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This paper studies the second-order currents and changes in mean surface level 
which are caused by gravity waves of non-uniform amplitude. The effects are 
interpreted in terms of the radiation stresses in the waves. 

The first example is of wave groups propagated in water of uniform mean depth. 
The problem is solved first by a perturbation analysis. In  two special cases the 
second-order currents are found to be proportional simply to the square of the 
local wave amplitude: (a )  when the lengths of the groups are large compared to 
the mean depth, and (b)  when the groups are all of equal length. Then the surface 
is found to be depressed under a high group of waves and the mass-transport is 
relatively negative there. In  case (a )  the result can be simply related to the 
radiation stresses, which tend to expel fluid from beneath the higher waves. 

The second example considered is the propagation of waves of steady amplitude 
in water of gradually varying depth. Assuming no loss of energy by friction or 
reflexion, the wave amplitude must vary horizontally, to maintain the flux of 
energy constant; it is shown that this produces a negative tilt in the mean 
surface level as the depth diminishes. However, if the wave height is limited by 
breaking, the tilt is positive. The results are in agreement with some observations 
by Fairchild. 

Lastly, the propagation of groups of waves from deep to shallow water is 
studied. As the mean depth decreases, so the response of the fluid to the radiation 
stresses tends to increase. The long waves thus generated may be reflected as free 
waves, and so account for the ‘surf beats’ observed by Munk and Tucker. 

Generally speaking, the changes in mean sea level produced by ocean waves are 
comparable with those due to horizontal wind stress. It may be necessary to 
allow for the wave stresses in calculating wind stress coefficients. 

1. Introduction 
In  two previous papers in this series (Longuet-Higgins & Stewart 1960, 1961) 

we have studied the non-linear action between water waves and steady or 
fluctuating currents, when the latter are non-uniform in space. It was shown that 
the currents generally do work on the waves, and that the coupling between them 
depends on a stress tensor associated with the waves, called the radiation stress 
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tensor. (The component corresponding to two-dimensional waves propagated in 
the x-direction is denoted by &.) 

Correspondingly, one may expect that the waves will do work on the sur- 
rounding medium. The change in current velocity should be proportional, like 
the radiation stresses, to the square of the wave amplitude. The purpose of the 
present paper is to investigate some examples where the effects may be 
appreciable. 

It is known that the currents produced by a steady train of waves of uniform 
amplitude are largely affected by the viscosity (Longuet-Higgins 1953, 1960). 
In  the first part of this paper, however, we deal with waves of non-uniform 
amplitude (the variations of amplitude being due to the presence of more than 
one frequency) in water of uniform depth. In  this situation, the groups of high 
and low waves are found to cause fluctuations in the mass-transport currents 
more rapid than the slow effects of viscosity, and the two effects may be treated 
independently. 
Our initial approach to the problem is to solve systematically the field equations 

and boundary conditions by the method of Stokes as far as the second order in the 
wave amplitude. For the first approximation we assume a linear sum of waves of 
nearly equal wavelength and frequency; these of course form ‘beats’ or wave 
groups in the usual way. In  the second approximation the ‘ difference frequencies ’ 
give rise to currents and changes in surface level having wavelengths comparable 
to the length of the groups. These are the currents in which we are interested. 

In  two special cases, the currents are very simply related to the local amplitude 
of the wave groups: (a )  when the groups are long compared to the mean depth, 
and ( b )  when there are only two first-order waves present, so that the wave groups 
are all of equal length. Associated with the currents are fluctuations in the mean 
level of the sea surface. Contrary to expectation, it is found that in a group of 
high waves the mass-transport tends to be negative (i.e. opposite to the direction 
of wave propagation) and the mean level tends to be depressed. 

In  the special cases (a )  and (b )  a simplified method of solution can be given, 
which confirms these results. 

A third approach, in some ways the most interesting, applies only in case (a ) ,  
when the length of the wave groups is long compared to the depth. Then it is 
shown that changes in the mean Ievel and in the mass-transport are such as would 
be produced by a horizontal force - afl,/ax applied to the fluid.t In  terms of this 
force, a simple physical explanation can be given as to why the surface tends to 
be depressed below a group of high waves: the radiation stress, being greater in a 
group of high waves, tends to expel fluid from that region. However, in general, 
when the groups are not long compared to the depth, the situation is complicated 
by the existence of a mean vertical acceleration which is no longer negligible. 

In  $9 P 6  the results are extended to waves in water of non-uniform depth. It is 
well known that even a steady train of waves undergoes changes in amplitude in 
water of gradually varying depth, in order to maintain a constant flux of energy. 
But the variations in depth and wave amplitude also cause a variation in the 

restriction on the length of the wave groups. 
t This result has been given independently Whitham (1962), but without stating the 
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transfer of momentum, and it is shown that this causes a tilt in the mean level ( 
such as would be produced by a constant horizontal force - aS,lax applied to the 
fluid. 

Moreover, it appears that the equation for a@3x may be integrated, so that the 
mean level 5 can be found as a function only of the local depth and of conditions at 
infinity. If there is no loss of energy then as the depth becomes shallower the mean 
level is depressed. If, on the other hand, the wave amplitude is limited by 
breaking, it appears that the mean level must rise. 

These results account qualitatively for some observations of Fairchild (1958) 
in wave-tank experiments, and for the observed rise in level shorewards some- 
times produced by ocean waves. 

