initialized
6-hour forecast from the global data assimilation sys-
tem; it was thus equivalent, 12 hours later, to Al. Gl
used the NGM forecast valid at 0 hours from Al. The
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FIG. 3. As in Fig. 2 but for the mean square change during the NNMI.

HS8 used the field valid at O hours from A8. The better
wind verification scores are maintained throughout the
forecast; by this criterion the four-dimensional analyses
were not as good as the “traditional” three-dimensional
ones.

Another comparison that can be made in Fig. 4 is
between the “traditional” 3DOI followed by NNMI,
and an iteratively balanced three-dimensional analysis
as described in section 5. Experiment B iterated the
3DOI and NNMI using the background from the global
data assimilation system, and the observations, valid
at T, (—12 hours). Experiment C did the same for 75
(0 hours). Scores for the forecast after four iterations
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FIG. 4. Root mean square forecast verification statistics averaged
for 850, 500, 250 and 100 mb, against radiosondes over North Amer-
ica. Curves are labeled with the experiment letter, as given in Table
1, and the iteration number. :

of B are shown as BS, this can be compared with Al,
the forecast from the 3DOI analysis of the zeroth it-
eration of experiment A. Scores after the zeroth and
the first iteration of experiment C can similarly be
compared. Differences are marginal, and contradictory
for the two cases; there is no indication that the iterative
analysis is better. _

It appears from Fig. 4 that the best forecasts were
from experiment C. The distinguishing feature of this
experiment was its use of the six-hour forecast back-
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ground from the global data assimilation system valid
at T, (0 hours). This has had the benefit of the obser-
vations valid at —6 hours. Another difference was the
global forecast model. A direct measure of the quality
of this background is shown in Fig. 1b, as the fit to the
observations at iteration 0 of experiment C. This can
be compared with that of experiment B in the same
figures. Experiment B only used the T, observations,
so the T fits measure the accuracy of the resulting 12-
hour NGM forecast. The global forecast is better for
height, but slightly worse for wind. Note that Fig. 1
uses all observations in the hemispheric RAFS domain,
while Fig. 4 only uses North American radiosondes.
Finally in this section, we can mention that the scores
for the forecast from experiment I were very little dif-
ferent from those for experiment A. At —12 hours, the
time of the observations most directly used in the anal-
ysis, the fit to the heights of forecast 19 was 3 meters
better than that of forecast A9. The fit of the winds
was 0.2 m s™! better. At other times the scores were
indistinguishable, so 19 is not plotted in Fig. 4.

8. Effect of approximations

In this section we discuss in turn the effect of the
approximations made in deriving a practicable method,
as demonstrated in the results of the previous section’s
experimental test. One type of approximation is the
use of operational programs (3DOI, NNMI, and NGM)
as if they are perfect. Another type is in the evaluation
of the penalty function, its gradient, and their use in a
descent algorithm.

a. 3DOI

We assume that the analysis increments given by
the 3DOI program' are truly an optimal weighting of
‘observations and background. We saw in section 7a
that the observational error variances used are far from
the theoretically correct values. On the other hand the
normalized mean square deviations from the back-
ground (Fig. 2) are between zero and one, indicating
that the background errors variances are probably more
nearly correct. Since the relative weight given to the
observations and background depends on the ratio of
the assumed error variances, it follows that the 3DOI
gives too much weight to the observations. This might
partly explain why there is little difference between the
scores of forecasts from the analyses A9, G1, D9, HS,
Cl and C2 in Fig. 4a. These were all 3DOI analyses
using the same data, the only difference was in the
background fields used for each.

b. NNMI and NGM

The nonlinear normal-mode initialization is in-
cluded as a strong constraint in our scheme for two
reasons:
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(1) because of the observation that the atmosphere
is usually slowly varying. NNMI is an approximate
way of including this extra knowledge into our scheme,
which would otherwise allow rapidly varying solutions.

(2) because the approximations in our handling of
the forecast model’s adjoint can only be justified for
balanced slow modes.

