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ABSTRACT

A three-dimensional statistical interpolation method, multivariate in geopotential height, thickness -
and wind, is described. The method has been implemented in the ECMWF operational global data-
assimilation scheme, used for routine forecasting and for producing FGGE level III-b analyses. It is
distinguished by the large number of data used simultaneously, enabling full exploitation of the
potential of the three-dimensional multivariate technique, and by the incorporation of a statistical
quality control check on each datum using the analysis itself. Some simple examples illustrating
the properties of the method are presented, and a detailed study is made of the effect of various

analysis parameters on one practical example.

1. Introduction

The analysis method described in this paper has

been developed at the European Centre for Medium -

Range Weather Forecasts (ECMWF) as part of a
data-assimilation scheme designed to provide initial
states for the Centre’s operational forecast model,
and to produce analyses from the observations made
during the First GARP Global Experiment (FGGE).
The scheme must produce global analyses in nu-
merical form, efficiently, with minimal human inter-
vention, on a large fast vector-processing computer.
The mass and wind analysis is a vital part of the
assimilation. It has to combine a relatively accurate
forecast ‘‘first-guess’’ provided by the data assimila-
tion so far, with observations of many different
types of accuracies and distributions, to detect
and reject erroneous data, and form an analysis
which exhibits the approximate balance between
mass and wind fields observed in nature. An earlier
version of the analysis was described by Lorenc
et al. (1977). This paper is intended as a description
of the analysis method; subsequent papers are
planned documenting its behavior as part of an
operational data-assimilation scheme.

A technique for combining first-guess and observed
quantities in a way consistent with the estimated
accuracy of each is optimum interpolation (Gandin,
1963). This method has been extended to the multi-
variate analysis of geopotential height and wind
data by Rutherford (1973) and Schiatter (1975).
Rutherford (1976) describes a split vertical and hori-
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zontal scheme capable of using height, temperature
and wind data without fully taking into account their
three-dimensional structure. Bergman (1979) de-
scribes a scheme using temperature and wind data
three dimensionally. The method presented here is a
fully three-dimensional version of optimum interpo-
lation, multivariate in wind, height and thickness. It
is thus capable of using, to good effect, widely dif-
fering types and distributions of data to produce a
consistent three-dimensional height and wind anal-
ysis. For instance, the vertical and horizontal height
gradient information provided by a sequence of
satellite temperature soundings can be combined
with wind data or reference level height data at
any level.

Quality control of the data is an important func-
tion of an automatic analysis scheme. The statistical
techniques of optimum interpolation lead naturally
to a method of detecting data which are unlikely to
be correct. Such a method is an integral part of the
ECMWF scheme.

Since several similar versions of the interpolation
equations are used, their derivation is grouped to-
gether in Section 3, after a description of the less
mathematical aspects in Section 2. The prediction
error covariance model, whose properties largely
determine the local behavior of the analysis method,
is described in Section 4 along with the assumed
observational error covariances. Some simplified
examples illustrating the potential of the three-
dimensional multivariate method are presented in
Section 5 and results obtained with real data in Sec-
tion 6. In Section 7 computational aspects of the
scheme are discussed and a summary is given in
Section 8.
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2. Description
a. Coordinates

The basic vertical coordinate used in the analysis
is pressure. This simplifies the specification of con-
sistent prediction error covariances and the process-
ing of upper air data, most of which are reported at
standard pressure levels. In order to reduce the ef-
fect of the coordinate transformations necessary
when the analysis is part of a data assimilation based
on a sigma-coordinate model, the analysis incre-
ments are interpolated from pressure to sigma co-
ordinates before being added to the forecast first
guess. Thus the smoothing effect of the transforma-
tions is minimized and in data voids the forecast is
completely unchanged. At present the 15 standard
pressure levels from 1000 to 10 mb are used. The
analysis variables are geopotential height and wind
components at these levels, and geopotential thick-
ness between them. Since the forecast model usually
used to provide a first guess has realistic boundary-
layer parameterizations and a high vertical resolu-
tion near the surface, fields of surface pressure, 10 m
wind and 2 m temperature are maintained in parallel
with the pressure coordinate representation, and
- used in the processing of surface observations.

The program organization, data selection, and the
bulk of the computation are independent of the
horizontal analysis grid, which can thus be chosen
to suit the forecast model used for data assimila-
tion. At present a regular 1.875° latitude-longitude
grid is used.

The analysis requires fields of the estimated pre-
diction error, and produces estimates of the analysis
error. The former is required to be smoeth since its
derivatives are ignored, while the latter is expen-
sive to compute, so a much coarser 6° quasi-homo-
geneous horizontal grid is used for these, with grid
points at the center of each of the analysis volumes
described in Section 2c.

b. Processing of observed data

The analysis equations are derived assuming that
all data are processed to give observed minus first-
guess deviations for wind components at, geo-
potential height of, and the thickness between, the
analysis levels. To obtain these, the first guess is
interpolated bilinearly in the horizontal and if neces-
sary observations are interpolated or extrapolated
in the vertical to the nearest analysis level. Surface
observations are processed using the first-guess
surface fields. Sea level pressure deviations are con-
verted to height deviations and assigned to the analy-
sis level nearest the observed pressure, and 10 m
wind deviations are' assigned to the pressure level
nearest the forecast model’s surface. Apart from this
use as the first guess of a surface wind from a fore-
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cast model including surface friction, no other cor-
rection is made to surface winds for frictional effects.

¢. Data selection and organization

A novel feature of the ECMWF analysis scheme
is the organization of the data selection and solution
of the statistical interpolation equations. The scheme
was designed for a vector processing computer
especially suitable for the efficient solution of large
linear systems of equations. On the other hand, the
logical operations required for selecting only the best
data in order to keep the systems small do not ex-
ploit the computer’s full speed. Indeed, the design
of algorithms to decide which data are best in a three-
dimensional multivariate analysis is extremely dif-
ficult, as illustrated in Section 5b. So instead of
carefully selecting a few data, typically 8—15 values,
as in other analysis schemes (e.g., Rutherford, 1976;
Schiatter, 1975; Bergman, 1979), the ECMWF
scheme uses most nearby data, usually between 100
and 200 values. This enables the full potential of the
analysis method to be exploited, since within such
a large number of data it is possible to include
height, wind and thickness data for several layers
of the atmosphere. It is neither necessary nor prac-
ticable to set up and solve the large systems of equa-
tions this entails for each analysis grid point and
variable. Instead this is done for analysis volumes
about 660 km square and, in data-rich areas, a third
of the atmosphere deep. In data-sparse areas the full
depth of the atmosphere is done in one volume. The
same selection of data and solution of the equations
is used to check all the data within a volume and to
evaluate the analysis for height and wind in all
analysis grid points in it. In fact, in order to avoid
discontinuities at analysis volume boundaries (par-
ticularly important for derived quantities such as
divergence), the analysis is also evaluated for sur-
rounding grid points as far as the center of neigh-
boring analyses volumes. Several analyzed values
are thus obtained for each point which are then
averaged with weights varying linearly from 1 at the
volume center to zero at a neighboring volume
center.

