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 Two apparently distinct approaches to the analysis of wave groups in a random sea
 state are described. In the first, the probabilities of the group-length G and the length
 of a 'high run' H are defined in terms of a wave envelope function p(t). These lead
 naturally to expressions in terms of a single parameter v that defines the spectral width.
 In the second approach, the sequence of wave heights is treated as a Markov chain,
 with a non-zero correlation only between successive waves. This leads to expressions
 for G and H in terms of transition probabilities p+ and p_.
 In this paper we find approximate analytic expressions for p+ and p_ that show
 that the two approaches are roughly equivalent, to order v.
 Throughout the paper it is emphasized that the concept of a wave group assumes
 implicitly the neglect of those harmonic components that are either very short or very
 long compared with the peak frequency orp. That is, some filtering of the original
 record is implied. For typical records of wind waves it is found that a band-pass filter
 with upper and lower cut-offs at 1.5 orp and 0.5 crp is the most suitable.
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 M. S. LONGUET-HIGGINS

 Calculations are done for typical records of sea waves, and for some numerically
 simulated data, and there is agreement between the data and the analysis.

 1. INTRODUCTION

 A casual observer of the sea surface will notice that the heights of wind-generated waves are
 not uniform; they occur in successive groups of higher or lower waves; this leads to the popular
 but mistaken notion that 'every nth wave is the highest' where n = 3, 7 or 10, for example.
 In fact the wave groups are not all of equal length, as we shall see, but their group behaviour
 and other properties may be described with remarkable success by treating a typical record
 of the sea-surface elevation as a random Gaussian process, statistically steady in the short term,
 say over a duration of less than 30 min.

 The Gaussian model, as applied to noise in electrical circuits, was first developed in well
 known papers by Rice (I944, 1958) and was applied to other aspects of sea waves by
 Longuet-Higgins (1952, 1957), Pierson (I962) and others. For a recent survey of the subject
 see Ochi (i982). The physical basis for the model is of course that the energy of surface waves
 at any point in the ocean arises from the action of wind in many different parts of the sea surface,

 in an essentially uncorrelated way. So long as linear superposition of the motions is valid, the
 surface displacements should therefore be Gaussian.

 Particular attention to properties of wave groups in Gaussian noise was paid by Longuet-Higgins

 (1957, 1962) and Rice (1958). Recent interest in the subject (Goda 1970, I983; Ewing I973;
 Rye 1974; Kimura 1980 and others) has been stimulated by the suggestion that exceptional
 damage to ships, coastal defences or offshore structures may be caused by the occurrence of
 runs of successive high waves.

 A further reason for interest in the subject is the relation of wave groups to the occurrence
 of wave breaking (see Donelan et al. 1972); also the probable effect of steep or breaking waves
 on the flow of air over the sea surface.

 An essential preliminary to the analysis is to consider what we mean by a wave group, or
 indeed by a single wave, in a random sea. A typical observer counting high waves is not
 interested in the very short fluctuations, either ripples or short gravity waves, riding on the
 backs of the dominant waves. He does not include them in his count. Even if presented with
 an accurate instrumental record of the sea surface for analysis, he tends either to ignore the
 short waves or to smooth them out, for example by drawing a straight line between adjacent
 crests of the dominant waves, to represent the local wave height. Thus by paying attention at
 all to the group aspect of the wave record he is, consciously or otherwise, dealing with a filtered

 version of the wave record, from which the high frequencies have been eliminated or suppressed.
 Similar considerations apply to the low frequency end of the spectrum. In analysing a record

 of a certain duration, say 20 min, we are not generally interested in the total mean surface level,

 but only in the crest-to-trough heights of the waves, or in the height of the crests relative to
 some local mean value, taken over a few waves only. Thus we subconsciously filter out those
 harmonic components of zero frequency or of frequency much lower than the dominant waves.

 Part of our problem is then to arrive at a satisfactory method of filtering the record so as
 to retain only those aspects in which we are interested. This question is discussed in detail in ? 8.

 The above point of view is implicit in the approach of Rice (1945, I958), Longuet-Higgins
 (I957), and Nolte & Hsu (I972). These authors recognized that for a sufficiently narrow-band

 220
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 WAVE GROUP STATISTICS

 record a remarkably apt description of the group properties of a wave record can be given in
 terms of the wave-envelope function. For a Gaussian noise process, the envelope function can
 always be defined, even if the spectrum is not narrow; see ? 2. The statistics of the wave-envelope
 function p(t) can be explored in much the same way as the statistics of the instantaneous surface

 elevation Y(t). For example, the length of a wave group can be defined in terms of the number

 of times that the envelope p(t) crosses a given reference level, say the 'significant' height of
 the waves. These statistics are all given in terms of the rth moments mr of the spectral density
 function of Y(t).

 This classical approach has encountered some objections (Rye 1974) on the grounds that
 for typical spectra of wind-waves, the higher moments mr, and in particular m4, depend critically
 upon the high-frequency cut-off in the spectrum. But we have seen that the existence of such a
 cut-off, or filter, is really inherent in the phenomenon under discussion: the shorter the waves

 that we consider, then the shorter also must be the average group-length. Moreover, as we shall

 emphasize below, if the definitions of group-length suggested by Longuet-Higgins (957) and
 by Nolte & Hsu (I972) are employed, then only the lower moment m2 is involved, unlike Rice's
 (1945) definition, which depended on the maxima of p, hence the fourth moment m4.

