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Radiation stresses in ~vater waves;  a physical discussion, 

with applications 

M. S. LONGUET-HIGGINS* and R. W. STEWART t 

(Received 17 June 1964) 

Abstraet--The radiation stresses in water waves play an important role in a variety of oceanographic 
phenomena, for example in the change in mean sea level due to storm waves (wave "set-up "); 
the generation of "surf-beats "; the interaction of waves with steady currents; and the steepening 
of short gravity waves on the crests of longer waves. In previous papers these effects have been 
discussed rigorously by detailed perturbation analysis. In the present paper a simplified exposition 
is given of the radiation stresses and some of their consequencies. Physical reasoning, though less 
rigorous, is used wherever possible. The influence of capillarity on the radiation stresses is fully 
described for the first time. 

I N T R O D U C T I O N  

In a series of recent papers (1960, 1961, 1962, see also TAYLOR 1962, WHITHAM 
1962) we have attempted to elucidate some of the non-linear properties of surface 
gravity waves in terms of what we have called the " radiation stress." Some of these 
non-linear properties have turned out to be unexpected (or at least to differ from 
properties widely assumed previously in the literature). For this reason a major 
part of the above mentioned papers has been used for a careful check of the results 
obtained by using the radiation stress concept, by means of detailed perturbation 
analysis to the required order of approximation. 

One effect of this approach (which we believe to have been necessary) has been 
that the papers are somewhat analytical, and the straightforward simplicity of the 
cOncept may have been partly obscured for some readers. It is the purpose of, the 
present paper to attempt a simple exposition, setting forth the nature and uses of 
the radiation stress. In many cases results will be stated without proof; readers 
dissatisfied with any of these are referred to the previous papers. (We shall refer 
to LONGUET-HIGGINS and STEWART, 1960, 1961, and 1962 as I, II and III). At the 
same time we shall extend some of our previous results for pure gravity waves so 
as to include effects of capillarity. 

In the first sections of the paper we describe a simple derivation of the radiation 
stress, both for gravity waves and for capillary waves. In the second part we shall 
describe the application of these results to a number of interesting phenomena 
observed in the oceans; in particular to wave " set-up," " surf beats," the steepening 
of short waves on adverse currents or tidal streams, and the generation of capillary 
waves by steep gravity waves. 

*National Institute of Oceanography Wormley, Godalming, Surrey. 
tInstitute of Oceanography, University of British Columbia, Vancouver, British Columbia, 

Canada. 
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PART I - -THE RADIATION STRESSES; A PHYSICAL DISCUSSION 

It is well known that  electromagnetic radiation impinging on a surface, or 
originating on a surface, produces a force which is referred to as the " radiation 
pressure." It  is perhaps less well known that a similar phenomenon occurs in the 
case o f  acoustic waves and of  waves on the surface o f  fluids (or indeed of  internal 
waves in a stratified fluid). In each case the force is principally in the direction 
o f  wave propagat ion.  It  is therefore not an isotropic one unless the waves themselves 
are isotropically distributed (as is the case for electromagnetic waves in an isothermal 
enclosure). In  fluid mechanics it has become customary to use the term " pressure " 
for the isotropic stress which figures in the equation o f  state. We have therefore 
considered it wise to coin the term radiation stress as a more general one which 
does not  carry any implication o f  isotropy:~. 

Qualitatively§, the following argument  may serve to introduce the c o n c e p t :  
It is well known (LAMa, 1932, Section 250) that surface waves possess momentum 

which is directed parallel to the direction o f  propagat ion and is proport ional  to 

Z 

/ / / / / ,  

C I q 
I I 
T 1 
I I ÷ - -  

I 

I I 

+po 
I I 
I I 

I t 
I t 
I I 

~///////////// "////////////~////,~'////////,~/////////////// 
Fig. 1. The momentum flux in a stationary fluid. 

the square o f  the wave amplitude. N o w  if a wave train is reflected f rom an obstacle, 
its momen tum must  ,be reversed. Conservat ion o f  momen tum then requires that  
there be  a force exerted on the obstacle, equal to the rate o f  change o f  a wave 
momentum.  This force is a manifestation o f  the radiation stress. 

A stress is by definition equivalent to a flow of  momentum.  The radiat ion stress 
may thus be defined as the excess flow of  momentum due to the presence o f  the waves. 
Let us consider in detail how this stress arises in gravity waves. 

1. Progressive waves in water o f  uniform depth 

Consider first an undisturbed body of  water o f  uniform depth h (Fig. 1). The 
pressure p at any point is equal to the hydrostatic pressure : 

:~It might be argued that "radiative s t ress"  would be grammatically more correct, but wc wish 
to retain the implied analogy to the well established term "radiat ion pressure " - - a n d  in any case 
the use of nouns as adjectives is widespread in English. 

~'tQuantitatively, in some special cases, it leads to difficulties and to errors, because some 
phenomena are incompletely described by the discussion in this paragraph. 
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p = --  pgz, (1) 

where p, g and z de.note density, gravity, and distance measured upwards from the 
mean surface. I f  we denote the above expression by P0 then the flux of horizontal 
momentum across any vertical plane x - - - cons tan t  is simply P0 per unit vertical 
distance. Thus the total flux of horizontal momentum between surface and bot tom 

( z  = - h )  is 
0 

f Po dz (2) 
- h  

Since this quantity is independent of  x, the flux of momentum across an adjacent 
plane (x + dx) just balances the flux across the first plane, and there is no net change 
of momentum between the two planes (Fig. 1). 

Now consider the momentum flux in the presence of a simple progressive wave 
motion (Fig. 2). The surface elevation z ---- ~ is given approximately by 

= a cos ( kx  --  at) (3) 

C 
) 
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Fig. 2. The  m o m e n t u m  flux in a progressive wave. 

where a is the amplitude, k = 2~r/wavelength and o = 2~r/wav¢ period. The particle 
orbits are roughly ellipses, with the major axes horizontal in general. (In deep 
water the orbits are circular). The corresponding components of  velocity are given by 

° "  } u --  sinh kh cosh k (z + h) cos (kx  - ot) 

ae sinh k (z + h) sin ( kx  crt). ~ (4) - -  _ _  [P 

w --  sinh kh 

A quite general expression for the instantaneous flux .of horizontal momentum 
across unit area of  a vertical plane in the fluid is 

p + pu 2. (5) 

In this expression the second term gu 2 represents a bodily transfer of  momentum 
pu (per unit volume) at a rate u per unit time (Fig. 3). The term pu 2 is evidently 
analogous to a pressure. Even if the mean value of u itself is zero, the mean value 
u s is of  course generally positive. 
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(Similarly, fluid crossing the plane x = constant possesses z-momentum 
associated with the velocity component w. A mean product such as pu~, which 
represents the mean transport of z-momentum across a plane x -- constant--or vice 
versa--is equivalent to a shear stress. In turbulence theory, such mean values are 
known collectively as Reynolds stresses, and it will be appreciated that the above 

ud t  

4" 

3e 

Fig. 3. Bodily t ransport  o f  momen tum across a plane x = constant .  In time t a volume udt 
per unit area has been transported across the plane. The momentum transported is thus pu udt. 

concepts are also similar physically to those used to explain the origin of pressure and 
viscosity in the kinetic theory ofgasses. If  due to turbulent fluctuations, the Reynolds 
shear stress is frequently parameterised by the concept o f "  eddy viscosity." Reynolds 
stresses also occur in waves, but in this case we must seek a different kind of 
description. For a discussion of the Reynolds stresses particularly appropriate in 
the present context, see STEWART, (1956)). 

To find the total flux of horizontal momentum across a plane x = constant 
we have to integrate (5) between the bottom z ---- -- h and the free surface z = ~ : 

f (p ÷ pu ~) (6) dz. 
--h 

We now define the principal component Sxx of the radiation stress as the mean 
value of the function (6) with respect to time, minus the mean flux in the absence 
of the waves, that is to say 

o 

Sxx=f(p+pu')dz--fpodz.. (7) 
- h  --h 
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Special care must be taken to take the mean value after integration, since the 
fluctuation of the free surface itself contributes to the momentum flux. We can 
see this best by separating the right-hand side of (7) into three parts, that is by writing 

S ~  = S ~  (~) + S ~  ~ + S ~  ~s) (8) 
where 

= ~ P u~ dz 
. 1  

- h  

0 

S~x~z) --- I (p --  Po) dz (9) 
--h 

L -  
t ~  

----- | P Sxz~ n) dz. 