The data selection is done in two stages: a pre-
analysis data organization to eliminate clearly er-
roneous or redundant data, and the selection of data

for each analysis volume. In the pre-analysis

observations are sorted into boxes of 6° latitude by
~660 km longitude (identical in the horizontal to
the analysis volumes). All data are transformed to
deviations from the first guess, normalized by the
estimated first-guess error. Redundant data are
eliminated by first searching for pairs of observa-
tions within each box closer than ~150 km. (‘*‘Ob-
servation’’ is used for the collection of data at one
horizontal location, ‘‘datum’’ for a single observed
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value.) Each such pair is compared level by level,
variable by variable, and if they agree they are com-
bined into a single ‘‘super-observation’’ which is
thereafter treated as an ordinary observation of
somewhat greater accuracy.

The selection of data for each analysis volume is
based on the principle that most nearby data remain-
ing after the pre-analysis will be used. There are
three steps: selection of data boxes, selection from
these of observations, and selection from these of
data. The criteria used are as follows:

(i) All boxes within or neighboring the analysis
volume are selected. If these contain insufficient
data then the neighbors of the box containing least
data also are selected, and so on.

(ii) All observations within the analysis volume
and its neighboring data boxes are selected. Beyond
that only observations containing data for levels and
variables with insufficient data so far are chosen.

(iii)) All data within the analysis volume are
selected. Beyond that data are selected in order of
distance, up to a maximum for each level and vari-
able and an overall maximum (currently 191).

d. Quality control of data

Checks are made at three stages during the analy-
sis process. First, before the analysis starts, reports
are checked for correct code formats, internal con-
sistency and climatological reasonableness. Second,
in the pre-analysis, a comparison is made with the
forecast field, and within each pair of data con-
sidered for combination into a super-observation.
These checks are designed to discard any clearly
erroneous data. Data which appear unlikely to be
correct, but which possibly could be, are retained
for rechecking, but flagged so that they are not used
to check other data.

The final check is made using the modified sta-
tistical interpolation equations derived in Section 3c.
For each analysis volume all data within the volume
and all selected data yet to be finally checked are
compared with an interpolated value obtained not
using the datum being checked or any flagged data.
If the absolute value of this deviation is more than
four times the estimated interpolation error then the
datum is considered to have failed. If more than one
fail, then the worst is flagged and the rest of the
failures are rechecked not using it. Flags on data
within the analysis volume are permanently re-
corded; those on data in volumes yet to be finally
checked are only temporary. At this stage, to save
computation, the grid-point analysis for points
within the analysis volume can be made. Alterna-
tively, a second scan can be made to produce the
grid-point analysis using the final flags for all data.
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3. Statistical interpolation equations

Three different modifications of the well-known
optimum interpolation technique are used in the
analysis: to form super-observations, to check data,
and to produce grid-point values while excluding
rejected data. Because of the assumptions made
when modeling the prediction and observation er-
rors and correlations, and in the linear least-squares
theory, the interpolation is not truly optimum and
the term statistical interpolation is preferred. It is
convenient to group the derivations of the three sets
of equations together in this section, after first re-
peating the derivation of the basic statistical inter-
polation equations.

a. Notation and basic method

The statistical techniques used are independent of
the actual variables observed or interpolated, so I
use here a notation which does not explicitly dif-
ferentiate between them, allowing subscripts to range
as appropriate over all observed or analyzed values
whatever their positions, level or variable type. Thus
B; is any observed datum selected for the analysis
and A, any analyzed value within the analysis
volume.

For all observed or analyzed values, the existence
of predicted (first-guess) values P;, P, and true
values T;, T, is assumed, the last being the value
we wish to estimate in the analysis. Note that T
is not necessarily the actual true value, since we
do not wish to analyze atmospheric features below
a certain scale. :

Deviations from this ‘‘true’’ value are denoted
by lower case letters

a=A-T, (1a)
b=B-T, (1b)
p=P—-T. (1¢)

All analyzed, observed or predicted values have as-
sociated error estimates E defined by

E¢ = <a2>1/2’ (ld)
EO = (b2>l/2, (le)
E» = (p)", ()

where angle brackets indicate an average over a
large ensemble of similar realizations. It is conveni-
ent to derive equations in dimensionless form, and
to have symbols for deviations from the prediction,
so I define

a = alE°, (1g)
B = b/E®, (1h)
7 = plE®, (1i)
q =(B — P)/E”, (1)
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r=(A — P)E®, (1K)
€ = EY/E®, (1)
" = EYE”. (1m)

All the above take subscripts i (or j) ranging over
all observed values, or k ranging over all analyzed
values, whatever their position level or variable.
The basis- of the statistical interpolation method
is that the analyzed deviation from the prediction
is given by a linear combination of N observed de-
viations
N
re =2 Wiqi,
i=1

@

with the weights (w) determined so as to minimize
the estimated analysis error Ef.
Substituting (1) in (2) gives
N

agel = me + 2 wi(Bie!
i=1

- m). 3)
Squaring (4) and taking the ensemble average gives

N
P =1+2 % wy({mBi)el — (mm:))

=1

M=
7z

+ y wa{mar;) + €3{BiB;)e)

1 j==1

- 69(.31'773') — (mBi)eIwiu. (4)

These summations are conveniently manipulated
using a vector and matrix notation:

wi = [wyl, (5a)
h, = [(mm:) — (meBi)ell, (5b)
q = (g, (5¢)
M = [(mm;) + €4(BiBs)e)

— €4 (Bim;) — <Triﬂj>€_?]- (5d)

Egs. (2) and (4) then become
re = Wiq, ()
(€)? =1 — 2wkh, + wiMw,. @)

One can now proceed to the derivation of the equa-
tion for the ‘‘optimum’ weights, which minimize
E§. Since the ensemble average (angle braces) is
assumed to be over a large number of similar realiza~
tions with the same estimated errors E, this is equiv-
alent to minimizing the normalized error variance
given by (4) or (7). By equating d(ef)?/0w to zero
for i = 1, N we get a set of linear equations for
the weights which give

w; = M Th. ®

The analyzed value and estimated error correspond-
ing to these weights are
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re = hiM™q, )
(ef)* = 1 — hfM'h,. (10)

Since M™! and q are independent of the point being
analyzed it is convenient to evaluate their product
once only, to give a vector of analysis coefficients
¢. Thus for the grid-point analysis the weights w, are
not explicitly calculated; instead (9) becomes

i

¢ =M"q, (an

(12)

It is usual to call terms such as (m;w;) error cor-
relations and terms such as (p;p;) covariances,
although this is only true if biases such as (p;) are
zero. This is not strictly necessary for the above
derivation, but if biases are non-zero Eq. (2) is not
the best interpolation equation. I shall assume the
biases to be zero. It is also usual to neglect the cor-
relations between prediction error and observation
error (m;3;) (e.g., Bergman, 1979). If an observa-
tion type is to be used for which these terms are
known to be non-zero then their inclusion is straight-
forward. However, it seems likely that knowledge of
such correlations will be limited to the local value
(m;B:), and in this case a simple preprocessing
technique similar to that of Section 3b can remove
the correlation. In the current program all correla-
tions (7;f3;) are assumed negligible.

rr = cThy.

b. Super-observation formation

If the standard optimum interpolation technique
were used to create the super-observation then the
interpolated value would contain information from,
and hence be correlated with, the predicted value Py.
This is inconvenient since for ordinary observations
it is assumed that (m;8;) = 0. Thus the interpola-
tion equations used for super-observation formation
are modified by imposing a constraint that no infor-
mation is taken from the local predicted value. The
constraint can be expressed as

(13)

If we multiply (3) by m, take the ensemble aver-
age, and use matrix notation, we obtain

(cxk‘rrk) = 0.