 An alternative approach has been suggested by Sawnhey (1962), Wilson & Baird (1972),
 Kimura (i980) and others, namely to consider the correlation between successive, or almost
 successive, waves, without consideration of the frequency spectrum. Besides separating the
 model further from the physics, it should be clear that this approach by no means avoids the

 question of what filter is in fact applied to the wave record by an observer who selects, by some
 unstated criterion, the local wave height. None the less, the relation of this theory to the
 previous theory is of some interest.

 The present paper falls into two parts. In ?? 2-9 we state and develop essentially the Rice,
 or envelope, theory, based on the spectral moments. Formulae are given for the average number
 of waves G in a group and for the mean number of waves H in a high run (see ??4 and 5
 respectively). These are seen to depend only on the critical level p = p* and on the dimensionless
 bandwidth parameter v= ..

 For swell, it appears that v lies typically between 0.05 and 0.15. For wind waves, v has a lower
 bound at about 0.35, before filtering. In ?7 we discuss the calculation of the wave envelope
 (figures 1 c-e) and in ? 8 we show by applying this to typical wave records that the theoretical
 expressions for G and H agree well with the data (see for example figures 3-5). The frequency
 filter which gives results best in accord with visual measurements is found to be one having
 lower and upper cut-offs at 0.5 and 1.5 times the peak frequency.
 In ? 9 we give a very rough theory for the probability density of G and H. Simple arguments

 suggest that for large G and H the densities p(G) and p(H) are both exponential, and this is
 supported by the available data. However the reasoning is not really applicable to smaller values
 of G and H.

 Accordingly in the remainder of the paper we consider the alternative approach mentioned
 above, in which the wave heights are treated as a Markov chain, with a positive correlation
 y only between successive waves. We derive an approximate relation between y and v, namely

 y -1-4n2V2, (1.2)

 which, however, is valid only for sufficiently small values of v. It is shown in ? 11 that the effect

 15-2
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 M. S. LONGUET-HIGGINS

 of filtering can be to bring the spectral width to within the range of validity of (1.2). In ? 12
 we give a simplified version of the Markov theory for p(G) and p(H) and show that filtering
 of the spectrum produces a perceptable improvement in the agreement between the theoretical
 distributions and Kimura's (1980) data (see figures 17-20).

 Finally, by adopting further rough approximations to the Markov transition probabilities
 p, and p_ we show that the Rice (envelope) theory and the Markov chain theory are in
 remarkably good agreement, over a useful intermediate range of r.

 The main conclusions, together with further discussion, are restated in ? 13.
 In an Appendix we derive the properties of an analytic expression for the spectral density

 function that may be of use in the description of ocean swell.

 2. DEFINITIONS: THE WAVE ENVELOPE

 We assume that the surface elevation C may be represented as a stationary random function
 of the time t, with correlation function

 if(T) = f(t)f(t+T) (2.1)

 (a bar denoting the mean value with respect to t). The energy spectrum E(cr) is related to rj(Tr)
 by 1 0?

 E(or) = - 3(r) cos or dr (2.2)
 and so

 (rT) = E(or) cos o-do, (2.3)
 o

 We assume also that over some finite time interval (-?T, AT) the function C may be

 represented as a Fourier sum: r
 C= n Cn COS (-n t+n), (2.4)

 n=o

 where on = 2ni/ T, the phases en are distributed uniformly over (0, 2n) and the amplitudes
 cn are such that

 lim C2 = E(o) do- (2.5)
 T-?oo dor

 to order dor, the summation being over any small but fixed frequency range (cr, (T + d(o).
 The spectral moments mr are defined by

 mr = { rE() do-, (2.6)
 o

 so that by (2.1)
 mO = E(or) doc = f(0) = (2.7)

 represents the mean-square surface displacement and

 ff = ml/m (2.8)

 may be defined as the 'mean frequency'. If lr denotes the rth moment of E(r) about the mean,

 i.e. r0
 p = (r-( )rE(or) dcr, (2.9)

 o

 222
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 WAVE GROUP STATISTICS

 then clearly 2/ M, oth0 =- m, ,L1 = 0, U2 = m2-m2/mo (2.10)

 and we may define the spectral width parameter v by

 v2 = /2//Uo -2 = m2 mo/m2 - 1. (2.11)

 When v2 < 1 we say that the spectrum is narrow.

 Even when the spectrum is not necessarily narrow, it is possible to define the complex envelope
 function A(t) by writing (2.4) in the form

 = Re A(t) eivt, (2.12)
 where  ~where ~A = S cn ei[(rn-)t+en] = pei4 (2.13)

 n

 say. Here p(t) may be called the real envelope function, or wave-amplitude, and 0(t) the phase.
 The real and imaginary parts of A are given by

 p cos = cn cos [(O'n- -6) t+e,n]
 (2.14)

 p sin b = E cn sin [(o'n--o) t+,n],
 n

 and we shall see in ? 7 how these may always be computed, given only the initial function 5(t).
 From (2.13) it will be seen that the time derivative A = dA/dt contains, under the summation

 on the right, the factor (orn- -), so that

 IAI" = ,2 (2.15)

 and when the spectrum is narrow A varies slowly, on average, compared with the carrier wave
 eiet. Thus the wave record is practically sinusoidal, and the local, crest-to-trough, wave height
 is given by 2p, very nearly. A closer inspection suggests that the assumption is correct at least
 to order v. Some terms of order v2 will nevertheless be carried along in the analysis.