0 

Consider the first contribution S~x ~1). Since the integrand is of second order, the 
upper limit z = [ may be replaced effectively by the mean level z = O, since the 
additional range 0 < z < [ contributes only a third-order term.' Now, both the 
limits of integration O, h, being constant, we can transfer the mean value to the 
integrand. Thus 

0 0 

f I- Sx~ ~1) = Ou ~ dz = Ou ~ dz. (10) 

- h  - h  

The contribution Szx ~x~, then, is effectively the Reynolds stress pu n integrated f rom 
the bottom up to the f ree  surface. It is obviously positive in general. 

Consider now the contribution Sxx (n~. As in equation (10), we may take the 
mean value inside the limits of integration : 

0 

Szx ~') : [ (P -- Po) dz. (11) 

- h  

In other words Szz (~) arises from the change in mean pressure within the fluid. Now 
the pressure ~ generally contains terms proportional to a 2, which can be found by 
a second order analysis. However, we do not need to calculate all the second-order 
terms explicitly since ~ may be found directly from a consideration of the vertical 
flux of  vertical momentum as follows. 

We know that the mean flux of  vertical momentum across any horizontal plane, 
which is p q- pw 2, must be just sufficient to support the weight of the water above it. 
Since the mean level of the water is at z = O, we have then 

p a t-Pw z = - P g z = p o  
o r  

--  Po : --  P w~ 

Thus ~ is generally less than the hydrostatic pressure P0. 
(11) gives 

(12) 

(13) 

Substitution in equation 
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0 

Sxx ~2~ ---- I ( - -  p ~ )  dz. (14) 
~ t  

-h  

This contribution is then negative in general. 
Combining equations (10) and (14) we have 

0 

Sxx  (1~ + Sx:~ (2j = ~ p (u z - -  w s) dz ~ O. (15) 
, d  

--h 

For, since the major axes of  the particle orbits are horizontal we have U s >~ w 2. 
After substituting for the velocities from equations (4) and carrying out the integra- 
tion we find in fact* 

pa s (r 2 h _ pga s kh  (16) 
S~x(x) q- S~x~s) : ½ sinh 2 kh  sinh 2kh 

having used in the last step the frequency relation 

~2 = g k  tanh ph  (17) 
for waves o f  small amplitude. 

In deep water the particle orbits are circles, and u s equals w~; the Reynolds 
stresses are isotropic in x and z. The positive contribution pu 2 from the horizontal 
Reynolds stress is then exactly cancelled by the pressure defect --  t:w ~ arising from 
the vertical Reynolds stress. On the other hand in shallow water the particle orbits 
are elongated horizontally, and w e becomes small compared with u s. Then 
p (u 2 - -  w s) becomes simply pu 2. Since, for the same reason, the kinetic energy is 
then just ½pu S per unit volume, we see that Sxx (1) + S~x (2~ is then twice the kinetic 
energy density, that is, the total energy density of  the waves. 

There remains the important contribution Sxx ~a~. This is equal to the pressure 
p integratedl" between 0 and ~ and then averaged with respect to time. It  is easily 
evaluated, for near to the free surface p is nearly equal to the hydrostatic pressure 
below the free surface : 

p = pg (~ -- z). (18) 

Thus the pressure at any point near the surface fluctuates in phase with the surface 
elevation ~. Substitution in the integral gives 

S~x~3) = ½pg~2. (19) 

So Sxz TM is generally positive and is in fact equal to the density of  potential energy, 
~hat is to say half the total energy density E : 

Sxx TM : ¼ pga 2 : ½E (20) 

*It may be noted that ( u  z - -  w z )  is independent of z, for using the incompressible, irrotational 
and progressive character of the motion we have : 

"t'When the free surface is below the mean level, the velocity field is assumed to be extended 
analytically up to the mean level. This device leads to the simplest algebra. If preferred, however, 
the upper limit of integration may be taken at any arbitrary fixed level in the fluid, within a distance 
of  order a from the mean level; the final result is the same. 
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where 
E z ½pga 2. (21 ) 

Altogether we have from equations (15) and (19) 

Sxx = Sxx (x~ + S~x (~1 + Sx~ (~ >~ 0, (22) 

or on inserting the values found in equations (16) and (20) 

2kh + ½). (23) 
Sxx ----- E \s inh 2kh 

The ratio 2kh/sinh 2kh lies always between 0 and 1. In deep water (kh >~ 1) the 
ratio tends to 0 and so 

Szz ~ ½E, (24) 

while the shallow water (kh < 1) it tends to 1 and so 

Sxz ----- ~E. (25) 

The transverse components of the radiation stress. Now let us consider in a 
similar way the flow of y-momentum (momentum parallel to the wave crests) across 
a plane y = constant. Denoting this by Suu we have corresponding to equation (7) 
the relation 

{ o 

Syu -=- f (p + pv') dz -- f po dz (26) 
- h  - h  

where v is the transverse component  of  velocity. Just as for Sxz we can consider 
Suu as the sum of three parts : 

Suu = Suu c~) + Suu (n) + Suu (s) 

where Svv Ix~ = f Ova dz 
- h  

0 

Suu ~2~ = f (P -- Po) dz 
- h  

Svv TM = / p d z  

o 

In gravity waves the transverse velocity vanishes everywhere and so 

SVy 111 : 0 ,  

while Syu (z) and Suu (a~ are equal to Sxx (z) and Szx (a~ respectively. 
Thus 

o 

/ - Suu (s~= ( - -Ow2~dz~0 ,  
- h  

Suu(3~ = ½og ~2/> 0. 

(27) 

(28) 

(29) 

(30) 

(31) 
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Substitution for w from equations (4) and use of the frequency relation equation 
(17) leads to 

kh 
Syy = E × sinh 2k-------h " (32) 

In deep water, w -~ : u i = ½ (u s + v ~ + w2); then Suy (z) is equal to minus the density 
of kinetic energy, which is --  ½E. Thus Syy (2~ just cancels Syv (a) and Syy vanishes : 

Syy : 0 (kh >> 1) (33) 

In other words, the deficiency in the mean pressure ~ arising from the Reynolds 
stress pw ~ is exactly cancelled, in deep water, by the surface deformation effect. 
In shallow water, on the other hand, the mean square vertical velocity w ~ is small. 
Hence Syy (2) is negligible and 

S y y  : S y y  (3) : ½E. (34) 

Lastly the flow of x-momentum across the plane y = constant is given by 

Sxy : f puv dz; 
LI 

--h 

there is no contribution from the mean pressure. Since uv vanishes identically 
we have always 

S~y = 0 (35) 

provided, of course, that the x-direction is the direction of waee propagation. If  
for some reason we choose a co-ordinate system at an  angle (other than a right 
angle), then there will be a non-zero shear stress Sxy. Its magnitude may be 
calculated by the ordinary tensor transformation rules from the two-dimensional 
tensor S, which in diagonal form is given by 

2kh ) 
S----E sinh2kh ÷ ½ 0 . 

kh 
0 sink 2kh 

(36) 

. Standing gravity waves 

Let us combine two progressive waves of equal amplitude a and wavelength 
2rr/k so as to produce a standing wave. The free surface is then described by 

= 2a cos kx cos ~t (1) 

and the components of velocity b y  

2a a cosh k(z + h) sin kx sin ot "~ 
u -- sinh 2kh 

(2) 
2a ~r sinh k(z + h) cos kx sin at. 

w -- sinh 2kh 

The surface elevation has antinodes at kx = mr (where n is an integer) and nodes 
ta kx = (n + ~)~r, as in Fig. 4. The two components of velocity fluctuate in-phase, 
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proportionally to sin ~,t, so that the particle orbits are straight lines. Beneath the 
antinodes the orbits are vertical, beneath the nodes they are horizontal, and at 
intermediate positions the orbits are inclined generally to the horizontal. The mean 
product uw and also the sheafing stress puw do not vanish in general, and are functions 
of  the horizontal co-ordinate x. The horizontal variation of pu--w supports a difference 
in mean surface level between node and antinode. We can use the radiation stress 
to calculate this difference. 

_ ~ _ . - J  . . . . . . . . . . . .  I . . . . . . . . . . . . . .  I . . . . .  

i 

I 

I 

i 
I 

/ / / / / / ,A/Il l / l l l / l l l /H/// / / / / / / /~// / / / / / l / / / / / / ,~//~V///) / / / / / / / /  
Fig. 4. Pm'ticle vel~ities in a standing wave. The components u and w fluctuate in-pha~, and 

the mean product ~-6 is non-zero in general. 