Consideration of wave groups in water of non-uniform depth suggests that 
these may account for the ‘surf beats’ observed by Tucker (1950). For many 
years it remained a puzzle why a high group of incoming swell was associated with 
a negative pulse of pressure reflected from the shore. But this now appears as a 
natural consequence. 

2. The Stokes approximation 
In  the usual notation, let (x, y, z )  be rectangular co-ordinates with the z-axis 

horizontal and in the direction of wave propagation and with the z-axis vertically 
upwards. Let u = (u, v, w) denote the velocity vector; p, p and g the pressure, 
density and gravitational acceleration; x = <(x, y, t )  the equation of the free 
surface and z = - h the equation of the rigid bottom. 

Now the fluid motion in a periodic train of waves, outside boundary layers a t  
the bottom and free surface, contains generally a second-order vorticity (see 
Longuet-Higgins 1953, 1960) which, on the time-scale that we are considering, 
can be considered as independent of the time t. This vorticity is associated with 
a steady second-order current. However, to the second approximation this 
current does not affect the distribution of pressure, and may be simply added to 
the field of motion. Hence, to the second approximation we may regard the fluid 
motion outside the boundary-layers as irrotational, afterwards adding the 
second-order current so as to satisfy the special conditions just inside the 
boundary-layers. 

The equations to be satisfied by u, p and 5 are then the field equations 

with the boundary conditions 
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In  Stokes's method of approximation an expansion of u, +, 5 and p is made in the 
form 

where 0 ,  +(l), etc. satisfy the linearized equations and boundary conditions; 
u(l)+u(2), qS1)++(2), etc. satisfy the equations as far as the quadratic terms, and 
so on. The equations for qV1) are: 

For the present it is assumed that the mean values of u(l) and 5c1) are zero, that is 
to say in the first approximation there is no mean current, and the origin of z is in 
the mean surface level. 

The equations for the second approximation $A2) are 

v 2 p  = 0,  

(see for example Longuet-Higgins & Stewart 1960). The remaining quantities 
u@), p(2) and 5'2) may then be found from 

(2.7) 1 
u(2) = v p ,  

p'2'/p = - ( a p / a t  + *u(1)2), 

g<@' = - ( a p p t  + gu(1)2 + 5'" a 2 p / a z  at),=,. 

The classical first-order solution for a wave of constant amplitude a, frequency 
u and wave-number lc is 

au cosh k(z  + h) 
k sinh kh 

($1) = sin (kx - at), 

5'1' = a cos (kx - crt), 
provided that? 

u2 = gk tanh kh. 

t If approximations higher than the second are considered, cr must also be expanded in 
powers of (ak) .  Thus strictly we should write a@) for cr. 
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This determines the phase velocity 

Also 

which is independent of z. 
The next approximation, found by solving equations (2.6), is 

3a2v 4") = 8 si&4 kh cosh 2k(z + h) sin 2(kz - a t )  + Cx+ Dt, 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

where C and D are arbitrary constants, of the second order. From (2.7) it  can be 
seen that these constants are related to the average values of d2) and 6(2); in fact 

(2.14) 

The last equation follows from (2.7) on replacing by a[fi)/at and noting that 

so that 

Hence a change in C corresponds to the superposition of a small, uniform hori- 
zontal current, i.e. to a different choice of the frame of reference. A change in 
D corresponds to a small addition to the vertical co-ordinate, in other words a 
different choice of origin for z. It can easily be verified that the mean pressure on 
the bottom always equals the hydrostatic pressure: 

(2.15) 

As in Lamb (1932) it is found that the mean energy density of the waves is 

- 
% - h  = pg(h + 

given by 

correct to second order, and the horizontal flux of energy, also to second order, 
is given by 

E = +pga' 

H = Ec,. 

3. Propagation of a wave group 
In  this section we shall treat the problem of a group of waves propagated freely 

in water of uniform depth, using three different methods. The first method is a 
systematic application of the perturbation procedure outlined above; this is 
valid irrespective of the length of the wave groups relative to the depth h. The 
second method is a simplified version of the first, valid only when the wave 
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groups are long compared to h, or when the groups are of uniform length. The 
third method is an application of the conservation of momentum, similar to that 
of Whitham (1962), but is valid only for long wave groups. 

Method 1 

Consider a wave disturbance containing a narrow range of frequencies, for 
example a disturbance represented, to first order, by the expression 

Q1) = a, cos (k, z - a, t + x,), 
n 

where a, and xn are amplitude and phase constants, and all the wave-numbers k, 
lie close to a fixed wave-number k. The frequency and wave-number of each 

(3.2) 
component are related by a: = gk, tanh k, h. 