 3. PRELIMINARY RESULTS

 We begin by stating some known exact results of which proofs may be found, for example,
 in the papers by Rice (1944-1945, 1958) or Longuet-Higgins (I957).

 The probability density (or simply 'density') of the function C is Gaussian:

 p() = (27mo)-i e-/2mo; (3.1)
 and similarly for the derivative g of g:

 p(e) = (2m2)-l e-2/2m2. (3.2)
 The joint density of C and e satisfies

 P(t, ) = P(6) P(c), (3.3)
 so that C and g are statistically independent. The number of up-crossings by C of a given level
 C per unit time, is given by

 N = fp(, g) d = (21)-i (m2/mo0) e-/2mo. (3.4) N=~p(i,ojdi= (3)

 223
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 M. S. LONGUET-HIGGINS

 This number is a maximum at the mean level ~ = 0, so

 Nmax = (2;)-2 (m2/mo0). (3.5)

 Corresponding results for the wave envelope p are as follows:

 p(p) = (p/,ao) e-P2/2o, (3.6)
 and

 p(p) = (2xr2)-2 e-Pi/22, (3.7)

 (i.e. the densities of p and p are Rayleigh and Gaussian respectively), and

 p(p,,p) =p(p)p(p) (3.8)

 as in (3.3). The number of up-crossings of a given level per unit time by the wave envelope is

 N' = fp(p,p) pdp = (2/27)p(p). (3.9)
 This number is a maximum when p(p) is a maximum, i.e. when p = j/o, hence

 Nmx = (27e)-l (t2/,u). (3.10)

 4. THE AVERAGE GROUP LENGTH

 In defining a group of high waves, we might consider the statistics of the maxima of the wave

 envelope. However, the mean number of maxima of p(t), given by

 P (PP, )p=o II dp, (4.1)

 involves the joint density p(p, pi), which depends on the fourth moment au4, hence m4 (see Rice
 1945). In addition, we are not really interested in small fluctuations of the wave height, but
 only in broader features of the group.

 We therefore adopt a lower-order definition of the length I of a wave group as the time interval
 between two successive upcrossings of some chosen level p; see Longuet-Higgins I957; Ewing
 I973. The mean length of wave groups, so defined, is then

 1= 1/N', (4.2)

 where N'(p) is given by (3.9). Clearly 1 depends upon the arbitrary chosen level p. However
 there is one particular level for which N' is a maximum. At this level I is stationary with respect
 to small variations in p. Such a level may be particularly useful for determining I empirically,
 since the value of 1 so determined will be insensitive to small errors in the chosen level. From

 (3.6) this level occurs precisely when p/ll = 1, giving

 imin = (2e)l (u0//t2). (4.3)

 Since for a narrow spectrum the wavelength is almost constant at l/Nmax, where Nma is
 given by (3.5), the mean number of waves in a group, in general, is

 G = tNmax = (27)-1 (m2/1t2) (/1/p) eP2/2#0.

 224
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 TABLE 1. VALUES OF G AND H AS FUNCTIONS OF THE SPECTRAL WIDTH PARAMETER V

 G H

 v p/1u = (l), 2 1 (2)2 2
 0.05 13.2 14.0 29.5 8.0 6.4 4.0
 0.06 11.0 11.7 24.6 6.7 5.3 3.3
 0.08 8.2 8.8 18.5 5.0 4.0 2.5
 0.10 6.6 7.0 14.8 4.0 3.2 2.0
 0.12 5.5 5.9 12.4 3.3 2.7 1.7
 0.15 4.4 4.7 9.9 2.7 2.1 1.3
 0.20 3.4 3.6 7.5 2.0 1.6 1.0
 0.25 2.7 2.9 6.1 1.6 1.3 0.8
 0.30 2.3 2.4 5.1 1.4 1.1 0.7
 0.35 2.0 2.1 4.5 1.2 1.0 0.6

 In terms of the parameter v this is

 G = (21;)-2 [(1 + v2)l/v] (2U/P) ep2/21,o, (4.5)
 which is inversely proportional to v, when v is small. The minimum group length is when

 p/o = 1 so G-min = (e/27i)l (1 + v2) = 0.6577 (1 + v2)I/v. (4.6)
 The values of Gmin for some representative values of v are shown in the second column of
 table 1. In the third column are shown the corresponding values of G when the critical value

 of p is taken as the mean wave amplitude p = (i2)i/u0 . In the fourth column are the values
 when p = 2/,, which is close to the significant wave amplitude p = 2.003/,. For these two
 columns, the numerical constant in (4.6) is replaced by 0.6981 and 1.4739 respectively.

 5. RUNS OF HIGH WAVES

 Consider now a different quantity: the number of successive waves exceeding a specified level
 p. We denote this by H(p).

 To obtain an average value H(p), Rice (1958) reasoned that from the known density (3.6)
 the proportion of time during which p exceeded the given level would be

 r00

 q(p) = p(p)dp = e-2/. (5.1)

 Hence the average length of a 'high run' would be

 '= ql = q/N'. (5.2)
 By (3.6) and (3.9) this is

 P =(2r/t2),u0/p. (5.3)

 To cstL-ate the average number Hof waves in a high run we multiply I' by the mean up-crossing
 rate Nmax (see equation (3.5)) to give

 H= (2n) - (m,2/2)to/P (5.4)
 or in terms of v

 H = (2)-I r[(1 + v22I/^v] uA/o.