Consider the stress Sx~, representing the flux of horizontal momentum parallel 
to the x-axis. This is given by the general relation in equation (7), Section 1, (in 
which an overbar denotes the average with respect to time). As before we may 
consider the right-hand side as the sum of three parts Sxz m, Sxx t~, $~xt s~ given 
approximately by 

0 

~X~ (1) = f p ~  dz. 
- h  

0 

S=z ~2~ = f @ -- Po) dz 
- h  

Sz= ~s~ = f pdz. 

(3) 

0 

where P0 = - -pgz .  The third component Sz~ ~a~ is found to be 

S~z'3) = ½pg~2 (4) 

as before. In the second component  S== ~), the time-mean pressure ~ cannot be 
deduced quite so simply as in the progressive wave, being no longer independent 
of  x. However, it can be found from the more general relation for the vertical flux 
of vertical momentum : 

0 

g 
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in which the terms on the right represent the total weight (per unit cross-section) 
of  a vertical column of  water from z to ~ (Fig. 5); the terms on the left show how 
this weight is supported : the first two terms represent the mean flux of vertical 
momentum through the base of the column, while the third term is the resultant 
of the fluxes of  vertical momentum through the vertical sides of the column. Taking 

T 
p * p m  2 

~TZ vZ U - / ~ 7 / - / Y ,  / F'/Z/P/T/-/~/7/-/-/-~7//-/~ 7 / ~  ~2 ~C/7/7/~////7/~ ~ - 

Fig. 5. The balance of momentum in a vertical column of unit cross-section. 

--  P0 to the left-hand side and the other terms to the right, we have after integration 
with respect to z : 

o 0 o 

f Sxx ~a~ = pgh ~ -- P ~  + ~-x pffw dz dz'. (6) 

- h  - h  :" 

Adding this to Sxx ~x~ and Sx~ ~z~ we deduce 

0 0 0 

f  ff- Szz = pgh ~ + p (u 2 --  w s) dz + ~-x puw dz dz' + ½pg ~ .  (7) 

--h --h z" 

Now clearly Szx must be a constant, independent of x, for otherwise horizontal 
momentum would accumulate at some parts of  the wave*. Therefore Sxz is equal 
to its horizontal average, that is to say its average with respect to x over a wavelength. 
Among the terms on the right of  equation (7), the horizontal average of ~ is identically 
zero, while the horizontal average of the third term also vanishes by the periodicity 
(the momentum fluxes across two vertical walls a wavelenth apart just cancel). 
So we have simply 

0 

f - 

s~,~ - -  o (u z - w 2) dz  + ½og ~ (8) 
- h  

where an underbar denotes the horizontal mean value. Substituting from equations 
(1) and (2) we find 

i 2khff, kh ½)" (9) 
Szx -= pga ~ \sin-h + 

Comparison with equation (23) Section 1 shows that the radiation stress in a 

*This follows from the conservation equation for x- momentum: ~Sxx/~x + ~Sx.v/~y = 0, and 
the fact that Sxu = 0 in these co-ordinates. 
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standing wave is exactly twice the value in each progressive wave; it represents the 
sum of the stresses in the incident and reflected waves, as we should expect. 

The local mean level ~ can now be found from equation (7) since all other terms 
in the equation are known to the required approximation. In this way we findt 

= ask coth 2kh cos 2kx.  (10) 

This shows that the mean surface level is slightly raised at the antinodes and 
correspondingly lowered at the nodes. 

The various terms on the right of  equation (7) do not all give contributions in 
the same sense; some tend to raise the level at the antinodes and others to lower it. 
A simpler way to estimate ~ is to return to the momentum flux equation (5) and set 
z = 0. This gives us 

(10 + pwZ):=o = pg ~ (11) 

(the flux of  vertical momentum across the vertical sides of  the column is of  third 
order only). But on taking time averages in the Bernoulli equation 

P + ½P (uS + w~) + -~ ,=o 

we have also 
[p + ½p (u z + w~)]:=o = C, (12) 

where C is a constant, not necessarily zero. From equations (11) and (12) we deduce 

g ~ = --  ½ (~-------~z=o --  C. (13) 

The constant C is determined by the condition that ~ = 0. Substitution for u and w 
now gives us equation (10) as before. We note in particular that in deep water 
(kh ~ 1) equation (10) becomes 

= ask cos 2 k x  (14) 
and in shallow water (kh < 1) 

a s 

= ~ cos 2kx. (15) 

As the depth h diminishes, a and k being fixed, the changes in mean level which 
are represented by ~ become accentuated. 

The evaluation of the transverse stress Suu follows exactly similar lines; it is 
necessary only to replace ~ by v q ,  = 0 throughout. Hence 

0 

Suu = S~x --  f p ~  dz 
- h  

2kh + 1) sin s k x  
= S== --  pga 2 \sinh-2kh 

1 : ~pga2 Lsiff~ 2kh + [sin-h-2kh + _ _ 
(16) 

Hence Suu, unlike Sxz, is a function of x in a standing wave. Perhaps surprisingly, 

tThis result is in agreement with T,~am^v,a-mH and K~Lt.ER (1960) provided that account is taken 
of a misprinted sign in their equation (30). 
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it will be noted that the maximum values of  Suv occur at the nodes of the surface 
elevation. The mean value of Syu is given by 

kh 
Suu = pga2 sinh 2kh (17) 

which is just twice the value for the progressive wave (equation (32) Section 1) as 
we should expect. 

The radiation shear stress is given by 

Szu = Su~ = 0 (18) 
as in the progressive wave. 

3. Capillary-gravity waves 

The effect of  capillarity is equivalent to the stretching of a thin membrane over 
the surface with constant tension T per unit length. This modifies the previous 
calculations in the following ways. 

First, the tension produces a flux of x-momentum across the plane x = constant 
given by - - T c o s  8, where 8 is the inclination of the surface to the horizontal. 
The difference between this flux and the equivalent flux in. the absence of waves 
is therefore 

- - T c o s 0  + T = T ( I  --  cos O) = ½TO 2 (I) 

when 8 is small. Hence the mean additional flux of momentum due to the presence 
of the wave is equal to ½TO 2, which must be added to equation (7) Section 1. Since 
8 ~. ~U~x we have 

0 

Szz 
d .l \ ~ x !  

- h  - h  

For a progressive wave, the evaluation of Szz m and Sxz ~2) can be carried out as 
before, up to equation (15). However in calculating Szx ls~ the pressure p near the 
surface is to be decreased by an amount KT,  where K is the curvature of  the free 
surface, that is by an amount Tb~g/bx ~. This adds to Sxz c8~ the amount 

3 2 g 
--  T g - -  (3) 

bx a 

which, because the wave is progressive, is equal to 

For a progressive wave, 

i ~ ~i ~ (4) T \~x/ " 

, 2  
bx! = ~ a" (5) 

Therefore altogether we have 

t o ~ h Tk2~ (6) 
Sxx = ½ pga 2 ~g sinh ~ kh + ½ + -~ pg ! " 

Secondly, the stretching of the surface by the waves stores additional energy 
T per unit extension of  the surface, that is to say 
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T s e c 0 - - T ,  = ½T02 (7) 

per unit horizontal area. The mean density of potential energy is therefore increased 
by an amount. 

½ro- = ½r( q \bx! = ¼ T (8) 

Hence the total energy density E, being twice the potential energy density, becomes 

E = ~pg a2(1 4- Tk21. (9) 
pg / 

Thirdly, surface tension modifies the relation between ~r and k, so that 

cr2=gktanhkh. (1  + 7~--2] • (10) 
pg l 

On combining the last two equations with equation (6) we find 

2kh 1 S~ 33_~ (11) 
Szz-= E s i n h 2 k h 4 - 2 ( I  -ke) l  

where 
Tk ~ 

= - - .  ( 1 2 )  
Pg 

This of course reduces to equation (23) Section 1 when ~ = 0. In the opposite limit 
when E >. !, that is to say for pure capillary waves, we have 

S~z = E sinh 2kh + ~ (13) 

where 
E = ½Ta 2 k 2, (14) 

and in particular in deep water (kh > 1) 

Sz~ = a E ; (15) 
in the shallow-water case (kh < 1) 

S** = ~ E. (16) 

To find the transverse stress Suu we note that although the surface has no 
inclination in the y-direction nevertheless the corrugations of the wave system 
produce a greater surface area per unit distance in the y-direction and therefore 
more tensile stress. Hence equation (26) Section I is replaced by 

h 

S~y = f (p + pv2)dz -- f podz--  ½T~-~-~ (17) \~x/ 
--h 0 

This may be split up as before. Since v vanishes, Suu m ---- 0. Further since ~ is 
related to the kinetic energy we have 

0 

Sy~ ~) = (--  p ~ )  dz =- ½E ~sinh 2kh 1 (18) 
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as for pure gravity waves. The third component Svv (s) is equal to Sxx(s): 

Suu,s,=¼pga,(1 +2Tk ' ) .  
pg!  