The interpolation error is still given by (7), i.e.,
(e)? = 1 — 2wlh;, + WiMw,. (15)

Minimizing this with the constraint (14) gives the
following equation for the constrained weights:

we = (1 + )M 'h,. (16)

Comparing this with (8) we see that the constraint
forces a renormalization of the interpolation weights,
with A defined by substitution back in (14). The



APRIL 1981

error in the interpolated super-observation is given
by substituting (14) and (16)-in (15):

(€8)* = . (n

In fact, in our present program super-observation
formation is done univariately, level by level, for
close pairs of observations only. So for the super-
observation formation, but not for the data checking
which precedes it, it is sufficiently accurate to as-
sume (m;m;) = 1. The interpolation then simplifies
to a weighted averaging.

c. Observation check

The final check on each datum is to compare g,
with an interpolated value r, using the data selected
for the analysis volume. Hence it is appropriate
when deriving the equations for this interpolation
to minimize the expected variance of the difference
between these, rather than the deviation from the
true value. Thus instead of (7) we minimize

((re — q)*) = (e)* + 1 — 2wim, + wiMw,. (18)

If the datum being checked is also used for the
interpolation then m, is a column of M and mini-
mizing (18) leads to the trivial result

Wi = dy, (19)

where d, is defined as a vector whose kth element is
one and other elements are zero. Since we are trying
to interpolate a value for a datum including its ob-
servational error, the best value is naturally the
datum itself.

What we must do is minimize (18) subject to con-
straints that certain data (datum & and perhaps other
data already rejected) are given zero weight.

If weletl,, (m = 1ton)be alist of these data, the
constraints can be written

dfw, =0 (form =1, n). (20)

Minimizing (18) subject to these constraints gives
n

W, = dk + z )\mM—ldl.

m=1

2D

We now write A for the vector (dimension n) of
multipliers A,,, and D for the N by n matrix whose
mth column is d;. Egs. (20) and (21) become

D'w, =0, (22)
wi = d; + MDA, (23)

The multipliers A are given by multiplying (23) by
DT, and using (22) yields

A = —(D™M'D)"'D"d,. 29
Substituting (22) and (23) in (18) gives
(re = qr)?) = (2P + 1 — wim,. (25)
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It should be noted that this estimate of the interpola-
tion error is arrived at assuming that the method,
and all the estimated errors and correlations used,
are perfect. In practice, however, an allowance for
errors in these (currently somewhat arbitrarily set to
0.1) is added. A datum is thus considered to have
failed the check if

(re — qx)® > T*{(r — q1)*) + 0.1]. (26)

The tolerance T is currently assigned the value 4.

d. Grid-point analysis

In order to be able to use interpolation equation
(12), while giving zero weight to data which have
been included in M but subsequently rejected using
(26), we need to minimize (7) subject to constraints
like those in (22).

Manipulations like those of Section 3¢ give

w, = M~'h, - M'D(D™™M'D)"'D™™h,. (27)
Substituting (27) in (6) gives the equivalent of (11)
¢c=M1lq- M'DD™MD)"'D™q. (28)

4. Error statistics
a. Description

The specification of reasonable estimates for the
prediction error E? and prediction error correla-
tions (mr;7r;) for all the horizontal positions, levels
and variables covered by i and j is vital to the sta-
tistical analysis method. Not only are they necessary
in order that statistical methods used should give
reasonably “‘optimum’’ weights, but also the covari-
ance functions determine the relationship between
the analysis increments for different analysis grid
points, levels and variables within each analysis vol-
ume. This can be seen from (12), which can be re-
written

N
Ay — P = E ciER ().

i=1

(29)

Since within each analysis volume the list of data
selected (denoted by subscript i) is fixed, while the
values to be analyzed (subscript k) range over all
locations and variables, this can be looked on as a
linear combination of functions specifying the pre-
diction error covariance with each datum position
and variable. Hence any linear relationship obeyed
by the functions is also obeyed by the analysis
increments.

Three such relationships are valid for the predic-
tion error covariance model described in Section 4b:
(i) between geopotential heights at any two levels
and the thickness between them; (ii) between stream-
function and wind components, implying non-
divergence; and (iii) between geopotential height and
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streamfunction, approximately equivalent to the
geostrophic relationship.

Relationships (ii) and (iii), while being useful fairly
accurate descriptions of the local behavior of pre-
diction errors, are not precisely true on larger scales.
This is not in practice troublesome, since (29) only
holds within each set of selected data. Larger scale
deviations from the relationships indicated by ob-
servations, for instance, divergences between the
wind observations in one set of data and those
selected for the neighboring analysis volume, are
drawn to by the analysis. The weighted averaging
described in Section 2c of analyzed values from
neighboring sets of data ensures that such devia-
tions from the relationships occur smoothly, rather
than at analysis volume boundaries. The height
streamfunction relationship is relaxed in the tropics.

The observation error covariances have less direct
impact on the structure of the analysis increments,
but are rather the means of describing the properties
of each observing system, so they can be used to
best advantage. Thus, specifying positive horizontal
correlations for satellite temperature-sounding ob-
servation errors causes relatively greater weight to
be given to temperature gradient information be-
tween soundings (Seaman, 1977), and specifying
negative correlations for errors at different levels
in the same sounding causes greater weight to be
given to the observed thickness of the combined
deeper layer. Changes in the assumed vertical cor-
relations can have a similar effect to a factor of
2 change in the error variance (Larsen ef al., 1977).
For the majority of observations the error is assumed
to be uncorrelated, and it is the ratios of the esti-
mated observation error variance of those of other
observations and the prediction error variance which
determine the weight given to each observation.

b. Prediction error covariance model

Since in this section physical relationships be-
tween different variable types are considered, it is
necessary to modify the notation to indicate the
specific variable, horizontal position and level. Thus
the single suffix is replaced by three: ¢, ¢, yr, u or v
indicating geopotential height, thickness, stream-
function or wind components; i or j indicate hori-
zontal position; and & or [ indicate level. The omis-
sion of one of these suffices indicates that the value
is independent of that characteristic.