 225
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 M. S. LONGUET-HIGGINS

 This varies very simply like p-1. If we take the reference level as p = uXo, then

 H= 0.3989 (1 + 2)l/. (5.6)

 On the other hand, at the mean level p/,u = (it) or the significant wave amplitude p/j4 o 2
 the numerical constant in (5.6) is replaced by 0.3183 or 0.1995 respectively.
 Representative values for H are given in table 1. It will be observed that since

 H/G < q < 1, (5.7)

 H is always less than G.

 6. PARAMETERS FOR OCEAN WAVES

 For ocean swell, values of v equal to 0.15 or less may be typical, as we shall see below. A
 spectrum of pure swell is band-limited, so that as a very simple model it is fair to assume

 E(o)= { , c -l < r, (6.1) 0, I\- > 8&?

 where 8 < 0.5 say. For such a spectrum we have

 v = 6//3 < 0.289. (6.2)

 A convenient expression for an ocean swell spectrum having a smooth cut-off is

 E(cr) = ca- e-l- +(~)-'l, (6.3)

 where a, /, and n are constants. For such a spectrum it may be shown (see the Appendix) that

 m, = 2a(n/fl)l/ne,

 = (n+ 2)V/(n+ 1).

 When n is large we have v - n- . Hence useful values of n will lie in the range 50 to 500. We
 note that the spectrum (5.3) has a half-width ,8' given approximately by

 /o+ + (/p>)- = 2 In 2, (6.5)
 hence ^~hence~8 - (In 4)/n+ O(n-), (6.6)
 corresponding to0.849 (6.7) v - n2 ~ 0.849 3', (6.7)

 as compared with 0.577 8 (6.8) v = 8/V3 = 0.5773 (6.8)
 for the simple band-pass spectrum. The rule (6.7) should be fairly easy to apply in practice.
 On the other hand for wind-waves, a typical form is the Pierson-Moskowitz spectrum

 E(or) = ao-5 e-(/1/) (6.9)

 where o, ,8 and y are constants depending on the wave field. It is easily shown that the rth
 moment mr is given by moment mr is given b mr = (CC7r-4/y) r((4-r) /y), (6.10)
 where F(z) is the usual gamma function: F(n) = (n -1)! Hence we have

 226
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 independently of cx, and

 v = r(2/y) (4/ (612)
 [r(3/y)] I'

 independently of both a and ,f. Some values of mo, (r and v are given in table 2. It can be seen

 that as y decreases from oo to 1, so v ranges from 8-' = 0.3536 to 2-1 = 0.7071. The value y = oo
 corresponds to the Phillips spectrum

 E() =a j /4 < 1I} (6.13)
 oo-5 0-lfl > 1.

 A common value of y is 4, when v = 0.4247.

 TABLE 2. PARAMETERS FOR THE PIERSON-MoSKOWITZ SPECTRUM (6.9)

 moI4/a o f p/ y m^/OL cr'/fl v v'
 o0 0.2500 1.3333 0.3536 0.1132
 10 .2218 1.3487 .3713 .1314
 8 .2216 1.3374 .3790 .1405
 6 .2257 1.3089 .3933 .1570
 5 .2328 1.2791 .4056 .1711
 4 .2500 1.2254 .4247 .1804
 3 .2977 1.1198 .4574 .1939
 2 .5000 0.8862 .5227 .2151
 1 6.0000 0.3333 .7071 .2483

 However, we shall see later (?8) that for broad spectra, such as the Pierson-Moskowitz
 spectrum, it is implicit in the definition of a wave group that we use a filtered version of the

 spectrum, the T.P.M. or 'Truncated Pierson-Moskowitz' spectrum. This in general reduces
 the value of v to a value V' depending on the cut-off frequencies. Some values of v' are given
 in the last column of table 2.

 7. CALCULATION OF THE WAVE ENVELOPE

 Records of sea waves are commonly in digital form, the surface elevation Y(t) being specified
 at discrete but uniformly spaced times t1, t2, ... tM say. To calculate the wave envelope function

 p= (C2+/2)' (7.1)

 of ?2, we need both the surface elevation C(t) itself and its Hilbert transform y(t). For very
 long records it may be convenient to use a discrete form of the formula

 vq(t) = f ( ) ds, (7.2) it = oot--s

 where f denotes the principal value of the integral. For example, if C = cos ct then y = sin crt.
 However, for short or moderately long records, say M < 104, a method based on Fourier
 analysis is practical and more feasible.
 Let ,m denote ((tm), and set

 M
 an -M E m cosmGO,

 m--l

 M (7.3)
 bn M Cm sin mon, b mml1

 227
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 228 M. S. LONGUET-HIGGINS

 where
 wen = 2nit/M. (7.4)

 In particular,

 1 bM=O. (7.5) aM= M ECm
 M

 It is easy to show that
 M

 m= E (ancos ma'n + bn sin mon). (7.6)
 n=1

 However, we shall dispense with the upper frequencies (n > !M) by using instead the identity

 Cm = 2 E (an cos mon + bn sin mon)-(- )MaiM + aM (7.7)
 n=1

 (M is assumed even). We may then take

 .1M

 Ym = 2 E (ansinmo-n-bncosmon). (7.8)
 n=1

 In practice, the low-frequency component of the record is of no interest generally when

 considering crest-to-trough wave heights; for example, a non-zero mean value aM is irrelevant.