However 

-½rPq'= 
so that the sum of the last two terms is 

\~x/ og / 
Altogether then 

kh 
Suu = E s i n h  2~k-h' 

the form of which is independent of  the surface tension. 

Svl, - -  0 

as for pure gravity waves, and in shallow water 

Suv = ½E. 

The radiation shear stress is unaffected by surface tension : 

Sxu : S~z : 0. 

In deep water 

09) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

P A R T  I1 A P P L I C A T I O N S  

We propose now to describe some of  the effects of the radiation stresses upon 
phenomena observable in the oceans. 

First we shall consider instances where the radiation stresses either generate or 
modify motions on a scale larger than the waves themselves. As will be seen, such 
effects are liable to occur where there are horizontal gradients of the radiation stresses. 
Such gradients may arise in a variety of ways. 

4. Wave "set-up " 

One of the most important of  these wave-driven effects occurs when deep water 
waves encounter a sloping beach. The waves shorten, steepen, and eventually break 
- -bu t  continue to advance with decreasing amplitude after breaking. The resulting 
changes in radiation stress lead to changes in the level of  the mean surface. 

In the steady state, the shoreward flux of momentum must be independent of  x, 
which we take perpendicular to the shore. Let us now consider the momentum 
balance in a slice of  water bounded by the (sloping) surface z ---- ~, the sloping bottom 
z - - - - - - h  and two vertical planes x----x0 and X = X o + d x  (see Fig. 6). I f  the 
bottom slope is sufficiently small that uw and w ~ at the bottom* are negligible, then 
the flux of  momentum into the slice, crossing the plane x = x 0 is 

° 

*By bottom, of course, we refer to the bottom of the irrotational flow. The boundary layer 
between this and the true bottom we assume to be thin and inconsequential. 
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T 

s** + f pg (~ - z) 
- h  

az = s , ,  + ½pg (~ + h)'. 

543 

(i) 

Across the plane x = xo 4- dz the flow out of the slice will be greater than this by 

~ [ s , ,  + ½pg (~ + h),] ax. (2) 

- ~ - - : - ~ - - r : : . , , - ~ " - : " ~ - ~ . ~ / - - : ~ -  - 

Fig. 6. The balance of horizontal momentum for waves entering shallow water. 

There is an additional flux of horizontal momentum due to the bottom pressure, 
since the bottom is not horizontal, amounting to 

pg (~ + h) dh ,ix. (3) 

(The validity of  the approximations used here is discussed in III). Momentum 
balance then gives 

dSxx d~ =_- 0 (4) 
dx- + Pg (~ + h)-d~ 

and so, since ~ < h, 
d~ 1 dS:cx 

- (5) 
dx 9gh dx 

Wave energy approaching a shore may either be reflected or dissipated to heat. 
If the beach slope is very abrupt, for example like a sea wall, almost all of  the energy 
will be reflected. Alternatively, the slope may be very gradual, so that almost no 
reflection takes place. 

Here we shall consider in detail only the case of slopes sufficiently gentle that 
reflection is of negligible importance. Two distinct regions can be identified : 
seawards and shorewards of the line of breakers. 

Seawards of the breaker line, in the absence of reflection, we can obtain an 
expression for the wave energy density as a function of water depth from the require- 
ment that the shoreward flux of energy be independent of the distance from shore, 
e.g. if we take the simple but important case of wave crests normal to the direction 
of beach slope : 

Eeg = constant. (6) 

As the depth h changes, cg changes and so E also changes. The radiation stress 
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Szz thus varies because both kh and E vary. It is shown in III that with these 
conditions equation (5) may be integratedt to yield 

a s k (7) 
= -- ½ sinh 2kh" 

In deep water, ~ vanishes, while in shallow water (kh < 1) we have 

a s 

= - 4-h" (8) 

Formula (7) and (8) express the wave set-up in terms of the local wave amplitude, 
wavenumber and depth. However by using equation (6) it is also possible to express 

as a function of the (constant) wavenumber ko and amplitude a0 in deep water, 
together with the local depth h, so that we gain an idea of the dependence of ~ on 
the depth h for a given wave train. Thus if we substitute in equation (6) the known 
value of the group-velocity : 

[ 2kh ] 
ca -:- 2-k ~sin--ff--2kh q- 1 / (9) 

a2a [. 2kh ) (10) 
2k \sinh 2kh q- 1 ----- constant -- a°s ~ 2k0 

and so 
2kh 

a 2 k = a o 2 k o ( ~ ) S ( s i n - f f ~ k h - b l )  -1. (11) 

But from the frequency relation equation (17) Section 1, 

k/ko ----- coth kh. (12) 
So we have from equation (7) 

coth s kh (13) 
: -- ½ ao 2 ko 2kh + sinh 2kh" 

Since fro.m equation (17) Section 1 
~r s h 

kh tanh kh -- --  ko h (14) 
g 

it follows that we may write 
: -- ao s ko f (ko  h) 

where f is a function solely of the non-dimensional depth ko h. The form of  f is 
shown in Fig. 7. It will be seen that as the depth diminishes, the depression of the 
mean surface level increases very sharply. In shallow water, we have from equa- 
tions (13) and (14) that 

f "~ ~ (kh) -a "~ ~ (ko h) -'l '  

in agreement with equation (8), since in shallow water a s oc h-~ by energy conservation. 
It will be noted that as h decreases the mean water level is actually lowered by the 
presence of unbreaking waves, i.e. there is a " set-down." This is because, with no 
loss of energy, the radiation stress steadily increases. 

"l'Alternatively equation (7) can be derived from equation (13) Section 2, by substituting for 
u and w from equations (4) Section 1. 

we obtain 



Radiation stresses in water waves; a physical discussion, with applications 545 

On the other hand, inside the line of  breakers the wave energy decreases shore- 
wards leading to a decrease in radiation stress. No  adequate theory exists for this 
situation, but we are nevertheless able to draw some approximate conclusions using 

a semi-empirical argument. 

tOO 

F (~/) 3 

0 3  

I l I I 1 1  

Ol 1 I I I I II 

00I 003 0.1 
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I l I I I I  

• (TWICE) 

O3 

1 

Fig. 7. (from LONGUET-HIOGINS and STEWART, 1963). The non-dimensional form of the wave 
set-up outside the breaker zone, compared with the observations of SAVILLE (1961). 

The theory of similarity suggests that the amplitude of a breaking wave remains 
an approximately fixed proportion of the mean water depth, i.e. 

a = ~h (15) 

where 0t is a constant of  proportionality. Although the waves are now far too steep 
for our second-order treatment to remain valid, it is probably a not unreasonably 
inaccurate assumption to continue to assume that S z x  = ~ E.  This gives 

S~x = ~ pga 2 = ~ pg ~2 h ~. (i 6) 

I f  we insert this expression in equation (5) we get 
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(17) 
dx dx 

The observations of  S^VILLE (1961) confirm that a rise in level starts to occur 
at about  the point where the waves first break (Fig. 8). Moreover in the breaker 
zone it has been shown that d~]dx was roughly proportional to dh/dx, with a constant 
of  proportionality equal to about - - 0 - 1 5 :  (LONGUET-HIGGISS and STEWART, 
(1963)). We therefore estimate ~ to be about 0.32. 

4O " 

30  feet 

'~¢;)~fe Del)th, IO0 feet at Beach Toe 
Period = 9.25 seconds 
Period, 15.O second= - -  - -  

~" Vertical Tick Marks Indicate 
" ~  . . , Location of Depth, l .3  20  I k 

= I0 feet--~,~ ~,~ \ i  

-~o!- 

-2O[ 
-21)0 ÷200 400 GO0 800 I000 1 2 0 0  1400 1600 

{SWL.) 