The latter effect is demonstrated in Fig. 1. Experi-
ment F, without NNMI, did not converge to fit the
observations. The former effect is shown in Fig. 5.
Forecast F5 had a large scale height oscillation of an
amplitude not seen in reality. Figure 5 shows the mean
verification against North American radiosonde 250
mb heights for forecasts from the experiments related
to NNMI. There was a large scale upper trough cov-
ering North America on 27 February 1987. The NNMI
filled this slightly, as can be seen by the difference be-
tween the —12 hours mean errors of forecast F1 and
Al, and of forecasts I9 and A9. (The latter difference
is probably smaller because the NNMI was used while
making the experiment I analysis, it was only omitted
before the final forecast). The subsequent forecasts
tended to deepen the trough again. This seems to in-
dicate that the balance achieved by the NNMI was not
that required by the NGM forecast model. A similar
behavior of a similar NMC NNMI scheme in large-
scale troughs was noted by Hollingsworth et al. (1985).
Note that the —12 hours mean error in experiment D
was larger than that of A, because D was only trying
to fit the 0 hours observations.

The oscillations in forecast FS in Fig. 5 were in the
external mode; they were as large in the 850 mb height
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FIG. 5. As in Fig. 4 but for the mean 250 mb height difference
of observations minus forecast.
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(not shown). In contrast the large change between —12
hours and 0 hours in forecasts from experiments A D
and I were mostly in the 850-250 mb thickness. Fore-
casts initialized at 0 hours (C1, C2, G2, G1 and HS,
not shown on Fig. 5) showed a similar decrease in 250
mb height in their first 12 hours. However in these
forecasts, most of the change occurred in the 850 mb
height. It is unclear how much of the bias error in 250
mb height was due to NNMI, and how much to the
NGM forecast model. It is possible that differences in
calibration between satellite derived height observa-
tions over the oceans and radiosondes over the land
also contributed. There is evidence however that part
of the bias is due to the NGM. All the forecasts, in-
cluding the uninitialized ones, showed a steady cooling
of the model’s lowest layers, about 1°C during the first
24 hours at 850 mb. Further experiments would be
required to unravel the causes of these biases. It is clear
however that they make it difficult to achieve a close
fit to both the —12 hours and 0 hours observations.

Another failing of NNMI, particularly of adiabatic
implementations like that used here, is the underpre-
diction of rainfall in the subsequent short-period fore-
cast. It was hoped that by moving the NNMI to —12
hours, instead of 0 hours as in the current operational
system, this spinup problem would be alleviated.
However although there were differences between the
rainfall forecasts of, for instance, A9 and G1, there was
not a clear signal that one was better for the single case
studied.

¢. Penalty functions, derivatives, and descent algorithm

We discussed in section 6¢ the approximations made
in deriving expressions for the penalty function and its
derivatives. Practically, our objective is not to set up
an algorithm for finding the exact minimum of the
total penalty function, but just to perform a few iter-
ations which decrease it from that given by conven-
tional 3DOI analysis/forecast cycles. The total penalty
needs to be used in a practical scheme at least as a
check that it is decreasing. The simplest approximation
to the Gauss-Newton descent algorithm did not con-
verge; it was necessary to modify it by including a step-
length. Some form of total penalty, formed as a
weighted sum of the partial penalties shown in Figs. 1,
2 and 3, would probably be a sufficiently good measure
of “improvement” in the analysis, for detecting con-
vergence. It would have been possible with such a sum
to detect the lack of convergence which eventually
forced the halving of the step-length in experiment A
iteration 5 and experiment D iteration 3. Note that, in
contradiction to the result from Lorenc (1988), the
background penalty is important for this. The Lorenc
(1988) result that the background penalty always re-
mains small is no longer true in the presence of our
other approximations.
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Neither experiment A nor experiment D achieved
as close a fit to the observations as was achieved in the
similar idealized experiments of Lorenc (1988). This
was of course to be expected; the earlier experiments
were of “identical twin” type, with model generated
observations. Thus there were no model errors anal-
ogous to those discussed in the last subsection. The
exact adjoint used in the idealized experiments enabled
changes to be made to the advecting wind in response
to tendency information from an advected tracer. The
linearized approximation to an adjoint used in the
present work was probably not accurate enough to get
this effect, which needs a better adjoint for the dynam-
ical part of the model. It would need a large effort to
code the accurate adjoint of the full forecast model,
including its physical parameterizations (without which
its forecasts aré significantly degraded). Such an effort
‘is probably premature; research on using observations
such as cloud amounts and deduced diabatic heating
rates in three-dimensional analysis schemes is still in
its infancy. So even if the forecast adjoint is improved,
any improvement to the descent algorithm used in this
work should take into account that the calculated gra-
dients of the total penalty function are only approxi-
mate.