 Hence in any examination of the properties of wave heights, or of the wave envelope, it is

 appropriate to work with a filtered version of the record and its transform:

 n"

 Cm=2 E(an cos maTn + bn sin mo-n),
 n (7.9)

 n

 7m = 2 E (a sinmo- -bb cos MG'n)

 where n' and n" are suitably chosen numbers such that 1 < n' < n" < 'M. A reduction in the

 upper limit may be desirable to avoid the aliassing of energy from frequencies higher than the

 Nyquist frequency aiM*

 We may then calculate the envelope function p'(t) for the filtered record ~'(t) from

 p/ = + (C'2 +y/2)2. (7.10)

 8. EXAMPLES

 Figure 1 a shows a typical section of a record of surface elevation taken in the southern North

 Sea by a ship-borne wave recorder. The record is digitized at time intervals of 1 s.

 The spectrum of a stretch of the record lasting 19A min (M = 1170) is shown in figure 2.

 Each ordinate represents E C2 summed over 10 successive harmonics. The vertical scale has
 been normalized so that n

 = am = 0 (8.1)
 M

 and 2= E Ac =1 (8.2)
 n=l

 where cn = a2n+b2n. It can be seen that, apart from the slight rise in energy at very low

 frequencies (which may be partly due to the method of measurement) there is a single dominant
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 FIGURE 1. Part of a record of sea-surface elevation made with a shipborne wave recorder in the North Sea, at 55? 04 N, 7? 32 E, on 22 Sep. 1973. Digitization:
 1 Hz. (a) original record; (b) filtered record: n'/np = 0.5, n"/np = 1.5; (c) envelope function (7.10) of (b). (d) superposition of (b) and (c). (e) As (d), but
 with n'/np = 0.25, n"/np = 1.75.
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 record 704
 0.2-

 En 0.1-

 ni < np

 1 1 iu , 1 I - o IC) ?Q- ~ <ooo o o ooooooo 6o000
 0 200 400 600

 n

 FIGURE 2. Frequency spectrum of the complete record shown partly in figure 1 a.

 peak in the spectrum at about n = np = 165 (corresponding to a frequency n/M = 0.141Hz).
 On the high-frequency side, the energy falls away rapidly. For reasons mentioned in ?1, the

 energy at n > 2np is irrelevant to a study of dominant-wave grouping, if we neglect nonlinear
 effects.

 Suppose we take the lower and upper cut-off frequencies at n' = 0.5 np and n = 1.5 np, for
 example. Figure 1 b shows the resulting filtered record Y'. Corresponding crests and troughs
 of the dominant waves between figures I a and b can easily be identified. The envelope function
 ?-p' is shown by itself in figure 1 c, and it will be noticed at once that there are a surprising
 number of points where p' seems to approach zero, so that the positive and negative branches
 cross over. The function {'(t) and its envelope are shown superimposed in figure 1 d.

 Figure 3 a shows the total number of up-crossings of a given level p by the envelope function
 throughout the record (with the same choice of n', n"). The solid curve represents equation (3.9).
 The fit appears reasonable; statistical fluctuations might be expected to produce differences
 of order ( TN). It will be noticed that the maximum theoretical value TN = 43 is quite close
 to the value TN = 45 which is obtained if one constructs a visual envelope of the original record
 C by drawing straight lines between successive crests.

 Figure 1 e shows the effect of taking different cut-off frequencies, so that now n = 0.25 n and

 n" = 1.75 n. The envelope has many more fluctuations (maxima and minima) which seem to
 be irrelevant to the fluctuations in the height of the dominant waves. The corresponding number
 of level-crossings TN is shown in figure 3 b. Again, the empirical points agree reasonably with
 the theoretical curve, but the maximum value of TN is now 56, or somewhat greater than the
 visual value.

 Table 3 summarizes the results for various values of n'/np and n"/np. It will be seen that a
 change in n'/np from 0.5 to 0.25 has relatively little effect, but as n"/np is varied from 1.5 to
 2.5, so TN departs more and more from the visual value.

 Figure 4 shows the average number G of waves in a group, corresponding to figure 3a, that

 230
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 (a)

 record 704

 nt/np= 0.5
 /7n p= 1.5

 60-

 40-

 (b)

 record 704

 In'/np=0.25
 1nenp=1.75

 p/mO p/mO

 FIGURE 3. Number of level crossings of the wave envelope in the complete length of record shown partly in figure 1,
 as a function of the critical level (a) when n'/np = 0.5, n"/np = 1.5; (b) when n'/np = 0.25, n"/np = 1.75.

 100:  4
 record 704

 n'/np= 0.5
 n"/np = 1.5

 5  record 704

 n'/np= 0.5
 nn"l/np= 1.5

 H

 1

 1

 p/F/ pl/tc

 FIGURE 4. Plot of the mean group length G corresponding to figure i d, as a function of the critical level. The
 theoretical curve represents (4.5).

 FIGURE 5. Plot of the mean length of high runs H corresponding to the record of figure 1 d. The line represents (5.5).

 TABLE 3. SUMMARY OF OF THE EFFECT OF VARYING THE CUT-OFF FREQUENCIES n' AND n ON THE
 ANALYSIS OF THE RECORD IN FIGURE 1

 1

 Po = mO
 theor. obs.