Distance Seaward S.W.L. (ft) 

Fig. 8. (from SAVILLE, 1961). Observed wave set-up on beaches of different slope. The vertical 
tick marks the breaker point. 

M u s k  (1949) observed that swell tends to break when the depth is about 1.3 
times the crest to trough height, i.e. 

h = 1.3 × 2a. (18) 

This corresponds to ~ = 0.39, so the two sets of  observations are entirely consistent. 
The importance of  waves in producing set-up seems only recently to have been 

realized. Contemporary with our work, contributions to the topic have been made 
by DORRESTE1N (1962), FORTAK (1962) and LUNDGREN (1963). HARRIS (1963) points 
out that since waves are subject to modification by refraction and diffraction, 
variations in wave set-up are to be expected even over short distances. He describes 
the observed variations in the height of  storm surges to this effect. Since these 
variations may amount to " two to four feet in the peak water level within a distance 
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of half a mi l e "  it can be seen that wave set-up produces very far from negligible 
contributions to storm surges. 

Another practically important effect of wave set-up is its influence on the apparent 
" t i l t "  due to wind stress on the Surface of an enclosed body of water. Measurement 
of such tilts is one of the standard techniques for determining the magnitude of  
the wind stress. In his well-known critical article on " Wave Generation by Wind," 

U~SELL (1956) speculated upon the possible importance of " radiation pressure" 
effects upon measured water levels. 

As we have seen, such effects do occur, and are important. They may well 
account for much of the variability and unreliability which have beset efforts to 
determine the laws governing wind stress upon water. 

5. Groups o f  waves advancing in deep water 

Horizontal gradients of  radiation stress can also arise when the waves have 
amplitudes which vary in time, and therefore in space. The simplest illustrative 
example is one where we have sinusoidal wave trains of  nearly the same frequency 
and wavelength propagated in the same direction, resulting in the formation of 
"g roups  " of waves. 

We shall assume that the groups are such that the energy density, rather than 
the envelope of the amplitude, varies sinusoidally. By this artifice we avoid some 
problems with non-linearities which are irrelevant to our present purpose. The 
energy density is then given by 

E = E  0{1 + b c o s A k ( x -  cet)} (1) 

where Ak is a measure of t h e "  band wid th"  of wavenumbers making up the groups, 
which propagate with speed cg. 

Let us assume also that the depth h is large relative to the lengths of the individual 
waves, but not necessarily large relative to the length of the groups themselves, i.e. 
kh > 1, but not necessarily Akh > 1. Accordingly, the radiation stress will be 

Sxx = ½E0 { 1 + b cos Ak  (x  --  c a t)}. (2) 

We may now divide the depth into two regions : an upper one with thickness 
D ,-~ k -x, in which virtually all of  the radiation stress is concentrated, and a lower 
one which responds only to any variations in mean surface level produced by the 
radiation stresses. The problem is now analagous to that which arises in the study 
of  flow induced by horizontal variations of  surface tension. 

Within the upper region, the horizontal momentum equation is : 

3t - -  D9 3x g ~ ,  (3) 

where u and ~ are associated with the groups, i.e. the average is over one wavelength 
of  the individual waves. Since D is small, it is not unreasonable to assume that 
the first term on the right of  equation (3) is much larger than the second. We shall 
be able to check the validity of this assumption post  hoc. We therefore put 

D ~U 1 bSxx 
3-t : 9 bx (4) 
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Now if we integrate the equation of continuity over our upper region, we find 

t0D = - -  D b~ b~ bx + ~ (5) 

where ~0D is the mean vertical velocity at the depth D, the mean being taken over 
the individual waves as with u and ~. These last two equations may be combined 
to give 

~wo ~2 ~ I ~2 S ~  
- -  ( 6 )  

bt bt ~ p bx a 

Equation (6) may be interpreted as follows : variations in the radiation stress 
produce convergences in the upper layer. Continuity is preserved by pushing water 
up, thus producing variations in the surface elevation, and by pushing water down, 
resulting in an induced flow in the deeper region. Our equations are closed by the 
fact that these deep induced flows must be dynamically driven by pressure gradients 
produced by the variations in surface elevation. 

The flow in the deep region is a periodic irrotational flow and so must be of 
the form of  equation (4) Section 1, and derivable from a velocity potential : 

Acg cosh Ak (z + h) sin Ak (x --  cg t). (7) 
--  sinh kh 

bCg 

~x:E 

h 

7 / / / / ~ / 7 / 7 / / / / / / / 7 / / / / / / / / /  
Fig. 9. Groups of waves in deep water. The radiation stress acts in a shallow layer near the 

su r f ace .  

For this flow we have, at z = - -  D --  0, two requirements on the pressure ~o : 
First, it must be given by the hydrostatic equation, 

1 
_ ~ = g (~ + D) .  (8) 
p 

Second it must satisfy the linearized Bernoulli equation. 

b~;D + 1 ~D -- gD = 0. (9) 
bt p 

Together, these conditions give us 

= - ~1 ~ i "  (10) 

We may now substitute for t0o, ~ and Szz in equation (6), remembering that 
D A k < I  : 
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_ Acg ~ + A_ Ak  cg 4 coth  hAk := - -  Eo b (11) 
g 2p 

Since kh  > 1,  co  9 = g/4k ,  so we can write equat ion  ( 1 1 )  as 

A = E o bk  (12) 
2pg {1 - -  ( A k / k )  coth h A k }  

We are now able to find 4; f rom equat ion (10) 

- -  Eo b Ak sin Ak(x - -  c o t) (E - -  Eo) ~ (13) 
--  2pg {tanh h A k  --  A k / k }  = - -  2pg {tanh h A k  - -  A k / k }  

Since E = ½pga 2, where a is the individual  wave ampl i tude,  

ca, _ %2) A k  ( 1 4 )  ~ = -  

This expression is in agreement  with the result (3.19) of  III ,  which was ob ta ined  by  
per tu rba t ion  analysis. We  note that  ~ is always out  o f  phase with a ~, tha t  is, the 
mean level is depressed under  the largest  waves. 

Equa t ion  (14) simplifies to some extent  at  the two extreme eases hAJ¢ < 1 and  
h A k  >~ 1. F o r  h A k  < 1, when the group  length is great  compared  with the depth,  
we find 

__ (a  2 - -  a02) k 

4kh - -  1 (15) 

or, since we have a l ready assumed kh  ~ 1, 

--  (a~ - -  a°~) (16) 
4h 

F o r  hAk > l ,  i f  we assume A k / k  < l ,  equat ion (14) becomes 

----- - -  ¼ (a ~ - -  a02) Ak. (17) 

To get a numerica l  o rder  o f  magni tude ,  we might  take  (a 2 - -  a02) to  be a b o u t  
10 m 2. I f  the individual  waves are  abou t  100 m long,  and  the groups  a b o u t  1 k m  
long, we have k - -  0.06 m -x, Ak - -  0-006 m -1. In  deep water  (h >t 500 m) this  
results in a surface depression of  abou t  1.5 cm, while the  water  100 m deep the 
depression would  be 2.5 era. These figures, of  course,  inere, ase rapidly  as  the  
indiv idual  wave ampl i tude  increases*. 

*We are now in a position to make tbe post hoc. check of our assumption that 
b~ < I ~ Sxx 

e~ -~-6~x" 
Since Ak .< k and kh ),  1, 

~(__. (a z - aoq (~Lk) z " 
~x=- 4tanhhAk 

Also 

~S~ ,~ ½ (E -- Eo) Ak = t Pg (a ~ -- a. ~) ak. 
3x 

Then 
b(, ] 1 bSx= . D Ak 

g b x / p D  bx ": tanh hAk 
f0  (1), hAk  > tt'~ 

Since tanh hAk = / 0  (hAk), hAk < ½J 
our assumption is seen to be justified. 
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It is worth noting that the frequency of the induced motions is the group frequency 
- - in  practice periods are of  the order of one minute. This may be important since 
often it is assumed that there is little motion in the ocean with such periods, and 
buoys are sometimes designed with a natural period of this order, in the hope that 
their free oscillations will not be excited. 

6. Wave groups in shallow water; surf beat 

Let us now consider the situation when waves enter water which is shallow 
enough so that kh is no longer large compared with unity. In this case we can no 
longer assume that the radiation stress acts in a thin layer near the surface. On the 
other hand since the length of  the wave groups is certainly large compared to k -1 
we may certainly assume that the groups are long compared to the depth, i.e. that 
hAk:< 1. 