1) HEIGHT-HEIGHT COVARIANCES

Following Rutherford (1976) I assume that these
can be expressed as a product of errors and separable
vertical and horizontal correlations

(PoicPoit) = EBucERiV oiiF i (30

Since the analysis is made at, and data pre-interpo-
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lated to, a predefined set of pressure levels, Vg
can be specified as a matrix of vertical correlations
between these levels.

Again, following Rutherford I further assume that
F4; is homogeneous and isotropic. For simplicity
I use a simple Gaussian function of distance r;;,
despite the fact that this is not the most appropriate
form for climatological correlations (Julian and
Thiebaux, 1975), viz., :

Fai; = expl—Y2(r;/s)%, 31

where s is the horizontal correlation scale param-
eter. More appropriate functional forms could be
used when data on the prediction error correlation
structure (or equivalently the error power spectrum)
become available for a short-range forecast.

2) THICKNESS COVARIANCES

The thickness variable used in the analysis is de-
fined as the geopotential height above the next lower
level

Pur = Roie — Rowg1- (32)

This is sufficient to define all thickness covariances
(and hence estimated errors and correlations) in’
terms of the corresponding geopotential height
covariances

(PtikPany) = {PoiPany) — {DPsik-1Pany)s (33)
3) STREAMFUNCTION-STREAMFUNCTION COVAR-
IANCES

Although the streamfunction is never directly
used in the analysis it is convenient to define stream-
function prediction error covariances, for later use in
deriving consistent covariances for wind compo-
nents. I assume a separable model similar to that for
geopotential height, i.e.,

(34a)
(34b)

APwikPuit) = ELESy Vi F yis,
Fyi; = exp[—Ya(ri;/s)%.

4) STREAMFUNCTION-WIND COVARIANCES

For a completely flexible specification of covari-
ances for the horizontal velocity field I should now
define velocity potential prediction error covari-
ances. However, since these are in general an order
of magnitude smaller than those for streamfunction,
I shall follow Schlatter et al. (1976) and assume
velocity potential prediction errors to be negligible.
Covariances involving wind components can then be
derived by differentiating the streamfunction covari-
ance function (34). Like Buell (1972) I choose co-
ordinates such that i is the wind component in the
direction i — j, and v is perpendicular to it.

Ignoring horizontal derivatives of E%, and assum-
ing F;; to be isotropic, yields the simple wind pre-
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diction error covariance model

d

(PvixPup) = —EBiELVun . Fy;, (35a)
i
0
(PoinPuit) = ESuE% Vi v F 5, (35b)
i
(PuixPun) =0, (35¢)
(PuikPu) = 0, (35d)
a 2
(PvikPoit) = ‘EgikEﬁszwm(a—r') Fy;, (35¢)
ij
1 0
(puikpujl> = —E§uEL; Vg — — Fyis, (351)
ri; OFy;
(PuiPuit? =0, (35g)
(PovikPui) = 0. (35h)

Using earth-centered Cartesian coordinates it is
straightforward to calculate the components of vec-
tor r;; in the local latitude-longitude coordinates at
points i and j, and hence the cosine and sine of
the local bearings. These are then used to transform
the covariances for the wind components in (35)
into covariances for northward and eastward com-
ponents used in the analysis program. This two-
stage process for computing the covariances avoids
the need to derive (35) in latitude-longitude coordi-
nates. Expressed in any globally valid coordinate
system the equations appear much more compli-
cated, without the zero terms apparent in (35).

5) HEIGHT-STREAMFUNCTION COVARIANCES

It only remains to couple the height and thickness
covariance model of (30)-(33) with the streamfunc-
tion and wind model of (34)—(35). I do this by de-
fining a local geopotential height-streamfunction
prediction error correlation w, and defining all co-
variances between geopotential height and wind in
terms of this and the corresponding streamfunction
wind covariance:

(36)
(37

(PoikPuix) = M,
(PoicPuit) = M{PyixPuir)-

By an appropriate choice of values this can be made
equivalent to the geostrophic covariance models
used by Schlatter (1975) and Rutherford (1976).
Thus, if one were to set w = 1 and

b = (1) EBi, (38a)
Ve = Vo (38b)
Fy; = Fyij (38¢c)

[and noting that in the derivation of (35) horizontal
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derivatives of EZ;. and hence now of 1/f have been
ignored], the model would link geopotential height
and wind covariances geostrophically. On the other
hand, if we set w = 0, then the geopotential height
and wind analyses are completely uncoupled and the
relationships (38) unnecessary. In practice u is a
function of latitude.

6) MATHEMATICAL CONSTRAINTS

Not all functions possible within the model just
described are physically possible covariance func-
tions. A mathematical property of valid functions is
that all possible covariance matrices should be posi-
tive definite. Necessary conditions for this are that
matrices V,V, and functions FF, individually
should be positive definite. This is the case for the
Gaussian function used (Julian and Thiebaux, 1975),
and such a condition is easy to impose on V,and V,,
since they are pre-tabulated. Constraints on the
combined geopotential height and wind covariance
function depend on the absolute value of w. For
|| = 1 then Egs. (38b) and (38c) are necessary;
however, as |{u| decreases these conditions can be
relaxed. I have chosen to retain (38b) outside of the
tropics and (38c) everywhere. In the tropics the devi-
ation from (38b) imposes an upper limit on | ].

It also is strictly necessary that the separability
assumptions made in Egs. (30), (34) and (37) are
adhered to. However, in practice V, and V,, do vary
with horizontal position, and the scale parameter s
in Fy and F, varies with level and position. Also,
w clearly needs to be a function of latitude. Most
non-positive definite matrices which might be caused
by this can be avoided by assuming V and u to be
locally constant, that is by using one set of values
for all computations associated with one analysis
volume. However, vertical variations of s still oc-
casionally lead to non-positive definite matrices.
When this occurs the test for ill-conditioning de-
scribed in Section 7 avoids problems in the analysis.

c. Observation error covariance model
1) VARIANCES

The observation error E° is defined by (le) as
the expected deviation from the value we wish to
analyze. Hence it contains contributions from varia-
tions on scales smaller than those we wish to analyze
in both time and space, as well as the purely observa-
tional error. Furthermore, allowance must be made
for errors introduced when transforming from the
parameter observed to that used in the analysis. The
quantity which actually enters the analysis equa-
tions is the ratio € (1i). Since the prediction error
varies more in both time and space than the observa-
tion error they are specified independently.
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2) CORRELATIONS

There are two sources of observation error cor-
relation: (i) the real small-scale motions which are
treated as error, and (ii) the characteristics of the
instrument or data processing method used within
one type of observation. The former is only signifi-
cant for very close observations and is only con-
sidered when forming super-observations. There its
effect is to increase the estimated observation
error of the super-observation. The latter needs to
be determined and specified for each observing sys-
tem. The method of modeling the correlations is in
principle the same as for the prediction errors. In
practice super-observation formation, and the ob-
serving systems believed to have significant correla-
tions (radiosonde height observations and satellite
temperature soundings), are univariate. Moreover,
the variation in time and space is less, and the
accuracy with which they are known is poor. Thus
considerable simplification is possible. :

d. Determination of covariance model parameters

This is still an area of active research, so I shall
not present actual values other than those given with
the examples of Sections 5 and 6, but instead discuss