 43.2

 48.9

 53.4
 58.8

 66.1

 70.5

 45

 52

 56
 59
 69

 72

 45

 N7

 Po = 2mo
 theor. obs.

 19.3

 21.8
 23.8
 26.2
 29.5

 31.5

 19

 24

 25

 25
 26

 30

 18.5

 NT

 0 1

 G

 I
 1) p m2 n'/np

 0.50

 0.50

 0.25

 0.25

 0.25

 0.25

 n",/np

 1.50

 1.75

 1.75

 2.00

 2.25

 2.50

 visual

 0.160

 .172

 .196
 .213
 .237

 .250

 15.5

 15.8

 15.9
 16.1
 16.2
 16.2
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 FIGURE 6. Part of a record of sea-surface elevation made with a surface wave follower at the Noordwijk Platform, 52? 16 N, 4? 8 E, on 18 Oct. 1979. Digitization:
 1 Hz. (a) original record; (b) filtered record: n'/np = 0.5, n"/np = 1.5; (c) superposition of (b) and its envelope function; (d) as (c), but with n'/np = 0.25,
 n"/np = 1.75.
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 0.2 '  record 1002

 En 0o.

 n

 FIGURE 7. Frequency spectrum of the complete record shown partly in figure 6a.

 (b)

 record 1002
 record 1002 (a)

 p/I4;2  p/#4

 FIGURE 8. Number of level crossings of the wave envelope in the complete length of record shown partly in figure 6,
 as a function of the critical level (a) when n'/np = 0.5, n"/np = 1.5; (b) when n'/np = 0.25, n"/np, = 1.75.

 is to say when n'/np = 0.5 and n"/np = 1.5. The full curve represents the theory, equation (4.5).
 Except for very low levels p there is fair agreement. The minimum value Gmin at p/,u = 1 is
 about ad t 4.1, and at the significant wave amplitude (p/ = 2) G is about 9.2.

 Figure 5 shows corresponding results for the mean number of waves H in a high run, given
 by equation (6.5). Though the two curves for G and H are quite different, the agreement
 between theory and observation is of course similar in figures 4 and 5.

 As a second example, we show in figure 6a a typical wave record taken from the Nordwijk
 tower in the North Sea during MARSEN. The instrument used was the 'wave follower'
 described by Hsaio & Shemdin (1983). Figure 7 shows the spectral density function. This has
 a slightly longer high-frequency tail than the previous example, figure 2. However, if we take

 the cutoffs n'/np = 0.5 and n"/np = 1.5 we obtain the reasonably smooth envelope function

 NT
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 M. S. LONGUET-HIGGINS

 shown in figure 6c. The wider cut-offs n'/np = 0.25, n"/np = 1.75 give the record in figure 6d,
 in which the envelope has a greater number of 'wiggles'. The corresponding numbers of
 level-crossings are shown in figures 8a and b. Again, there is fair agreement, but the scale
 value TNmax (at p/lu = 1) agrees better with the visually determined value (TN = 35) when
 the cut-off limits are narrower (n'/np = 0.5, n"/np = 1.5). Graphs of G and H are shown in
 figures 9 and 10.

 100- 9 - 10
 record 1002

 - n'/np= 05 \
 tn"/np = 1.5

 0 io 10- record 1002
 -\ | ~ X n'/np=0.5

 -2 _ l ~\n"ll/np= 1.5

 G 10 H

 o ~~O \g~~f~~ji 0
 1-

 1 I I I , ,, I I, I l I I 1, , ,, , ,,, , 1111
 0.1 1 10 0.1 1 10

 P/ o pl/do
 FIGURE 9. Plot of the mean group-length G corresponding to figure 6c as a function of the critical level.
 The theoretical curve represents (4.5).

 FIGURE 10. Plot of the mean length of high runs H corresponding to figure 6c. The line represents (5.5).

 From these examples we may conclude that typical wind-wave spectra are effectively filtered
 by a 'group analysis', and that the cut-off frequencies n' = 0.5 np, n" = 1.5 n, are appropriate.
 As seen from table 3, this filtering of the record reduces slightly the total energy mo in the record.

 For a satisfactory analysis we may specify that mo shall not be changed significantly by the
 filtering. Such a limitation appears to be inherent in the idea of a wave-group analysis. For,
 any energy outside the dominant wave band is irrelevant to the quantities of interest. Thus,
 any spectrum that is not of the unimodal type, say one that has energy distributed in two or
 more widely separated frequency bands, is essentially unsuitable for simple group analysis. More
 complicated definitions may of course be sought.

 9. THE DISTRIBUTION OF GROUP LENGTHS

 The length I of a group was defined in ? 4 as the interval between two successive up-crossings
 of p(t). The statistical distribution of 1, apart from its mean 1, is difficult to determine in general

 (see Rice I958). However, for narrow spectra an approximation may be derived from the notion
 that since the spectrum of p is predominantly low-pass, we expect successive up-crossings to be
 uncorrelated, at least when I is sufficiently large. Hence the distribution of I will be
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 asymptotically the same as in a 'shot-effect', where the time-axis is peppered randomly with
 points at a mean rate A = i/i (9.1)

 per unit time. The density p(l) for this process is known to be simply

 p(l) = Ae-Al, (9.2)

 that is a negative exponential (see Rice I954, section 3.4). Rice gives a proof involving an
 infinite series of terms. A more direct proof is as follows. Divide a given interval (t, t+ 1) into
 a large number m of equal parts. The probability that p has no level crossing in any of these
 sub-intervals is (1- Al/m)m, and in the limit as m-> oo this tends to

 P(l) = e-A. (9.3)
 The density (9.2) then follows on applying the general formula

 p(l) = (/A) d2P/dl2, (9.4)

 where A is the mean number of up-crossings per unit time (see Longuet-Higgins 1958,
 section 2).