_ d,Sxx 
d~ .Ig-._ 

j F ~ X  " 

/ Z ~ . / Z - / ~ / ~ / Z Z ~ / / / / / / / / / 4 ~ f / - / - / y Z Z -  

Fig. 10. Groups of  waves entering shallow water, when the wavelength is no longer small 
compared to the depth. 

Figure 10 illustrates the situation. Groups of  Waves (whose energy need not vary 
exactly sinusoidally) are propagated to the right with the group-velocity cg. The depth 
h is at first assumed uniform. In regions of  high energy the radiation stress Szx is 
greater than in regions of  low energy. Hence there is a tendency for fluid to be 
expelled from under regions of  high energy density. The medium responds to the 
stress as to a horizontal force -- bSxz/~x per unit distance, progressing with the 
group-velocity cg. 

The response of  the system can be calculated as follows. The additional mean 
pressure due to a displacement ~ of  the free surface is pg~. Hence if M is the mean 
horizontal momentum we have for the rate of  change of momentum 

~M 
-- (Sx.  -t- pgh~). (1) 

bt ~x 

On the other hand by continuity we have 

(p~) 3M (2) 
bt ~x 

Since the pattern progresses with velocity ca, we may replace blot by -- cg b/~x in 
each equation, giving 
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b M  ~ ~ bSzx  
c¢ ~-~ + pgh ~-x = bx  

+ c ,  o = o. 

(3) 

Solving these simultaneous equations for b M / b x  and b~/bx and integrating with 
respect to x we find 

cg Szx + constant "~ 
M --  gh - -  ca ~ (4) 

pC = - -  gh Szz_ ca ~ + constant. 

Now the group-velocity cg cannot exceed the free-wave velocity v /gh  of the long 
waves, so that (gh - -  cg z) > 0, i.e. the response of the free surface is in the same 
sense as if the group pattern were stationary (cg = 0); below a group of  high waves 

tends to be negative, and below a group of lower waves it is relatively positive. 
Since the groups are long, the mean pressure ~ on the bottom fluctuates in the same 
way as pg~, i.e. it tends to be negative under the higher waves. This is in agreement 
with some recent observations in swell off the Californian coast (see HASSELMAN, 
MUNK and MACDONALD 1962). 

In very shallow water, ca approaches ~/gh and hence the denominator in equation 
(4) becomes small. Since in that case 

cg ~ - -  gh [1 -- (kh) 2] (5) 
we have 

"--4- S~x _ 3ga 2 (6) 
poe h ~ 2~2 h ~ 

If we now suppose that the depth is not quite uniform, but changes with x so 
slowly that dynamical equilibrium has time to be established, then, with no loss of 
energy, aZoc h-~ and so ~ c~ h -'/ ' .  Thus there will be a tendency for the displacement 

to be amplified as the waves enter shallower water. 
It is possible that such an effect accounts for the occurrence of " surf-beats," 

as observed by MUNK (1949a) and TUCKER (1950). These are waves of long period 
associated with groups of high waves entering shallow water. TUCKER (1950) showed 
that in his observations there was a correlation between the surf beats at a point 
some way off-shore and the envelope of the incoming swell; but with a time-lag 
of a few minutes. The time-lag just corresponded with the t ime required for the 
swell to be propagated into the breaker zone and for the associated long wave to 
be reflected back as a free wave. If  we suppose that, at some point shorewards of 
the wave recorder, the swell is destroyed by breaking but that the longer waves 
associated with the groups are reflected back as free waves (with relatively little 
attenuation in amplitude) then it seems possible to account for Tucker's observations. 
Tucker found that a group of high waves tended to be associated (after a time-lag) 
with a negative pressure pulse, which would accord with the present hypothesis. 

7. Interaction o f  waves and currents 

In the theory of elasticity and rheology, where stress is measured in force per 
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unit area, it is well known that the product stress times rate of strain yields power 
per unit volume. Similarly, in our case of radiation stress (which is a force per unit 
length) stress times rate of strain is power per unit area. We expect that if a fluid, 
upon which are surface waves, is strained due to some other flow, the radiation 
stress due to the waves will interact with the rate of strain due to the other flow. 
In general, we argue that the straining flow must do work against the radiation stress. 
Energy must then be lost by the straining flow. In many cases we have been able to 
show that this energy is transferred to the waves. Indeed, if the sign of the interaction 
is changed, so that the stress does work against the rate of strain there seems to be 
no source for the energy added to the straining motion other than that residing in 
the waves. It thus seems legitimate to argue that the energy transfer will always 
be to or from the waves. 

u w u 

l 
(a) 

u u 

Co) 
Fig. 11. Waves on a non-uniform current (a) with upwelling from below and (b) with horizontal 

inflow from the sides. 

Interaction with irrotational plane strains. The simplest motions to deal with 
analytically are irrotational plane strains. They also serve as valuable examples of 
the nature of  the interaction phenomenon. 

Let us consider first a situation in which a contraction of  the surface along the 
x-axis is combined with a vertical extension, i.e. 

~U ~W 
- -  ( 1 )  

3x 3z 

where U and W are the mean straining velocities in the x and z directions (Fig. 11). 
For the moment we shall assume that the mean motion is not time-dependent. 
The situation we envisage is approximately that which occurs when a stream flows 
along a bed of fixed width but varying depth. The only component of radiation 
stress which is of  consequence in this flow is Sz~. It interacts with the rate of  strain 

U]3x, which describes an extension of  the surface, in such a way that work is done 
by the stress at the rate 

3x 
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per unit surface area. It seems that the only source of energy for this work is the 
energy residing in the waves. Since wave energy is propagated with celerity e 0 and 
transported with velocity U, we postulate a " c o n t i n u i t y "  equation for wave energy 
in the form* 

[E (U + co)] -- Sxx ~- t/ = O. (3) 
bx 3x 

We also have another general expression which might be called an expression 
for " conservation of phase." It states that in the steady state the rate at which wave 
crests enter a region must be equal to the rate at which they leave. Another way of 
stating it is that the apparent frequency observed is independent of the position of 
the observer. This general expression is 

(U + e) k = constant -- e0/% (4) 

where the subscript 0 refers to some position, perhaps hypothetical, where U -- 0. 
Since when the depth is known, e and c u are determined by k and Sxx by E, 

evidently equations (3) and (4) are sufficient for the determination of E as a function 
of U. In the general case this relation is analytically rather complex, but all the 
important features may be demonstrated by the example of  the deep water case, 
which is simple. In deep water, we may assume 

c : - ( g / k )  ~-, oo-: ~e, Szx = ~E. (5) 

Thus equation (3) becomes 

[ E ( U  T ~c)] ÷ ½E 3U O. (6) 
bx 3x 

Equation (4), in view of (5), can be expressed as 

[u +c] =0 (7) 
or 

c ~c ~ U 
~x = ~2-~ ~e ~x" ~8~ 

Equation (6) has the exact integral 

E (U + :~c) e = constant =-- E0" .~c0 ~, (9) 

as may be demonstrated by differentiating : 

c ~ . [ E ( u  + ,~c)] + ECu + ~c) 3c 
: 0. (10) 

I f  equation (8) is substituted into (10), we obtain the differential equation (6). The 
corresponding variation in amplitude a, oc E t, is shown as a function of U by curve 
(l) in Fig. 12. The result (9) was also obtained by perturbation methods in II. 

Laterally com,erging current. Another illustrative example of waves superimposed 
on a plane strain occurs when the mean motion is two-dimensional and horizontal 
(Fig. 11b). Such a situation may arise, for example, at a river mouth. For simplicity, 

*For a further justification of this equation see Whitham (1962). 
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let us take the waves moving in one o f  the directions of  principal rate of  strain, 
so that if they are propagat ing in the x-direction 

~ U +  b v  0 (1[) 
bx ~y 

V being the mean motion in the ),-direction, which is parallel to the wave crests. 

¢ 

¢l o 

( i )  

~ . L  , 1 I I I I 1 L I L , [ I ¢ O 15 I I I I 1 I I I I 
- ~  .~S O Q  0 2 5  O T S  i O 

U / c °  

Fig. 12. ffrom LONGUET-HIGGINS and STEWART, 1961). The relative amplitude of waves 
propagated on a steady, non-uniform current U, (I) with upwelling from below (2) with 

horizontal inflow from the sides. 