We discussed in section 7d an “unmeteorological”
feature, apparently caused by inconsistent approxi-
mations in our adjoints of the forecast and the error
covariances. Qur approximation to the latter is exactly
analogous to that used in the operational NMC scheme
for estimating background error covariances, some-
thing which should be done using a Kalman-Bucy filter.
The crude smoothing which replaced this in our adjoint
scheme was completely untuned; probably considerable
improvements are possible even to this. If the opera-
tional scheme were to be improved, for instance by
implementing a simple advection of variances by the
mean flow, then presumably its adjoint could be used
in this scheme.

8. Conclusions

We have shown that a four-dimensional analysis of
the full operational observational database can be
made, by iterating modifications to the operational
analysis and forecast codes and an approximate adjoint
model. Computer resources required are only an order
of magnitude greater than those for the operational
scheme. This is much less than the theoretical require-
ments of some other proposed algorithms. It means
that the technique is practicable now for research ex-
periments, such as producing a dynamically consistent
four-dimensional analysis from a special set of obser-
vations. It should become operationally practicable by
the next generation of computers (as long as the re-
quirements of the forecast model do not grow to match
the available computer!).
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The derivation of the scheme emphasizes that it can
be regarded as an extension of current three-dimen-
sional analysis methods. It should be possible to carry
over the results of past and continuing efforts to develop
these, by using the three-dimensional analysis code as
part of the four-dimensional scheme. Experiments with
the scheme highlighted deficiencies in the current op-
erational scheme, in the observational error variances
assumed, in the “balance” given by the nonlinear nor-
mal-mode initialization, and in the systematic errors
of the forecast model.

The preliminary experiments described in this paper
indicate that further work is necessary on improving
several aspects of the scheme, particularly the descent
algorithm and the adjoint forecast of covariances.
Forecasts from the analyses did not verify quite as well
as those from the operational scheme, for the one case
studied.

The scheme has the potential to use a more complete
time-coverage of observations. It would be interesting
to test this by analyzing data from special observational
efforts such as the GALE experiment.
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APPENDIX
Penalty Function and Derivatives

The “best” analysis can be obtained by an iterative
search for the minimum of

L(v) = dy}O + F)~'dy;/2 + v}Bv,/2
= Ly(v)) + Lyv) (A1)

where Lrand L, are notations for the individual com-
ponents of L.

To manipulate the four-dimensional distribution of
observations using the three-dimensional analysis pro-
gram 3DOI, we partition them into N time-slices, in-
dicated by subscript m:

y={yh v, oo vk oo VR (A2)
The four-dimensional field x, defined by a forecast

- G, from the initial conditions w, is similarly partitioned:

xt = {x}, x5, (A3)
Gruml(W)). (A4)

For simplicity we do not interpolate in time, but as-
sume that all observations in time-slice m are valid at

...x}‘;m...x}'l‘v}

Xim =
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T,,. Hence K, becomes a space only interpolation at
each T,,:

Yim = nm(xim)- (AS)

If there is no correlation between observational and
representativeness errors in different time-slices, then
O and F can be partitioned into submatrices which can
be inverted separately, and the observational penalty

Lycan be partitioned into time-slices:

Ln(vi) = dy}5AOyp + Fr)) ™' dyim/2. (A6)
The partitioned total penalty is
N
L(v) = 2 Lpn(v) + Ly(v)). (A7)

m=1

A similar partitioning can be done for the vector of
partial first derivatives of the penalty function:

N
L'(vi) = 2 Lp(v) + Ly(v) (AB)
m=1 .
and for the matrix of partial second derivatives:
N
L'(v) = 2 Lpavi) + Li(v). (A9)

m=1

We assume locally valid linearizations K and G exist:

Ko(Xim + 8X,) = Kyl Xim) + KX, (A10)
Gum(W; + dW) = Gyp(w)) + Gpdw.  (All)

Then we get
Li(v) = BGEKE(O,, + Fp) 'dyim. (A12)

Note that G,, and K,, are both in general functions of
v;. Neglecting this dependence in comparison with that
of dy;,, gives

Li(v) = BGEKX(O,, + F,)'K,,G,B. (A13)
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The partial derivatives of L, are
Li(v;) = By;
=W, — W, (Al4)
Li(v)) = B. (A15)
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