 Incidentally it may be noted that for the low-pass spectrum E(O) = (1 + cr2) -2, the distribution
 of zero-crossing intervals of C is almost (but not quite) negative exponential; see Favreau et al.
 (1956); Longuet-Higgins (1962).

 Assuming (9.2) to be valid, we have simply

 p(l) = le-1 (9.5)

 and so for the number of waves G in a complete group

 p(G) = Ge-GG, (9.6)

 where G is given by (4.8). Some comparisons with observation will be given below.
 The question arises as to what meaning we should attach to a fractional number of waves

 in a group. This can occur because the wave envelope p may exceed the reference level for only
 a short interval of time. In any given case a wave crest may or may not be present during the
 interval. However, the fractional number of waves is still a measure of the probability of a wave

 crest exceeding the given level in that interval. As a matter of fact, owing to the dispersive
 properties of gravity waves, the phase velocity is greater than the group velocity. Hence any
 particular wave tends to advance through the group, and any section of the envelope contains
 a wave crest at least some of the time.

 To estimate the statistical density p(H) of high runs, we may assume as an approximation
 that each high run H is, on the whole, in proportion to the corresponding group length G, so
 H = qG, where q is given by (5.1). It follows that the distribution of H, like that of G, is also
 a negative exponential:

 p (pH)- He-HI. (9.7)
 Does thib fit existing observations? Most data are given for integer values of the group length

 G or run length H. We may reasonably assume that the probability Hj of H for an integer value
 j > O is related to the continuous probability density p(H) by

 Hj oc p(H) dH, (9.8)

 I6 Vol. 312. A
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 that is to say, the probability density of a run of length H contributes to the probability of the
 discrete run having the nearest integar value. The densities for runs H less than I contribute
 only to runs of zero length, that is they are ignored.
 If p(H) is a negative exponential, then the assumption (9.8) has two simple consequences:

 (1) the probability Hj is also negative exponential, that is

 Hj oc e-j/H, (9.9)

 and (2) because of the effective truncation of the distribution at H= =, the mean value H1 is
 increased by approximately the same amount, i.e.

 Hj - H+0.5. (9.10)

 Sufficiently long wave records are quite rare, but the numerically simulated data of Kimura
 (I980), reproduced in part in figures 17 and 18 below, show conclusively that the distribution

 of H, is indeed negative exponential, over practically the whole range ofj. Figures 19 and 20
 show that the distribution of Gj is almost exponential, particularly whenj is large, as expected,
 but for small values ofj there are systematic differences.
 For H- it is therefore worth testing the second conclusion (9.8) just mentioned. The 'target

 spectra' used by Kimura (I980) and shown in his figure 8 appear to be of the form

 S(f) =f-ne (n/l(-f-Y) (f = /27r), (9.11)

 where y = 4 and n runs from 4 to 8 in Kimura's cases 1 to 5, respectively. It will be seen

 that the analytic form (9.11) has a peak atf =fp = 1, where S = Smax = 1, as required.

 TABLE 4. COMPARISON OF THEORETICAL AND OBSERVED VALUES OF THE MEAN PROBABILITY H1

 OF HIGH RUNS, IN THE DATA OF KIMURA (I980)

 P = Pmean P = P?

 case n v' H Hj data H Hj data

 1 4 0.1879 1.72 2.22 2.20 1.08 1.58 1.28
 2 5 .1805 1.82 2.32 2.29 1.12 1.62 1.29
 3 6 .1742 1.85 2.35 2.34 1.16 1.66 1.29
 4 7 .1686 1.92 2.42 2.42 1.20 1.70 1.37
 5 8 .1635 1.96 2.46 2.45 1.23 1.73 1.53

 With cut-off frequencies atf= 0.5 and 1.5, we calculate the values of v, H and Hj seen in
 table 4, both for p = Pmean (p/,u4 = V/(2/)) and for p = pi (pl//, = 2). Comparison with the
 data, taken from table 1 of Kimura (i980) shows good agreement when p = Pmean, though
 less so when p = pi.
 In the following three sections (??10-12) we shall outline a different approach for finding

 the distributions of Hi and G, based partly on the work of Kimura (I980), but with some
 significant modifications.
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 10. CORRELATION BETWEEN SUCCESSIVE WAVE HEIGHTS

 Consider the joint density of p1 = p(tl) and p2 = p(t2) at two points separated by a constant
 time interval r = t2- t. This is known exactly from the work of Uhlenbeck (i943) and Rice
 (I944, 1958). The general result may be written

 = (P 1 ) _ Pl P1P2 e-(P+P)/2/o(1-K2) I _K P1P2 . 1 P 2 2(1- 2) PP2 (10.1)
 where

 X= E(cr) cos (or--) T do-,
 100 J (10.2)

 Y = E(r) sin (o-Ci) T dcr,

 K= (X2 + Y2)I/0U, (10.3)

 and I0 denotes the modified Bessel function of order zero:

 Io(z) = - fezcoseds. (10.4)

 When K = 0 then p(p1, p2) reduces to the product of two Rayleigh distributions: p(p1) p (p2).