Equation (3.1) may also be written 

(3.3) C(l) = a cos (kz - at + x), 
where a and x are slowly varying functions of x and t, representing the envelope of 
the waves; in fact 

a eix = x a, exp i{(k, - k) 2 - (a, - a) t + x,). (3.4) 
n 

The square of the amplitude a is given by 

a2 = anam exp i{(k, - km) x - (a, - am) t + (x, - x,)}. (3.5) 
n, m 

Since 
an-am da 

CU 
-*-= 
k,-k, dk 

the whole envelope (3.4) progresses with the group velocity cU. 
The first-order potential corresponding to (3.1) is 

The equations for the second approximation are equations (2.6). Now the 
right-hand side is a quadratic expression in g(1) and '(l), and so may be expressed as 
the sum of terms with wave-numbers (k, + k,) and (k, - km) respectively. Hence 
qY2) and Q2) will contain terms with sum and difference wave-numbers also. Since 
we are interested only in average values taken over several wavelengths, only the 
terms which depend on the dijference wave-numbers will be retained. Thus we have 

and neglecting squares of Ak and Acr we have 

a,ama2cosh 2kh 
sin (Akz - hat + Ax). a - u(1)2 = c 

at n,m 2sinPkh 



Radiation stress and mms transport 

Similarly, using (3.2) we find 

487 

2 sinh2 k, h sin(Akx-Aut+Ax) 

(only the difference terms being retained). By reversing m and n in the summa- 
tion and taking one half of the sum, the right-hand side becomes 

a", 
sinh2 k, h 

u' ) sin (Akx - A d  + AX). 
sinh2 km h 

which, to the first order in Au, can be written 

a3 
C Y A v d  du (-) sinh2kh sin(Akx-Ad+AX). 

n, m 

Altogether, then, the last of equations (2.6) becomes 

3 2 4 ~  a p  
( F + g z )  = - C (Ka,a,Av)sin(Akx-Aut+AX), 

z=O m.n 

where g2cosh2kh +--(-) 1 d u3 
2sinh2kh 4 d ~ ~  sinh2kh ' 

K =  

It will be noted that K is independent of Ak and ACT. The solution of equations 
(2.6) is 

KamanAucoshAk(z+h) sin(Akz-Aat+AX)+Cx+ Dt, (3.9) 
'(') = -mTm gAk sinh Akh - (ACT)% cosh Akh 

where C and D are arbitrary constants. To the same order in Ak, ACT this may be 
written 

7 (3.10) 
amancg cosh Ak(z + h) sin (Akz - A d  +AX) 

$(2) = - K - 
m, gh8 - c; cash Akh Ak 

where 
tanh Akh 

Akh 
e =  (3.11) 

In  the summation in (3.10) we have included terms corresponding to m = n. These 
are taken to be the limits of the terms under the summation as Ak + 0; in other 
words we have chosen 

Cx+Dt =-KC- (x - cgt). 
n 9h-C: 

(3.12) 

Further terms of the type (C'x + D't) may of course be added. From (3.10) we 
have immediately 

amancg cosh Ak(z + h) 
~ ( 2 )  = - K C cos (Akx - A d  + Ax), (3.13) 

m, ghe - C: cash Akh 

and for the mean velocity with respect to z, 

(3.14) 
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The mean surface elevation <(2) is found from equations (2.7): 

cos (Akx - A d  + AX) .  
aman U 2  

- 2  m, It 4 sinh2 kh 

The constant K may be evaluated from (3.8) and (2.9); we find 

cr2 
4 sinh2 kh 

sinh 4kh + 3 sinh 2kh + 2kh 
sinh Zkh + 2kh 

_ _  K =  

(3.15) 

(3.16) 

We may distinguish two principal cases: 

(a)  The wave groups are long compared to the depth h. Then 

Akh << 1, coshAk(z+h) + 1, 8 = 1. 

The factor (gh8 - c;)-l may be taken outside the summations and we have simply 

(3.17) 

where a' = 2 aman cos ( A ~ x  - A d  + Ax) ,  
m, n 

as in (3.5). 

(b)  The wave groups are not long compared with the depth. There is no such 
convenient simplification as in (a), since the factor (gh8 - c:)-l is generally different 
for each sinusoidal component in the summations. However, since k 9 Ak and 
Akh is at least of order 1, one may assume that e-kh < 1,  i.e. the individual waves 
are effectively deep-water waves. From (3.14) K = cr2 = gk, and equations (3.14) 
and (3.15) reduce to 

(3.18) 

a m  an I d2) = - 2gk 2 -___ 8 cos (Akx - A d  + Ax) ,  
m, n 48kh - 1 

cos (Akx - A d  + A X ) ,  g p  = --2 2 am an 
48kh - 1 m, 

8 being given by (3.11). These solutions are not generally expressible in terms of 
the local wave amplitude a. However, in the special case when only one pair of 
waves is present, with amplitudes a, and a2, then we have 

Since a2 = (a: + a;) + 2a1a2 cos (Akx - A d  + A X )  
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this can be written 
2OfTka2 

u(2) - -~ + const., I -4Okh-1 

g2a2 
qr2) = + const. 

(3.19) 

Moreover, since an expression of the form (C'x + D') may still be added to the 
potential, the constants of integration can be taken as vanishing. 

Method 2 

This method is more indirect than method 1, but avoids the lengthy calculations. 
It also leads to an interpretation of some of the algebraic expressions which occur 
in the solution. 

From the form of equations (2.11) it  will be seen that the potential qY2) corre- 
sponds to the motion that would be generated by a 'virtual pressure' 

applied at the upper surface of the fluid. Without evaluating this complex 
expression, we note that it can be expressed as the sum of terms containing both 
sum and difference frequencies, the latter travelling with the group velocity cp. 
Thus #J(2) will contain a part such that 

Added to this there will in general be a potential of the form (Cx + Dt) where C 
and D are arbitrary constants. Since a#J/at occurs only in the Bernouilli integral, 
we may, by a suitable choice of origin for z ,  make D = - cgC. The constant C is 
still arbitrary. So if 5 denotes the average of #J over one wave cycle we have 

- 
#J = #Ja + C(X - cgt), 

and clearly 

If Ti, [ and 65 denote similar averages of u, 5 and w we have analogously to (2.14) 
- 
u = a&ax, = - (a$/at)z=o-e. 