Equat ion (3) must now be modified to take account  o f  the lateral divergence o f  wave 
energy and the work done by the lateral radiation stress Suu, and so becomes 

b [E(U + cg)] + b (EV) + bY bY b-~ ~} s.~ ~ + st/t/-~, = 0. (~2) 

If  we assume bE~by = 0 and employ equation (I I) this simplifies to 

bE U + E bca + (Sxz --  St/u) b _ U = O. (13) 
bx bx bx 

If we once more consider the simple deep water case, then Suu -- 0 and equation 
(8) is valid. Equat ion (13) can then be integrated, as demonstrated in II, to obtain 

E (If  + ½c)/c = constant  -- E 0. (14) 

The corresponding change in amplitude (oc E t) is shown as a function o f  U by curve 

(2) in Fig. 12. 
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At the other extreme of very shallow water we have : 

cg = c : constant, Sxx -- Svv = E. (15) 

It is then readily seen that (13) can be integrated to 

E ( U  ÷ c) = constant : k,o co. (16) 

It will be noted that in every case so far considered, E must diverge when 
U = --  cg. In practice, of  course, the waves break. This result is to be expected 
since it is merely a statement of  the fact that no energy can be propagated upstream 
against a current faster than cg. Apart  from this common property, it can be seen 
that the behaviour of  wave energy differs from case to case. 

TAYLOR (1962) has discussed a slightly different case, where a standing wave 
is compressed longitudinally, thus both reducing the wave length and increasing 
the frequency. There also work is done against the radiation stress. Taylor shows 
that in this situation, too, the energy used in the compression appears as increased 
wave energy. 

Waves  on a shear f low.  We may use the same kind of arguments to discuss the 
interaction of  a wave train with a shear flow. In this case, however, the waves will 
generally be refracted, so that it is not possible to use the direction of wave 
propagation as a fixed Cartesian co-ordinate direction. It is therefore necessary 
to put our radiation stress tensor into general, non-diagonalized form. 

To keep the discussion as simple as possible we shall again confine ourselves 
to the case of  waves on deep water. The diagonalized form of the radiation stress 
tensor is then 

S = ~E(10 00). (17) 

For a co-ordinate system orientated at an angle 0 from the direction of propagation, 
the tensor transformation formula gives us 

S = ~ E I  c°s20 c° s0s in '01  (18) 
" \ c o s 0 s i n 0  sin ~0 I "  

The rate-of-strain tensor for the mean flow is 

?U (~U 

½ + (19) v = ( b u  ) " 

Equations of  the tbrm (3) and (12) may thus be generalized to 

bE 
÷ V.  [ E ( U  ÷ cg)] + S : v = 0. (20) 

3t 

As a simple illustrative example we choose the case of  a mean flow with velocity 
in the y-direction only. I f  we assume steady state (except for the periodic motion) 
we have 

U = O, V = V ( x ) .  (21) 

Putting in the appropriate value for the radiation stress, we get from (20) : 
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[ E "  ~,c cos 0]  -.- .t,E ~V cos 0 sin 0 -~ 0, (22) 
~ x  " " ~x 

since the component of cg in the x-direction is ~c cos 0. 
In order to solve (22) we require some relation between V and c. One is available 

from the " wave kinematics," because the wavenumber in the )'-direction must be 
independent of x. Otherwise 0 would be a function of y. Thus 

k sin 0 --- constant -- k0 sin 00. (23) 

As is shown in 11, we are then able to integrate (22), getting 

E cos 0 sin 0 =- constant = E0 cos 00 sin 00. (24) 

In less special cases, (20) can be integrated numerically. This was the procedure 
adopted by HUGHES and STEWART (1961), who studied the interaction of a wave 
train with a stable Couette shear flow. They found that their experimental observa- 
tions were in quite good agreement with numerical calculations made from (20). 
However, HUGHES and STEWART were unaware of the full effect of capillarity on the 
radiation stress. (The influence ot capillarity is given for the first time in the present 
paper). Since their waves were short enough to be influenced by surface tension, the 
actual effect of the radiation stress is greater than that which they assumed. It is 
noteworthy that the observations of HUGHES and STEWART indicated a somewhat 
greater influence of the radiation stress than was obtained from their calculations. 

It should be emphasized that the changes in wave energy which are due to the 
non-linear interaction of waves with shear flow are of the same order of magnitude 
as those which occur due to the geometrical focussing effects produced by the currents. 
At first glance this may seem surprising, since the radiation stresses are a second order 
phenomenon, while the focussing effects appear to be first order. The fact is, however, 
that the focussing effects are first order in the energy, i.e. of second order in the 
amplitude and comparable with the radiation stresses. 

8. Non-linear interaction between wares 

In recent years there has been a considerable amount of interest shown in the 
problem of the non-linear interaction of surface waves. For some aspects of the 
problem, in particular in the study of the irreversible redistribution of energy over 
the wave spectrum (PHILLIPS, 1960; HASSELMANN, 1962, 1963), the interaction must 
be taken to the third or higher order. For such purposes the radiation stress concept 
is not particularly useful. 

On the other hand there are cases where the radiation stress idea is valuable 
conceptually and, in some limiting situations, sufficient for calculations. These 
cases are ones in which one wave is much shorter than the other with which it 
interacts. Then it becomes reasonable to treat the long wave as a straining motion 
interacting with the radiation stress due to the short waves. 

As a concrete example, we consider here the case of the long waves upon which 
are superimposed waves short enough that they are uninfluenced by the bottom. 
Most of the important features are illustrated by this example. 

In any non-linear interaction between one Fourier component of wavenumber 
and frequency k 1, ~r 1, and another specified by k2, o.,, the second-order terms describe 
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the generation of components ka ~ k2, ol ~ ~r2. However, if one of the wave 
numbers, say kl, is very much greater than the other, then the generated wave 
numbers will all be in the neighbourhood of kl. The second-order interaction can 
thus be considered to describe the influence of the long waves on the shorter ones. 
For the reverse interaction of the shorter waves on the longer ones, higher order 
terms are needed. 

If both short and long waves are progressing in the same direction, the problem 
is two-dimensional. Equation (20) Section 8 then becomes 

~ED.t + DxD [ E ( U  J-, ca) ] +SzxDUbx = 0  (1) 

where we interpret E and cg as pertaining to the short waves and b as the horizontal 
component of the orbital (particle) velocity of the long wave. 

The motion due to the long wave will be described by (4) Section 1. We are 
concerned only with motion near the surface, so that the horizontal and vertical 
velocities are given by 

U = A a  2 c o t h k 2 h c o s ( k  2 x - a z t) -] 

W = A a 2 sin (k2 x - -  a 2 t) . ~  (2)  

The horizontal variation of E and ca arises only because of the interaction, and 
so is irrelevant to (1) if the equation is taken only to the lowest order. Since the 
short waves are uninfluenced by the bottom, Sxx = ~-E. Hence (1) becomes 

DE_ + ~ E D - U = 0  (3) 
~t Dx 

or, since U is due to a wave motion and so b/bx = -- (1/c2) b/bt, 

~E 3 E b U  
® -  -- 0 (4) 

bt 2 c2 ~t 

where c2 is the phase speed of the long wave. This may be integrated to give 

E ( 1 - - ~ U ) = c o n s t a n t = E 0  (5) 

or, considering that U < c2, 

E = E0 [ 1 + { A k2 coth k2 h cos (k2 x -- ~2 t)]. (6) 

Although (6) describes the energy variation, the noticeable feature will be the 
amplitude variation. As shown in I, here the relation between amplitude and 
energy is not quite so straight-forward as it is in most cases. The water surface 
upon which the short waves are running is subject to vertical acceleration due to 
the presence of the long wave. This results in a distribution of E between potential 
energy and kinetic energy which differs from that which obtains in the absence of 
the vertical acceleration. 

The question is discussed in some detail in I. In the present paper we shall be 
content with an outline. To an observer moving in an (accelerated) frame of 
reference tied to one point on the surface of the long wave, the apparent value of 
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g is g' = g -I- ~ W/bt.  To this observer, the short wave energy is equally distributed 
between kinetic and potential, i.e. 