-how estimates may be obtained. The analysis method
provides several opportunities for checking the con-
sistency of the covariances used, since every value
has associated with it an estimated variance. By
accumulating actual and assumed variances the lat-
ter can be checked. The estimated variance is almost
always a function of several covariance model param-
eters. By assuming some of these to be correct new
estimates can be obtained for others. Thus

(E?? = (B — P)* — (E"), (39

where a caret indicates a new estimate and an over-
bar an average value accumulated over many anal-
yses for a suitable division of season, horizontal
position, level, variable and observation type. Eq.
(39) follows from Eq. (1) and the assumption that
(mB) is negligible, and depends on the error with
which E° is known being small compared with E?.
Values given by (39) can be biased toward data-rich
areas, and corrupted by very erroneous observa-
tions. This can be avoided by using the analysis
instead of the observations for verification. In this
case (a,pr) cannot be neglected, and one has to
assume that the correlations used in the analysis are
reasonable. It is easy to show that

(axpr) = (ER)?

(40)
and hence that
(E?)* = (A — P) + (E%2. (41)

This new estimate is equal to the assumed predic-
tion error in data voids and equivalent to (39) near
isolated observations.
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For inaccurate observations, for which E° is large
compared with the error with which E* can be esti-
mated, instead of (39) one can get a new estimate
for E°. However, in general, E* is insufficiently well
known, and one must use analyzed values for verifi-
cation when accumulating observation error esti-
mates. This can be done while checking the data by
accumulating terms from (26). Since the normaliza-
tion factor E” varies in time and space it is con-
venient to change this to E° by dividing by €°:

(EYE°? = [(r = qP = ((r = )W) + 1. (42)

Alternatively, observations can be compared with
the final analysis made using them. In this case (ab)
cannot be ignored and we have :

(E? = (B — AF + (E®)

(43)

as the equivalent of (41).

Horizontal prediction error correlations are also
fairly easily accumulated (Rutherford 1972) for areas
where there is a good coverage of observations with
little observational error correlation. Alternatively,
independent estimates of geopotential height and
wind prediction errors, and the geostrophic rela-
tionship (38), determine the second derivative of the
correlation function F at zero distance, and hence
(for the simple one-parameter Gaussian function
used) s. This latter method, however, is sensitive
to the shape of the function assumed for F, and
should perhaps be regarded as a test of its appro-
priateness. Vertical prediction error correlations
are more difficult to accumulate, since most suitable
observations have significantly correlated observa-
tion errors. Special studies such as that of Hollett
(1975) are one approach. Alternatively, independent
estimates of geopotential height and thickness pre-
diction errors provide some off-diagonal elements
of V, and some modeling assumptions may be used
to fill in the rest.

Observation error correlations are even more
difficult to separate from the uncertainties in the
prediction or analysis error correlations, and their
estimation is best done in separate studies (e.g.,
Schlatter and Branstator, 1979) with due regard to
the correlations to be expected from the specific
observation technique. ‘

The height-streamfunction correlation must ap-
proach 1.0 and —1.0 in Northern and Southern
Hemisphere extratropics, since the geostrophic
relationship is approximately valid, and be zero at
the equator. The behavior in the tropics may be

“determined from theoretical or practical studies of

the accuracy of the geostrophic relationship (e.g.,
Bergman, 1979) or the validity of (38). The differ-
ences from =1 outside of this region will be highly
dependent on the details of the data assimilation
scheme which affect the gravity wave noise and
ageostrophy of the first-guess.
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5. Some simple examples

In this Section various properties of the multi-
variate analysis method in a simplified two-level
analysis are illustrated, using the geostrophic pre-
diction error covariance model (38). In each of the
examples I take w =1, s = 500 km, E?% 500mp
=18 m, Ef 500 mp = 21 M, {74 1000 mbTo 500 mp ) = 0.237
and f appropriate for 60°N.

a. Use of vertical and horizontal gradient infor-
mation

The steps taken in Section 4 to ensure prediction
error covariances consistent with the physical rela-
tionship between various variables ensure that the
analysis equations, although derived using statistical
techniques, precisely reflect these relationships.
This is best illustrated by a simple example using
error-free data.

We now consider three perfect observations which
together contain enough information to specify the
500 mb geopotential height at the analysis point: a
wind observation 250 km away at 500 mb, a 1000
500 mb thickness observation 500 km away in the
same direction, and a 1000 mb height observation
of the same location as the thickness. Columns 1-4
in Table 1 show the estimated analysis error and the
interpolation weights for all combinations of these
observations. Using none of the observations the
estimated analysis error equals the assumed predic-
tion error (used singly or in pairs the observations
only reduce this slightly), while all three together
reduce the estimated analysis error to only 1.9 m.
This small residual error is a measure of the error
with which one wind observation specifies the aver-
age height gradient over 500 km; by using more
wind data the error can be decreased toward zero.

In practice, of course, observations are not perfect
while the first-guess prediction is usually good, often
having similar accuracy to that of the observations.

TABLE 1. Observation errors and prediction errors for 1000 mb
height, 1000-500 mb thickness, and 500 mb wind; and analysis
error and weights when using various combinations to analyse
a 500 mb height.

Perfect data Typical observation errors
¢ ? v @ t v
E'= 0.0m 00m 0.0ms™! E* = 70m 298m 3.9 ms™'
Er = 180m 242m 3.26ms™! Er = 180m 242m. 3.26ms™!
E* (m) We w, W, E* (m) We wy W,
21.0 — — — 21.0 — — —
20.8 0.143 — — 20.8 0.125 — —
19.1 —_ 0.419 — 20.3 — 0.166 —
18.9 — —_ 0.441 20.1 — —_ 0.182
14.4 — 0.611 0.628 19.1 — 0.191 0.206
18.4 0.192 - 0.461 19.9 0.142 — 0.188
16.7 0.520 0.699 — 19.7 0.225 0.215 —
1.9 0.853 1.147 0.880 18.3 0.250 0.224

0.262
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Fi1G. 1. Estimated analysis error (m) of 500 mb geopotential
height as a function of wind datum position for (A) wind only
(B) wind plus a height datum at 900 km, and (C) wind plus a
height datum at 300 km.