- 
(3.20) 

Since the wave amplitude is a gradually varying function of x we may assume 
that locally the waves are given by (2.8) and so 

- 
Hence cg(qzI=o-gc = m. 

The mean horizontal momentum M is defined by 
-~ 
P 

M = pu dz. 

(3.21) 



490 
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M = m+phIii (m  = E/c)  (3.22) 

(Stokes 1847; for an alternative proof see the Appendix). The equation of 

a - aM 
-(pC)+- = 0, at ax 

continuity of mass is then 

or, since 5 and M are both functions of (x - c,t), 

a (M - c ,p[ )  = 0. 

Substituting for M and integrating we have 

m+phIZ-pc,< = const. 

By a suitable choice of axes (or of the constant C) we may ensure that the constant 
of integration vanishes, and then 

hlii-cg[ = -m/p.  (3.23) 

Equations (3.20) and (3.23) can now be solved for [, provided we have some 
relation between I ii and UBz0, i.e. between the mean horizontal velocity and the 
velocity a t  the surface. 

(a) The wave groups are long compared to the depth. Then the potential $ repre- 
sents a shallow water wave, so that ii is independent of depth. Equations (3.20) 

- c,u - gc = E ,  and (3.23) become simply 

hii-c,[ = -m/p, 
of which the solution is 

[ =  hw+cgm/p 
gh - c: 

Substitution for i5 and m gives 

(3.24) 

(3.25) 

(3.26) 

These solutions will be seen to be identical with (3.17) in view of the identity 

K E -  (gh + c: - ~ c c , )  
2hcc, 

which can be verified at  some length. 

pressure pa. Since a$/& vanishes at  z = - h we have 
From equations (3.25) one can also derive a simple expression for the virtual 
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for a2$/ax2 = aU/ax, which is independent of z. Hence 
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The right-hand side equals - ( l l p )  aps/at and so 

- gh-c; - 
p =-- pu + const. 

% 

Substituting from the first of (3.25) gives 

pS = pi3 + gmlc, + const. (3.27) 

In  the case when e-kh < 1 then i5 vanishes and we have 

p, = gmlc, + const. (3.28) 

This has a simple physical interpretation. m represents the additional mass 
transport due to the waves which, because it is non-uniform in x, tends to produce 
a piling-up of mass near the free surface: 

The virtual pressure 

( b )  The wave groups are not long compared to the depth. The problem can still be 
solved by the simple method provided only two wave components are present. 
For then $ has a single wave-number AE, and from Laplace’s equation, together 
with the condition at the bottom, it follows that U depends on z through the factor 

is simply this quantity multiplied by g. 

cosh Ak(z + h) .  Therefore 
= e. IU = tanhAkh 

(%o Akh 

In equation (3.20) we may therefore substitute (U),=, = 0-1 15 and also .Fs = 0, 
since e-kh < 1. Together with (3.23) we have 

cgpi -eg[=  0, 

hl;ii-c,[= -m/p, 

where cg = 9 1 2 ~ .  Solving these equations we find 

(3.29) 

which are equivalent to (3.19). 
When more than two sine-waves are present it is obvious that I Ti and [ cannot 

be simply related to the local wave amplitude, for then the fluid hrts a different 
response to each of the harmonic components of the virtual pressure p8. 
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Method 3 

This is essentially the method given by Whitham (1962); as will be seen, it is valid 
only when the groups are long compared to the depth. 

Let S denote the flux of momentum across a vertical plane x = constant: 

(3.30) 

and let S, denote the difference between this and the part due to the hydrostatic 
pressure : - 

= S - Qpg(h + [)2 

+ S-pg(Qh2+h[). (3.31) 

S, is the radiation stress introduced by Longuet-Higgins & Stewart (1960), and 
may be thought of as the excess transfer of momentum due to the waves (Whit- 
ham 1962). When the vertical acceleration is negligible we find, correct to  the second 
order of approximation, 

(Longuet-Higgins & Stewart 1960, 5 3). 
Now from the continuity of mass and momentum 

and 

a(pQiat + aM/ax = 0,  

aiwiat + aslax = 0. 

But the last equation may be written 

a i v  a - as, 
at ax ax --++h-(pc) = --. 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

Equations (3.33) and (3.35) together show that 5 and M are equivalent to the 
surface elevation and horizontal momentum in a long (shallow-water) wave when 
a horizontal force - 8Sx/ax per unit distance is applied to the fluid. Since 8, is 
proportional to a2, the applied force travels with the group velocity, so that slat 
may be replaced by -cga/ax. Then we have 

-peg aQax + aM/ax = 0, 

pgh aglax - cg aiwiax = - asxiax, 

a[ 1 as, 
ax gh-c; ax 

c g  as, 
ax gh-ci ax * 

of which the solution is 

P- = -___- 

aM ---- _ -  
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Thus on integration 

(3.36) 

the constants of integration being a t  our disposal. The mean velocity ii may be 
found from the relation (3.22) between M and g. Hence 

1 E u. = - (M-E/c)  = - % Asx---. 
Ph h(gh - P h  

This will be seen to be equivalent to (3.26). 

a s, c u - 
\ 

FIGURE 1. The effect of the radiation stress in depressing the mean level in a 
group of high waves. 