K.E. '  --- P.E. '  ----- ¼ pg' a s (7) 

where a is the short wave amplitude. An observer in an inertial frame of reference 
finds himself in agreement with the accelerated observer as to the kinetic energy, 
but calculates a different potential energy. Thus 

K.E. = tPg' aZ-~ K.E.'  "~ (8) 

P.E. -- ¼pg a 2 ~ P.E. '  3 
so 

E = K . E .  4 - P . E . =  ~pga'  ! 4 - ~  • (9) 

Since ? W/~t <4 g, we can write this as 

UI I- ' 
a ~ \ p g t  4 g  5 t  " 

After using (2) and (6) this becomes 

a = a o  ! 4 - A  ~ k a c o t h k ~ h 4 -  4 g f C O s ( k 2 x - - e 2 t )  . (11) 

if the long waves are also effectively in deep water, the expression simplifies to 

a ---- a0 [1 4- A/,'2 cos (ks x -- ~r~ t)]. (12) 

It will be noted that the maximum small-wave amplitude occurs on the crests 
of the long waves. Such amplification of short waves on the crests of the long wave 
is a matter of common observation. 

These effects may be of some consequence in the spectrum of wind-raised waves. 
It is generally considered (PHILUPS, 1957) that on a wind swept sea all waves shorter 
than a certain length are " saturated." That is, they possess as much energy as 
they are statistically able to. If they gain more energy, wave breaking becomes so 
widespread in both time and space that the energy rapidly reverts to the " saturated " 
level. 

We see from the above discussion, however, that for waves riding on the backs 
of longer waves peak amplitudes occur at the crests of the longer waves. It is there 
that the shorter waves break, and there that the overall energy of these shorter waves 
is controlled. Since the average short wave energy will be less than that at the crests 
of the long waves, it seems entirely possible that the average energy of  short waves 
may be somewhat less when they are superimposed upon longer waves than when 
the long waves are absent. 

Long waves develop only after high winds have blown for long times over long 
fetches. If  we envisage a situation where the wind speed increases to a high level 
and then remains constant for some time, it seems possible that the spectral energy 
density corresponding to the short waves will first rise to the saturation level and 
then actually decrease as the long waves grow to significant amplitude. Similarly 
it seems possible that the short wave energy may be less at longer fetches than at 
shorter fetches. 
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Another point is worthy of consideration : The excess energy in the short waves 
at the crests of the long ones must have been gained at the expense of the long waves. 
I f  these short waves then loose their energy due to breaking at the crest, it is no 
longer available to be fed back into the long waves during their next half cycle. 
The net result is a mechanism for the dissipation of long waee energy. This has been 
discussed in detail by PHILLIPS (1963). A similar, and equally important, mechanism 
involving capillary waves is described in the next section. 

9. Damping of gral'ity waves by capilla O" wal'es 
Capillary waves on the surface of the sea can be generated by at least two 

mechanisms. One is instability of  the shearing flow of wind over water, as described 
by MILES (1962). Capillaries generated in this way can occur, in theory, on any 
part of  the sea surface which is exposed to a sufficiently strong wind. A second 
cause of capillaries is the sharp curt,ature near the crests of steep gravity waves 
which produces a local accentuation of the surface tension forces. If the waves 
are progressive, these forces act like any other travelling disturbance to produce 
capillary waves ahead of the disturbance. Capillaries generated this second way 
are observed only on the forward face of steep gravity waves; they may occur in 
the absence of wind. Their steepness has been shown theoretically to be given 
approximately by 

2 7 r e x p ( - -  Pg ) 
3- 6-T-K ~ (1) 

where K is the maximum curvature at the crest of the gravity wave (LONGUET-HIGGINS, 
1963"), a result in agreement with observations made by Cox (1958). 

Whatever their origin, however, capillary waves will subsequently undergo 
rapid modification from two causes : damping by viscosity and non-linear inter- 
action with the surrounding velocity field. The interactions with gravity waves 
may be especially strong owing to the relatively short wavelength of the capillaries. 

Consider pure capillary waves, of  energy density E and wavelength 2~r/k, riding 
on the surface of a two-dimensional flow U = (U, V, W) where V -  0 and U, W 
are independent of y. We suppose that x is measured along the surface of the free 
gravity flow, and z normal to it, and we assume that the curvature of  the mean 
surface is always small compared to k. Now the rate of dissipation of  energy by 
viscosity in a capillary wave is 4vk2E (LAMB 1932, Section 347). Hence, as in Section 
7, we have the following equation for the capillary wave energy : 

3U 
,~E ~ [E (U + cg)] ÷ Sx~ ~x + 4vl"2E ~= 0. (2) 
~ + ~S- 

Since for capillary waves 
c o = ~ c ,  Szx---- ~E, e 2 - -Tk ,  (3) 

this can also be written 

--~ q- E ( U + ~ c ) ]  + ~ E 3 U  +4(v/T~)Ec = 0. (4) 
- ~ x  

To apply this equation in any particular case we need a further relation between 
U and c. As an example let us take the case of  capillary waves propagated on the 

*This paper will be referred to as (IV). 
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forward face of  a gravity wave (as described above) and sufficiently far from the 
wave crest that the curvature of  the gravity wave profile is small compared to k. 
The gravity wave being progressive, we may take axes moving with the wave and so 
reduce the motion to a steady state. The velocity U will have one component due 
to the orbital velocity in the gravity wave and another due to the negative velocity 
associated with the forwards motion of the frame of reference. Since the capillary 
waves originate at the (stationary) crest of  the gravity wave, they will appear 
stationary in the new frame of reference. Hence their phase velocity c must be equal 
to -- U. In the steady state bE/~t vanishes and (4) becomes now 

(--  ½ E l f )  z_ ~ E b U z_ 4 (v/T 2) E U  4 O. (5) 
bx bx 

Ignoring for one moment the viscous term in (5) we have 

I bE 2 b U  
_ (6)  

-E bx U bx 
and so 

E ~  UL (7) 

In other words the energy of the capillaries increases proportionally to the square 
of  the opposing current. This increase is due not only to the shortening of the 
wavelength by the contracting current but also to the work done by the current 
against the radiation stress. The same result (7) was derived also by a perturbation 
analysis in [IV). 

I f  we take full account of the viscous damping in (5) we have now 

which has the integral 

1 bE 2 b U  8v U3 (8) 

Izv; 3 I 0, E o c  U 2exp ~ dx , ( U <  

0 

We see that E may at first increase, owing to the radiation stresses, but ultimately 
the waves are damped out by viscosity. From (8) it follows that the maximum 
amplitude is attained where 

1 b U  4 v  
- -  ( lO) U 4 bx T 2" 

the law of energy variation (9) was shown in (IV) to be in good agreement with 
observation. 

All the energy in the capillary waves is ultimately dissipated by viscosity, including 
any work done against the radiation stresses by contraction of the current U. Even 
without the radiation stresses, the energy lost in the capillary waves could be several 
times that in the basic gravity wave (see IV, Section 10), so that the capillaries must 
be important in damping the gravity waves when they are near to their maximum 
steepness. The effect is enhanced by the action of the radiation stresses. 

Moreover, capillary waves of  any origin, whether due to sharp crests or direct 
wind action, may dissipate energy derived from the gravity waves through the 
radiation stresses. 
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CONCLUSION 

As has been shown in the series of examples outlined above, the radiation stress 
concept permits straightforward calculation of a range of important phenomena. 
In every case the same results could have been obtained by a detailed perturbation 
analysis, but comparison with the original papers (I, II, II! & IV) in which such 
analyses were carried out will reveal the considerable reduction of effort required 
and gain in clarity achieved. 

It is our belief that the radiation stress should be regarded not as a " vir tual"  
effect but as real, at least in the same sense as the radiation pressure in electromagnetic 
theory and the Reynolds stress in turbulence theory are real. Viewed thus, such 
phenomena as wave set-up (and set-down), where the stress must be balanced by 
hydrostatic pressure, become entirely natural and expected. Also the non-linear 
energy exchanges between waves and currents and among waves can, with this 
concept, be regarded as strictly analogous to corresponding cases in the theory of 
elasticity and the theory of turbulence, where the rate of  energy exchange is given 
by the product stress times rate of strain. 

Radiation stresses will arise not only due to surface waves, but due to internal 
waves. In the oceans the interaction of internal waves and currents may be 
considerably more important  than interaction involving surface waves, because of 
the much lower propagation speeds. Small propagation speeds tend to increase 
the strength of the interaction, as can be seen from two points of  view : First, in 
any wave current interaction, the energy exchange can be written so as to be seen 
to be proportional to U/c or U/co, so small values of  c lead to large interactions. 
From the other point of  view, we note that for almost all species of  wave the ratio 
of energy density : momentum density equals the phase speed. Surface and internal 
waves are no exception, so internal waves, with their low propagation speed, are par- 
ticularly efficient at transferring momentum. 
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