In this case each observation has much less impact,
as illustrated in columns 5-8 of Table 1. (This re-
sult should not be used directly to judge the impact
of particular observing systems because in practice
more data are used to analyze each grid point, and
because the prediction is only accurate because of
the impact of observations in previous analyses.)

b. The effect of gradient data on data selection

The last example shows how the analysis method
is capable of using vertical and horizontal gradient
information from winds and temperature soundings.
The usefulness of such information depends greatly
on the presence of some absolute observations to
act as a reference. Conversely, a distant absolute
observation has its usefulness enhanced by suitable
gradient information. Data selection algorithms
which evaluate each datum independently (e.g.,
Bergman, 1979) cannot take this effect into account,
and may therefore not select useful data. As a
further example, Fig. 1 shows the 500 mb height
analysis error as a function of the position of perfect
500 mb observations of wind and height. The analy-
sis point and the observations are assumed to be on a
straight line. Three curves giving the 500 mb height
error as a function of wind observation position are
shown: 1) for a wind observation alone, 2) with a
height observation at 900 km distance, and 3) with a
height observation at 300 km. It can be seen from
curve A that a wind observation at the analysis point
is useless, the analysis error (21 m) being equal to
the prediction error. With a nearby height observa-
tion however, such a wind observation is useful.
One can see from curve C that it reduces the error
from 11.5 m (the error with no wind observation
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TABLE 2. Estimated analysis error (m s™!) of a 500 mb wind
component for various distributions of error-free 1000500 mb
thickness data (¢) and 1000 mb wind data (v).

Distance of data from
analysis point (km)

Analysis

error —500 -250 0 250 500

3.26 .
2.96 t
2.51 t t
2.37 t t

0.38 t v t

3.17 : v

i B O = W o B w o -]

equals the asymptotic value with the wind very dis-

tant) to 5.5 m. A comparison of curves A and B,
which almost coincide at most points, shows that a
height observation at 900 km distance is almost
useless unless there are wind data specifying the
intermediate gradient.

When analyzing wind using height data there is a
corresponding effect—the effectiveness of a datum
is enhanced by the presence of another positioned
to enable a gradient to be obtained. With thickness
data the effect is further complicated since even
an adequate horizontal distribution specifies only the
wind shear, and a reference level wind is necessary
to get full effect from the data. This is illustrated in
Table 2, which shows the estimated analysis error
for a 500 mb wind component for various distribu-
tions of error-free data. For the prediction error
covariances I have assumed the 1000—500 mb thick-
ness which correlates best with the analysis variable
is 500 km away, with a correlation of 0.42. It can be
seen from row b that such a datum is only mar-
ginally useful. With another such observation in the
other direction (row c) the gradient is better deter-
mined. When calculating gradients the optimum dis-
tance is not usually the same as for the data in-
dividually; row d shows the effect of data at half
the distance. Even this pair determines only the wind
shear, and hence is only statistically related to the
analyzed wind. The addition of a reference level
wind (row e) thus has a dramatic effect, even though
the wind alone (row f) is not useful.

These examples illustrate the difficulties of devis-
ing simple data selection algorithms to select a few
best data for the analysis of each value, a problem
avoided by the large order systems and large analy-
sis volumes of the ECMWF scheme.

c. Sensitivity to prediction error covariance model

In Section 6 the effect of varying the prediction
error covariance model parameters on a practical
analysis example is described. However, in such a
complex system the individual effect of each param-
éter is difficult to isolate. For instance when varying
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the horizontal correlation scale (s) one also has to
vary the ratio of height and wind errors according
to (38a) and often the largest effects are due to dif-
ferent data being rejected in the automatic data
checking, rather than directly due to the covariance
model. Moreover, because the accuracy of the first-
guess forecast is usually high, the changes made
during the analysis are normally small and the ef-
fect of varying a parameter on these changes is
difficult to display. Thus I present here a simple
one-dimensional example representing a 1000 km
wavelength wave in the 1000 mb height field, just
resolved by nine observations with a S00 km spacing
and deviations of alternately +20 m and —20 m from
the first guess which is 40 m everywhere. Fig. 2
shows analyses of this wave for three different
values of the prediction error scale parameter s,
with prediction and observation errors of 18 and 7 m,
respectively. Because of the symmetrical situation
only half of each analysis is shown. It is clear that,
for these error values, analyses made with s greater
than about half the wavelength do not resolve the
wave, instead averaging the ‘observed deviations
to give an analysis almost equal to the 40 m first
guess. If the ratio of observation error to prediction
error is decreased the fit of the analyses to the ob-
servations improves. For example, Fig. 3 shows the
analyses with the assumed prediction error doubled.
In the extreme case of observation errors assumed
to be zero (not shown) all the analyses fit the data
exactly, but the overshooting in the data void already
apparent in Fig. 3 reaches extreme values of 96 m
for s = 500 km and 311 m for s = 700 km. The ef-
fects of the assumed error correlations and vari-
ances on the analyzed fields are thus interrelated.

80 |~

S=300KM
— - — 5=500KM
— — — - 5="700KM

1000 mb geopotential height (m)

10

0 ) 1 1 el 1 ol
[] 500 1000 1500 2000 2500 3000
Distance (km)

Fi1G. 2. Analyses of a 1000 km wavelength wave from nine
observations marked X for various horizontal prediction error
correlation scales (s). Only half of the symmetric situation is
shown. :
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S=300KM
— - — 5=500KM
= ——- 5=700KM

1000 mb geopotential height (m)

10 |-

0 1 Il l | | |
0 500 1000 1500 2000 2500 3000
Distance (km)

FiG. 3. As in Fig. 2 with estimated prediction error doubled.

Inappropriate values can lead to unjustifiable ex-
tremes in the analyses when extrapolating into a
data void from a region with observations. The
interrelation of appropriate error correlation and vari-
ance estimates can be explained since in Section 3
I defined ‘‘error”’ as the deviation from the state
which we wish to analyze. Thus, if the prediction
model used for data assimilation cannot resolve
waves as short as’ 1000 km we might define the
“truth’’ as the actual state with all waves shorter
than 1000 km removed. This would have the effect of
increasing the appropriate observation error esti-
mates to include these scales, decreasing the pre-
diction error estimates by the same amount, and
increasing the horizontal correlation scale (s) of the
prediction errors.

The sensitivity of the analysis to the values speci-
fied for the error correlations and variances is en-
hanced by the large number of data included in the
system for each analysis. Fig. 4 shows the same
analyses as Fig. 2, but with only the two nearest
data to each point used. The effect of varying the
prediction error correlation scale (s) is much less
dramatic. This can be explained theoretically in
terms of the spectral window resolved by the
selected observation (Julian and Thiebaux, 1975).
The difference between Figs. 2 and 4 is an exag-
gerated analogy of the difference between the anal-
ysis scheme described in this paper and earlier
schemes (e.g., Rutherford, 1973; Schlatter, 1975;
Bergman, 1979) which use fewer data at once.

Despite the large number of data used in each analy- -

sis volume in the ECMWF scheme, because of the
multivariate three-dimensional distribution of the
data and its varying quality the number of accurate
data for any one variable in one dimension is never
as great as in Fig. 2. However, it does illustrate the
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FiG. 4. As in Fig. 2 selecting only the two nearest
observations to each point.

fact that the advantage of needing less care in
selecting observations noted in Section Sb is bal-
anced by the need for more care in specifying error
covariances.