It will be noticed that beneath a group of high waves, where S, and E are both 
large, and ;li are more negative, that is to say there is a relative depression in the 
mean surface level, coupled with a mean flow opposite to  the direction of wave 
propagation. Beneath a group of low waves, on the other hand, the mean surface 
level is raised and the flow is positive. 

The sign of the response may be accounted for in the following way (see 
figure 1). In  a group of high waves S, is large, so that the applied force - aS,/ax 
is positive in advance of the group and negative behind it. Now the wave groups 
are travelling with a velocity cg which is generally less than the free-wave velocity 
(gh)$, and so the response of the system to the applied force is in the same direction 
as if the groups were stationary; in other words, the applied force acts in opposition 
to the restoring force arising from the deformation of the surface. So the restoring 
force is negative in advance of the high wave group, implying an upwards mean 
tilt, and positive behind the group. Directly beneath the group, therefore, there 
is a depression. 

More graphically, we may say that the greater stress in the high waves tends 
to  force the water apart there, and so to produce a depression in the surface level. 

In  the more general case, when the groups are not long compared to the depth, 
the above argument breaks down, on account of vertical accelerations in the mean 
motion. For to retain the form (3.32) of S, one would have to add to the right- 
hand side of (3.31) a term depending on the vertical acceleration DGfDt: 
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Thus, to the second order, 
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The effect of this is to add a further term to the left-hand side of (3.35). Hence 
the simple argument no longer suffices. 

Waves advancing into still water 

This problem may be treated by the same methods as we have outlined, except 
that the representation of g(l) as a sum of sine-waves must be replaced by the 
Fourier integral representation : 

p = ~ ~ ~ A ( k ) c o s { k x - ~ t + ~ ( ~ ) } d k ,  

a being the function of k defined by (3.9). The analysis proceeds along exactly 
similar lines, Fourier integrals replacing the Fourier sums. The choice of the 
arbitrary constants C' and D', however, is naturally determined by the con- 
sideration that the mean level Q2) and the mean velocity I d2) each be zero in the 
undisturbed part of the fluid. 

If the transition from the undisturbed to the disturbed zone is sufficiently 
gradual, and if the breadth of the transition zone is large compared with h, then 
we may suppose that the conclusions previously found for long wave groups will 
apply. In  particular, 1 u(2) and Qz) will be related to the local wave amplitude as in 
equation (3.17). Moreover, the constants of integration are as chosen, namely 
zero, for both Id2) and c(2) vanish in the undisturbed region, where the wave 
amplitude is also zero. In  this special instance then, the solution (3.17) is appli- 
cable. However, if the transition is more abrupt, compared to the depth, then 
the solution is more complicated. 

In  very deep water, where the length of a group is small compared to the 
depth, the effect of the radiation stress can be seen very simply. Consider a group 
of waves, of energy density E, advancing through still water. Letting Akh -+ 00 

in (3.13) we see that the mean velocity u(2) tends to zero. So if M' denotes the 
mean horizontal momentum in the uppermost layer (say within a wavelength 
of the free surface) we have 

M' = m = E/c. 

aM' laE 1 aE laE 
- - 

at c at 2c, at 2 ax)  Hence 

i.e. a iw  as, 
at ax - 

since S, = QE. In  such deep water, then, we see that the radiation stress 
gradient provides just the acceleration required to give the uppermost layer of 
water its known momentum. 

The total momentum M ,  on the other hand, tends to vanish in deep water. 
For on letting Akh-t 00 in (3.18) we find 

ph]d2)  N - ipaaz = - E/c, 95'2) = O( a2a2 Aklk), 
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and so M - t  0 by (3.22). Thus the fluid responds so as to keep the mean surface 
level almost constant and the total momentum zero. With shallower depths 
the water is unable to do this. There is a resulting change in the value of M 
and an additional stress gradient due to the mean surface slope. 

4. Water of variable depth. (1) Steady wave trains 
So far the mean depth h has been assumed to be independent of x. In  this and 

the following section we shall extend the previous results to include the case when 
h varies rather gradually with horizontal distance, so that dhldx and higher 
derivatives of h are small. In  this section it is assumed that the wave amplitude 
is steady, i.e. independent of the time. In  $ 5  we discuss the effect of a wave 
amplitude which fluctuates in time. 

Again, use is made of the small-amplitude wave theory. It turns out that 
considerations of energy are sufficient to determine the local wave amplitude; 
then the momentum equation will determine the mean surface elevation or 
depression, if the mean pressure on the bottom can be evaluated. One of the 
crucial steps is to show that the mean pressure on the bottom is in fact equal to the 
mean hydrostatic pressure, correct to the second order of approximation. 

To fix the ideas, suppose that a regular train of waves advances into water of 
gradually diminishing depth h(x). If there is no loss of energy by breaking of the 
waves and internal friction, and if the reflexion of energy is negligible, then the 
wave amplitude a(x)  may be determined by the consideration that the flux of 
energy F towards the shore is a constant (see Burnside 1915). So to the second 
order 

where E = ipga2. As is well known,? cg at first increases slightly above the deep- 
water value g/2a and then diminishes asymptotically to (gh)*. So the wave 
amplitude a at first decreases slightly, and then increases asymptotically like h-4. 
The wavelength, on the other hand, steadily decreases with h, and also the ratio 

Consider now the balance of momentum between two fixed vertical planes 
5 = z,, z = x,+dz. The fluxes of momentum across these planes are S and 
(S  + adlax dz) respectively. Across the bottom there is no normal component of 
velocity, but the pressure ph contributes a normal force --phdl where d& is the 
distance between the two planes, measured along the bottom. The horizontal 
component of this force is -phdl(dh/dl) or -phdh. In  the quasi-steady state this 
must equal - axlax dx and hence 

(4.2) 

Ec, = F = const., (4.1) 

clcg. 

Our next task is to evaluate ph. Since both V u  and V(au/at) vanish by con- 
tinuity, the equation of vertical motion 

--- 

f For graphs of a, k and c/o, relative to their deep-water values see, for example, 
figure 5 of Longuet-Higgins (1956). 
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--- 1 aP = g + & ( z a t + w ~ ) + ~ ( z ~ + u w ) .  a aw 

P az 
On integrating over the range - h < z < y we have 

where p ,  is the surface pressure, assumed zero. Now 

and hence, neglecting terms of order u3, we have 

On taking mean values with respect to t ,  the time-derivatives vanish, by periodi- 
city, and we have 

Now on the bottom w is of order udhldx, and s o 2  is proportional to u2(dh/dx)2, 
which we neglect, since it involves the square of dhldx. Further, since in uniform 
depth UW vanishes, in general it  is of order a2dh/dx at most, and a(UW)/ax is of 
order az(dh/dx)2 or a2d2h/dx2, which again we neglect. To this order of approxima- 
tion, then, the previous equation gives simply 

(4.4) 
- 
Ph = pg(h + 

i.e. the mean pressure on the bottom equals the mean hydrostatic pressure, as in 
the case of uniform depth (equation (2.15)). 

So from (4.2) we have 
axlax = pg(h + ahlax. (4.5) 

But by the definition of S, in (3.31) we have 

3 = --pg(h+C)G-pgh%, as - dh ac 
ax ax 

and therefore altogether 
asslax = -Pgh az/ax,  

or 

This is just the equation for the gradient of the surface level c when a constant, 
small horizontal force - as,/ax is applied. 

Integration of equation (4.7) 

Let us assume at first that no energy is lost by wave breaking, bottom friction, 
etc. Then equation (4.7) admits an exact integral. For from (3.31) and (4.1) 
we have 



Radiation stress and mass transport 497 

where F is a constant and the subscript indicates that h is to be held constant in 
the differentiation. Now if we introduce the non-dimensional quantities kh = 5, 
v2h/g = 3 then the period equation (2.9) may be written 

c tanht  = 3,  
and we have 

Substituting in (4.8) we have 

(4.9) 

(4.10) 

In  equation (4.7), h and hence and 3 may be regarded as functions of 2 only, and 
we have 

Integration by parts yields 
- v3F d 6 5 = - - (-) + const. 

PSS d3 3 

But f ; /q  = coth t ,  which tends to unity in deep water (t B 1). So if [is measured 
relative to the deep-water level the constant of integration vanishes: 

Now 

Thus 

<=-- (  - a3F cotht). 
Pg3 d3 

or, on substituting E = ipga2 and performing the differentiation, 

- 1 a2k y = - -  
2 sinh 2 kh' 

(4.11) 

(4.12) 

As the water becomes shallow (kh 1) we have the asymptotic expression 

(4.13) 

Equation (4.12) shows that when there is no loss of energy the surface is 
depressed relative to the deep-water level. The values of a in that equation, 
however, depend on the local depth. To obtain the actual profile of [ we return to 
equation (4.11) in which F is assumed constant and equal to $pg2at/r, where a, is 
the wave amplitude in deep water. Substituting for F in that equation we find 

(4.14) 

32 Fluid Mech. 13 
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and [is related to 7 by (4.11). f(7) is plotted in figure 2. The very sharp down-turn 
in level at around q = 0-5 will be noted. In  shallow water (7 < 1) we have 

f(7) N g - 3  - $7-8. (4.15) 

This asymptote is indicated by the broken line in figure 2: it lies remarkably close 
tof(7) when 7 c 0.5. From equation (4.15) we have 

g - -  a& = -- a: g t  (4.16) 
8( &%/g)* 8 d  ' 

1 0.02 

n.ni " -- 
0.1 0.2 0.5 1 2 5 lo 

T 

FIUURE 2. Graph off(T), giving the depression of the mean surface level in water of finite 
depth, relative to the level in deep water. The broken curve represents the asymptote 
W T t ) .  

Thus the surface depression is inversely proportional to the three-halves power of 
the depth. 

The above formulae apply only so long as there is no appreciable loss of energy 
and so long as the small-amplitude theory is valid. A necessary condition for the 

ak < (kh)3 (4.17) 
latter is that 
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(see Stokes 1847). The theory is certainly not precisely valid when the waves are 
so steep as to be breaking. 

However, one may perhaps expect a qualitative result from the observation 
that swell in shallow water tends to break when the depth is about 1.3 times the 
crest-to-trough height (Munk 1949b). Inshallowwater c,/c = 1 so thatfrom (3.32) 

X, = $E = &ga2. 

If we now write 2a = hll.3 equation (4.5) gives 

(4.18) 

Since for shoaling water ahlax is negative, the mean level tends now to rise towards 
the shore. In  fact, (4.18) suggests that the mean gradient of [ may be practically 
independent of the initial wave amplitude and period under these conditions. 