In practice, the largest impact of a change in the
error covariances used on the analysis is indirect,
via the automatic quality control of data. Fig. 5
shows the analysis comparable with Fig. 2 which re-
sult if the algorithm described in Sections 2d and 3c
are used. For s = 500 km three data (at 0 km and
+500 km) failed during the first check scan; after the
worst failure (the central datum) was rejected, the
others passed on the second scan. For s = 700 km
five data (at 0 km = 500 km and = 1000 km) failed
during the first scan. After the data at 1000 km were
rejected the others passed. In general, the behavior

70 i~

1000 mb geopotential height (m)’

N\ /
XN e 5=300KM
/ pENig — - — §=b00KM
lor , — = — - 5=700KM
L
0 | 1 | 4 ] |
o 500 1000 1500 2000 2500 3000

Distance (km)

F1G. 5. As in Fig. 2 with automatic data checking.
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F1G. 6. Radiosonde observation positions 0900-1500 GMT
19 January 1979 in FGGE dataset.

of the automatic quality control is very satisfactory,
agreeing well with careful subjective judgement
and needing no manual intervention. However,
when, as in these examples, the available data barely
resolve a feature with amplitude large compared to
the assumed prediction error, the checking is critical
and changes in the assumed covariances can alter
which data are rejected, with large effect on the
analysis. If the prediction error is increased as in the
example of Fig. 3, or if the data density is increased
by adding observations of 40 m midway between
those originally used, or if the density is effectively

180€

Fic. 7. As in Fig. 6 for satellite temperature soundings.
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FiG. 8. As in Fig. 6 for surface observations.

decreased as in the example of Fig. 4, then none of
the data is rejected. When the data checking is im-
plemented, inappropriate error covariances usually
cause good data to be rejected, rather than affect-
ing directly the analysis. Thus the overshooting in
the data void noted in Fig. 3 and the extreme over-
shooting described with zero observation errors
does not occur. Instead sufficient data are rejected
for the analyses to differ from the first guess by
only a few times the assumed prediction error.

6. An example analysis

In this section an analysis for 1200 GMT 19 January
1979 - made as part of a global 6 h intermittent data-
assimilation of FGGE data is described. The hori- -
zontal prediction error correlation scale (s) was as-
sumed to be 400 km at 1000 mb, increasing to 1000
km at 10 mb, and the height-streamfunction predic-
tion error correlation (u) was assumed to be 0.85
north of 30°N. Assumed prediction errors were a
function of level, latitude, and of the estimated anal-
ysis errors in the previous analysis of the data as-
similation cycle.

In order to illustrate the behavior of the analysis
method when given a poor first guess, the analysis
was repeated using climatology instead of a forecast.
Prediction errors appropriate for the atmospheric
variability were specified, s was assumed to be 1000
km at all levels and p was 0.95 north of 30°N.

An active region in the North Pacific was chosen
for close study. Figs. 6-9 show the observation
positions for the period 0900- 1500 GMT and Fig. 10
shows the estimated geopotential height prediction
and analysis errors at the center of the region. The
6 h forecast fields of 300 mb geopotential height and
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F1G. 9. As in Fig. 6 for aircraft reports and cloud motion winds.

wind speed are shown in Fig. 11, the analysis made
from this first guess in Fig. 12, and an independent
analysis from a climatological guess in Fig. 13.
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By comparing Figs. 11 and 13 one can see that both
the forecast and the observations must specify the
fields rather well in most areas since differences are
limited to details. This is in accordance with Fig. 10,
the estimated root-mean-square 300 mb height errors
being 42 and 25 m respectively, less than half a con-
tour interval on the plotted charts. The statistical
interpolation method merges the two sources of in-
formation accordingly; at 40°N, 180°E there is less
reliable upper air information than at 50°N (see Fig.
6) and the estimated errors are about equal, so the
analysis which has both sources of information avail-
able (Fig. 12) takes an average value. The slightly
enhanced ridge in this region, associated with slightly
more southerly and northerly flows to the west and
east and the deeper surface low to be discussed later,
is the main difference between the forecast and ana-
lyzed fields (Figs. 11 and 12) in the region being
studied. The main difference between the standard
analysis and that from climatology (Figs. 12 and 13)
is the failure of the latter to resolve the sharp trough
and wind shear at 160°W, falling as it does in a data-
sparse area.

Fig. 14 shows the 6 h forecast sea level pressure
and wind field used as first guess and the surface
observations. A calibration 10 m s~! arrow for the

EZ) (climatology)

M R B S S S S RN

200

300 400

Estimated geopotential height error (m)

Fic. 10. Estimated geopotential height prediction error (E%) and analysis error (E%)
for 50°N, 180°W, 1200 GMT 19 January 1979, for both climatological and forecast first-

guesses.
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FiG. 11. 300 mb geopotential height and wind speed for 1200 GMT 19 January 1979 from the 6 h forecast
used as first guess for the analysis in the data-assimilation cycle.

wind field is shown in the lower left corner. The
rapidly developing warm sector depression has not
deepened enough during the forecast and has moved
too far north, as indicated by the observations near
its center. The warm front running east from the
center, which is active and clearly defined in the
forecast model, is also too far north, as shown by
the wind observations at 43°N, 180°E and 38°N,
178°W. There is an almost stationary depression
near 60°N, 175°W which is too shallow in the fore-
"cast and an active rapidly moving trough to its south-
east which is a little too weak. In the analysis (Fig.
15) these errors have been largely corrected, and
the analyzed values fit the observations closely, ex-
cept for some of the topographically affected data
in the north. Since the prediction error covariances
used were not representative of the error structures
that occur when a front is mispositioned, the analy-
sis has not done what a human analyst might have
done and moved the frontal trough south, but rather
it has drawn a more extended region of curvature.

The analysis has moved the 1000—500 mb thickness
pattern (not shown) ~150 km southward.

A series of experiments to determine the impact of
various analysis scheme parameters on this example
showed such subtle changes that inclusion of separate
figures is not justified. Removal of the height-stream-
function coupling by setting u = 0 caused the main
low to be 1 mb shallower and the trough in the sur-
face pressures near 155°W to be less pronounced
than in Fig. 15, while observations of winds which
do not obey the geostrophic relationship, such as
those near 52°N, 158°E and 64°N, 179°E, were fitted
more closely. Doubling of the estimated prediction
errors (E”) similarly caused these winds to be
fitted more closely, as well as those at 46°N, 170°W
and 43°N, 180°E. Changes in analyzed pressures
were very small except for an intensification of the
ridge due to the erroneous acceptance of an observa-
tion in the group near 52°N, 175°E. An analysis us-
ing no wind data had similar pressure fields, and an
analysis using no geopotential data had wind fields
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Fi1G. 12. As in Fig. 11 for the analysis in the data-assimilation cycle.

similar to those mentioned above obtained with
p = 0. The analysis using geopotential data only
did not show details in the wind field such as the
strong winds west and southwest of the main low
and the intensification (compared to the forecast)
of the trough to the east; however, the main fea-
tures of the wind analysis were correct and fitted
the wind observations better than the forecast. On
the other hand, the analysis using only wind data
did not alter the large-scale pressure pattern of the
first guess, changes being limited to details such as
the trough at 45°N associated with the warm front,
the positioning of the low at 58°N and the intensifi-
cation of the trough to the east. An analysis made
with the horizontal prediction error correlation
scale (s) doubled, and the wind prediction errors
halved to maintain consistency with (35) and (38),
had remarkably few differences from that shown in
Fig. 15. The central 955 mb contour of the depres-
sion enclosed a much smaller area with the lowest
pressure in-the same position, and the trough at
45°N was less marked. The trough in the east was a

little deeper and more rounded, with a separate low
indicated near 51°N, 165°W as in the forecast (Fig.
14). The 1000 and 995 mb contours near the coast in
the north were a little straighter.