Some confirmation of these conclusions is to be found in the experiments of 
Fairchild (1958). These were made on a 1 : 75 model of the beach profile off 
Narragansett pier, with wave amplitudes a = $H, ranging from 15ft. down to 
2+ft., and periods of 15 and 9sec. With the larger wave amplitudes, where 
breaking might be expected, there was a positive (set-up’ (rise in level) towards 
the shoreline. The difference in [ between say 200 and 400ft. from the shoreline 
is remarkably independent of wave amplitude and period. The mean value is 
A[ = - 0*75ft., corresponding to a difference in depth Ah = 6ft. Thus 

Ah - = -0.12- 
Ax Ax ’ 

which is in order-of-magnitude agreement with (4.18). 
Significantly also, at the smaller wave amplitudes, where breaking is delayed, 

the observations show that [ can be negative. The author states: “Other tests in 
the Beach Erosion Board laboratory have shown that for considerably steeper 
beach slopes (1 on 3 and 1 on 6) and wave of somewhat lesser height (2-4ft.), there 
is no wave set-up but rather there is wave set-down”. This is to be expected, for 
under the conditions described the breaking of the waves would be delayed. 
If there is little loss of energy apart from wave breaking, then our analysis 
suggests that the greatest depression of the mean level will be a t  about the point 
where breaking first occurs. 

The magnitude of the change in level is of the same order as that caused by wind 
stress over the water surface. At first glance this appears anomalous since the 
momentum of the waves is only a small proportion of the total momentum trans- 
ferred from the wind into the water. However, the increase in surface level caused 
by the wind stress produces an increased pressure effective through the full depth 
of the basin. On the other hand, the momentum associated with the waves 
produces a change in level only when the water becomes shallow, and so the force 
is exerted over only a small depth. As has been shown by Taylor (1962) the wave 
momentum may be transferred directly to the boundaries by the radiation stress, 
with only a depression of mean level resulting. This occurs when the bottom slope 
is sufficiently abrupt. 

32-2 
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5. Water of variable depth. (2) Groups of waves 
We now generalize to the case of a train of waves of fluctuating amplitude. 
It can be assumed that at each point the wavelength and velocity of the waves 

correspond to the local depth of water, and that the wave groups advance towards 
the shore with a velocity equal to the local group-velocity. To determine the 
amplitude, suppose first that there is no loss of energy due to breaking or friction. 
Then we may assume that the flux of energy F across any (fixed) vertical plane 
with co-ordinate x ,  at time t ,  is constant for an observer advancing with the 
group-velocity cg. 

On the other hand, if breaking occurs then the amplitude of the higher waves 
may be limited by the local depth h. 

To find the effect on the mean surface level [we generalize the analysis of the 
preceding section so as to include the effect of a time-varying mass-transport M .  
In place of equation (4 .2)  we obtain 

(5 .1 )  aMlat + aslax = p h d h p x .  

Equation (4 .2)  is the special case of this equation when aM/at = 0 ,  and (3.34) is 
the special case when dhldx = 0. On the other hand, by taking local averages in 

a2u 
(4 .3)  we have, - 

= g ( h + [ ) -  (2:) +so (zm) dz z = - h  - h  P 

(compared with equation (4 .4)) .  Substituting - a2Elax at for a2u/ax at in the 
integral and integrating by parts we find 

Suppose now that the wave groups are long, so that aE/at is negligible. Then Fh is 
given simply by ph = p g ( h + [ ) .  Combining this with (5 .1)  we obtain equation 
(3 .35)  as before. Moreover, the equation of continuity of mass is still valid also. 
So we have shown that for long wave groups, even when the depth is variable, the 
mean surface [ responds as though a horizontal stress - &Yx/ax were applied at  
the surface. 

The explicit calculation of [ must depend upon the entire form of bottom 
profile h(x) and not merely on the local depth if, as is generally true, there is an 
appreciable change of depth h within a horizontal distance equal to the length of 
a wave group. A detailed calculation will not be attempted here. However, it 
mag be noted that as the depth diminishes, and the group-velocity cR approaches 
(gh)g, so the response of the surface to the applied stress will increase. For example, 
the surface elevation [, which in the case of uniform depth h is given by 

[=-L ' 1' +const., 
gh - c3 (5 .3 )  

will become large on account of the vanishing of the denominator. From (2.10) 
and (2.111 we have 

(5.4) c i  = i gh  ~- 1 + ~. . . ~ )' = g h [ l - ( k h ) 2 + O ( k h ) 4 ] ,  
tanh kh kh ( sinh 2kh 
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so that, if the resonant response had time to develop fully, 

When there is no loss of energy, we should have from (4.6) 
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(5.5) 

which is increasingly negative as h diminishes. However, the validity of these 
formulae is limited by the condition (4.10) and by the fact that the resonant 
response needs time to build up. In practice, the waves are often limited by 
breaking, so that 5; may not increase towards the shore to the extent indicated 
by (5.6). 

6. Surf beats 
Off-shore records of wave pressure on the sea-bed when there is an incoming 

swell often show the existence of longer waves, of 2-3 min period, very similar to 
the envelope of the visual swell (Munk 1949a; Tucker 1950); but the long waves 

J -40 
Long waves lagging on 

wave envelope (min) 
Long waves in advance of 

wave envelope (min) 

FIGURE 3. Correlation of long waves with the envelope of incoming swell, as a function of 
the time difference between them: mean of the five best correlograms. (From Tucker 
1950.) 

are delayed relative to the envelope of the swell by several minutes. Munk and 
Tucker have both suggested that the long waves may be caused by an excess of 
mms carriedforward by thegroups of high swell; the swell waves, it is assumed, are 
destroyed on the beach, but the mass-transport associated with them is reflected 
back and is measured as a long wave by the pressure recorder after an appreciable 
time delay. 