The analysis for the same region from a climato-
logical first guess is shown in Fig. 16. Note that
although the first guess was precisely geostrophic
the analysis does show some cross-isobar flow in
regions where data indicate it. This is because w is
not precisely 1.0, and because the overlapping of
analysis volumes with a varying weighted averaging
(described in Section 2¢) allows gradients in the mass
field increments not balanced by wind increments.
This analysis was more sensitive to changes in the
prediction error correlation model parameters than
the analysis of Fig. 15. With u = 0 the trough in
the pressure field near 165°W, already much weaker
in Fig. 16 than Fig. 15, was not apparant at all. The
main low was deeper, with central pressure 950 mb,
and the low to the north had its lowest pressure at
60°N, 180°E. With s reduced to 700 km, and the
wind prediction errors increased accordingly, all the
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FiG. 13. As in Fig. 11 for an analysis made using a c]imatd]ogica] first guess.

winds were fitted more closely. The main low was 1
mb less deep and a little farther west and the wind
field had a distinct closed circulation at 47°N, 162°W.

Finally, in Figs. 17-19 I present the 700 mb verti-
cal velocity fields corresponding to Figs. 14—16 (with
the sea level pressure shown dashed to ease com-
parison), calculated directly from the winds using
the continuity equation. It has already been noted
that although the streamfunction based wind predic-
tion error covariance model implies nondivergent
wind increments within one analysis volume, the in-
dependent analyses of different volumes are not so
constrained, and divergences on a scale which can
be resolved by these can be analyzed. Thus the de-
tailed vertical motion patterns from the forecast
(Fig. 17) are mostly preserved in the analysis (Fig.
18). The changes made during the analysis, however,
do seem meteorologically feasible: increased up-
ward motion near the center of the low which was
underdeveloped in the forecast, intensification of the
cold front, and downward motion in the ridge near
180°E. The analysis from climatology (Fig. 19)

shows clearly the low effective resolution. Yet,
despite the zero.first guess and the lack of any
diagnostic relationship with the analyzed mass field
the gross features associated with the main low are
distinguishable.

7. Computational aspects

Care must be taken that the large matrices M used
in the analysis are not ill-conditioned, otherwise
ridiculous results can occur. It has been found in
practice that the strictly positive definite covari-
ance model, with parameters s and u locally con-
stant within each system and V and F positive
definite, together with realistic observation errors,
always gives acceptable analyses. This result, which
holds even in the presence of close or collocated
observations, is contrary to experience with some
other optimum interpolation schemes (e.g., Berg-
man, 1979; Jones, 1976). It is perhaps due to the ac-
curately positive definite correlation functions used,
rather than approximate tabulated forms, and the
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1200 GMT 19 January 1979
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FIG. 14. Sealevel pressure and wind forecast corresponding to the central area of Fig. 11, with plotted surface observations
of sea level pressure and wind (each barb = 5 m s™).

48-bit precision used for all computations. If the
mathematical constraints on the covariance model
are relaxed by allowing s to vary in the vertical,
then ill-conditioning or even negative eigenvalues
sometimes occur. When this is detected the simple
expedient of increasing slightly the observation
errors overcomes any problems.

If the basic analysis method of Section 3a were
used to calculate grid-point values, then were would
be no need to calculate an explicit matrix inverse
M1, Instead the analysis coefficients ¢ could be
found by solving (11) and each grid-point value
evaluated by a scalar product (12), thus saving con-

siderable computation. However, calculations of
estimated analysis errors using (8) and (9) require
the matrix inverse or a different solution for each
error, as does the data checking of Section 3c and
the exclusion of rejected data at Section 3d. So an
explicit inverse is calculated using a root-free
Cholesky decomposition (Wilkinson and Reinsch,
1971). Because this algorithm can be organized to
take full advantage of the Cray 1 computer’s vector
processing hardware the actual expense of calculat-
ing the inverse is not excessive compared to that
of other parts of the calculation. Approximate
timings on the Cray 1 computer for a global analysis
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F1G. 15. As in Fig. 14 for the analysis in the data-assimilation cycle.

from a FGGE observation set containing 8386 re-
ports were as follows:

1) Preprocessing of observations, interpolation
and subtraction of first-guess, ‘‘super observation”
formation—16 s. (After this processing there re-
mained 5772 observations containing 38747 data.)

2) Selection of data—40 s. (There were 2752
analysis volumes with a mean matrix order N of 105.)

3) Calculation of M—51 s.

4) Calculation of M—!1—55 s.

5) Data checking—20 s.

6) Calculation of analysis errors using (27) (9) and
analysis coefficients using (28)—35 s.

7) Evaluation of grid point values using (12)—71 s.
8) Input, output, etc.— 17 s.

The mean matrix order N is sensitive to param-
eters used in the super-observation formation and
data selection. The time taken in 4) is approximately
proportional to N3, in 3) and 5) to N* and in 6) and
7)to N.

8. Summary

- A three-dimensional statistical interpolation
scheme, multivariate in geopotential height, thick-
ness and wind, has been described. The scheme is’
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F16. 16. As in Fig. 14 for an analysis made using a climatological first-guess.

novel in that the analysis equations are set up and
solved for a volume of space rather than the in-
dividual grid points and variables, making feasible
the use of a large number of data.

The multivariate relationships used relate devia-
tions from the first guess of wind components via the
streamfunction, vertical gradients of geopotential
height and thickness, and (outside of the tropics)
horizontal gradients of geopotential height and wind
components. It is shown in examples that the
method is capable of using such multivariate data
consistently, no matter how they are distributed.
However, the usefulness of gradient data (wind,
thickness) when analyzing geopotential height is
greatly enhanced by the simultaneous use of suit-

ably located reference level data, and conversely
the usefulness of geopotential height or thickness
data when analyzed wind is enhanced if they are
distributed suitably for calculating gradients. The
large number of data used for each analysis reduces
the data selection problem this entails. The use of
these relationships does not necessarily imply that
the analysis is geostrophic or nondivergent.

_ The scheme includes an automatic check of each
datum against an analysis made not using it, and
data which are unlikely to be correct are excluded
from the final analysis. In principle, the analysis
method is sensitive to the estimated error covari-
ances used; more so because many data rather than
just the nearest are used for each grid point. In most



F1G. 17. 700 mb vertical velocity forecast (Pa s™!) corresponding
to Fig. 14, with sea level pressure shown dashed.

practical cases, however, the direct effect of chang-
ing covariance model parameters is smaller than the
indirect effect arising from different data being re-
jected by the automatic quality control check.
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