To demonstrate this, Tucker correlated the long waves with the envelope of the 
swell, at varying time shifts (see figure 3) and found a maximum (negative) corre- 
lation at a time shift of about 5 min-about the time required for the groups of 
waves to reach shore with velocity cg and for the long waves to travel back with 
velocity (gh)). Tucker also compared the height of the long waves with the height 
of the corresponding groups of swell (see figure 4). 

Tucker made the following remark: “Such a simple explanation disagrees with 
the observations in two major respects: according to theory, the mass-transport 
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within a wave (in a given depth) is proportional to the square of the height, 
whereas the observations show that the long wave height is approximately 
linearly proportional to the ordinary wave height. The simple explanation also 
requires that the long wave should be an elevation, whereas figure 2 shows that 
the outstanding feature of the observed wave is a depression in water level.” 

Wave height in ft. (bottom pressure) 

FIGURE 4. Relation between the height of the long waves and the height of the 
corresponding swell. (From Tucker 1950.) 

The reader will at once perceive that the second objection is immediately 
answered, for we have shown that in fact, contrary to expectation, a group of 
high waves is associated with a depression of the mean surface level and a conse- 
quent reduction of pressure on the bottom. 

To account for Tucker’s first point, however, we shall now try to construct a 
very crude theory of surf beats, on the lines previously suggested. 

Since long waves are more readily reflected by non-uniformities in the trans- 
mitting medium than are shorter waves, it  is reasonable to suppose that at  some 
depth h0 the long wave associated with the mass-transport undergoes partial 
reflexion while the shorter waves are allowed to pass on and be destroyed in 
shallower water. If CR denotes the coefficient of reflexion of the long wave, then 
its amplitude at  the point of reflexion would, according to (5.6) be given by 

On propagation outwards the height of the reflected wave will be diminished like 
(ho/h)t ,  so that at any other depth h, and after the appropriate lapse of time, 
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which represents also the long-wave pressure, in feet of water, recorded on the 
bottom. 

Since ER is proportional to F and hence to  a2, it would seem that the amplitude 
of the long waves is proportional to the square of the envelope of the incoming 
swell. On the other hand, if breaking has taken place before the point of reflexion, 
the higher waves a t  least will have been reduced in amplitude, and so one expects 
in fact a law of variation rather weaker than a2. This is not inconsistent with 
Tucker’s observations. 

It should be said that the choice of one particular depth h, for reflexion of the 
long wave is probably not realistic, and that reflexion may take place at more 
than one place, depending also on the length of the wave groups. Further 
reflexion by deep water (Isaacs, Williams & Eckart 1951) is also not out of the 
question. All such possibilities would tend to lower the correlation between the 
wave envelope and the subsequent surf beat. 

Finally it may be worth mentioning that Munk ( 1 9 4 9 ~ )  has attempted a com- 
parison of the observed long waves with the time-integral of (breaker height)2, 
using a fixed time lag. However, from our point of view this time-integral would 
be 90” out of phase with the appropriate quantity for a periodic wave envelope. 
The fact that Munk obtains reasonable coincidence over four cycles of the envelope 
is not evidence against our hypothesis, for with a slightly different time lag, the 
evidence could equally well be used in support of our hypothesis. The appropriate 
time-lag was not certain “inview of the 1OOOf t .  distance separating the swell and 
tsunami records and of other uncertainties ” (seep. 853). The procedure adopted 
by Tucker, namely to plot the correlation coefficient between the surf envelope 
and the long waves as a function of the time lag, appears to be the most convincing. 

Appendix : the momentum integral 
The relation 

M = phlG+E/c 

used in Q 3 is due essentially to Stokes (1847), and in the case I U = 0 was redis- 
covered by Starr (1959) as a hydrodynamical analogy to Einstein’s law M = E/c2. 
The method of derivation given by Whitham (1962) is similar to Stokes’s. Here 
we give a simple way of deriving the relation, which avoids the explicit evaluation 
of integrals . 

The mean horizontal momentum M may be expressed as 

where U denotes the mean velocity of a particle, in the Lagrangian sense: in other 
words the mass-transport velocity. Now the displacement of a particle due to 
its orbital motion is, to the first order, 

AX = W ) d t  s 
and so the horizontal velocity of the particle in the neighbourhood of a fixed 

u -k Ax. Vu. point x is 
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The mass-transport velocity, t o  second order, is the mean value of this expression: 

U = U + U(’)dt . VU(’). s 
Now dl) is periodic in time and so 

u(l)dt. VZL(~) + dl). V s 
which vanishes by periodicity. So we have 

Since the motion is progressive, i3u(’)/i3x: may be replaced by - ( l /c)  &Plat; and 
i 3 d 1 ) / a x ,  which equals i3w(l)/&, may be replaced by - (l/c) ad1)/% Hence 

Substituting in (A 2) gives M = ph 1 U+ 2 K.E./C 

where K.E. denotes the density of kinetic energy. Since K.E. equals half the total 
energy E ,  the result (A 1) follows. 
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