 We shall assume that when the separation r equals 2n/i, then p, and p2 approximate the
 amplitudes of two successive waves.
 The correlation coefficient y, defined as M11/(M20Mo2)i where

 00 00

 Mpq = f (-P)l )P (P2-P)qP(P1, P2) dpl dp2 (10.5)

 has been evaluated by Uhlenbeck (1943); see also Middleton (1960), as

 y = [E-2(1-lK2) K-ln:]/(1i-_), (10.6)

 where E and K are complete elliptic integrals:

 E(K) = (1-K2 sin2 0)id, (10.7)

 and K(cK)= (1-K2sin2)- dO. (10.8)

 y is shown as a function of K2 in figure 11 (cf. Kimura 1980, figure 1, where y is shown as a
 function of K).

 For values of K very close to 1 it may be shown that

 y l-(1-2)/(4-(), (10.9)

 and this is represented by the tangent at K = 1 to the curve in figure 11. However, it can be
 seen immediately that for values ofK2 less than 0.6 a closer approximation to y is given by the
 simple expression

 y - K2 (10.10)

 I6-2
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 /

 0.4 -

 //,
 0.2- /

 //

 0 0.2 0.4 0.6 0.8 1.0
 K2

 FIGURE 1. The correlation coefficient y between p, and P2 shown as a function of the parameter K2.

 represented by the straight diagonal in figure 11. This holds good to within a small percentage
 over the whole range of K.

 Consider the interpretation of these results for a narrow spectrurn. From (2.10) and (2.7)
 we have

 2= J: E(o) E(o') dod (o10.d)
 and similarly from (10.2)

 AX2+ Y2 = f f E((o) E(') cos (o-o') r do do. (10.12)
 Jo o

 So by (10.3)

 2(1 -K2)= 2 J E(o) E(o"') sin2 21(o- ') T do do'. (10.13)

 For a narrow spectrum let us formally replace the trigonometric term in (10.12) by the first
 term in its power series, that is set

 sin2 2o --') T (o--o' )2T2 (10.14)

 = t4[(Cr---- (c)-(cr')2] '2 . T(10.15)
 Then we obtain /2(l 2) (2-2+o2) = 02T2 (10.16) /to(1--K2) --21(/#2-- 2la +/ to#a2) =/to/t ~2, (10.16)

 since t, = 0. Hence writing= 2 (10.17)

 we see from (10.13) that, to lowest order,

 1 - K2 (/2/,to) 72 = 4x2v2. (10.18)
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 So from (10.9) y 4599 (0.9)
 '7 =- 1-45.99 rs, (10.19)

 Because of the coefficient 4t2 in (10.19) this formula for y can be expected to be adequate
 only when v < 0.1, say. A similar limitation on the value of v arises from the representation
 of the sinusoidal term in (10.13) by a single term (o- ?cr-')2T2. This can be valid at best only
 so long as Ir- r'TI < 'I. But for substitution in the double integral (10.15), we should require
 lcr- cl to be at least as great as twice the spectral width (,2//t0)l. Hence

 2(2/0)T < (10.20)

 which with r given by (10.19) is equivalent to

 (2/z/0) < C, (10.21)

 that is
 v < 0.125. (10.22)

 If we wished to calculate the correlation y2 between alternate wave heights, we would have to
 substitute T = 4t/(r in (10. 16), thus doubling T and restricting the range of validity of the linear

 theory to v < 0.025, at most. None the less the linearized theory does suggest qualitatively the
 very drastic reduction in y to be expected as v and r are increased beyond the limits estimated
 above.

 For larger values of v or r we may use the accurate expressions for K2 provided by (10.2)
 and (10.3), together with the relation between y and K indicated by the solid curve in figure 11,
 or its approximation, equation (10.10). Alternatively, K may be determined directly from
 observation since it is equal to coefficient of correlation between p2 and p2.

 11. THE CORRELATION COEFFICIENT: EXAMPLES

 To illustrate the dependence of K on v for typical spectra, consider the band-pass spectrum
 (6.1), for which v = 3-1~. From (10.1) we have immediately

 X= mo(sin STr)/6r, Y= 0. (111)

 Hence K2 = [(sin brT)/fr]]2. (11.2)
 To find y = y1, write r = 2n/6, so

 K2 = [(sin 2)/2 S]2.2 (11.3)

 As 8->0 we have K2 = 1-173212, in agreement with (10.20). As 8 increases from 0, at first K2
 decreases monotonically to 0 at 8 = 0.5 (v = 0.289). However, as 8 increases further, K2 rises
 again to a maximum value 0.047 before falling finally to zero at 8 = 1 (v = 0.577).
 In figure 12 we also show Km) the correlation coefficient corresponding to r = 2mn/fa. This

 shows that y2 < y1 always, but as m increases, it is not always true that ym+l < ym. For instance
 when v = 1.4, y3 may exceed y2.

 This non-monotonic behaviour may be associated with the sharp cut off in a band-pass
 spectrum. An example when the cut-off is smooth, but still decisive, is provided by the
 'ocean-swell' spectrum (6.3). For this spectrum it may be shown that

 ~where K-(+ -e)-2 = (1 + 2)- e-2n{[L(l+r2)]-1} (11.4) whereK Ir =

 239

 r = 4mr/ (n + 1).  (11.5)
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 0.8

 0.6

 K2

 1
 0.4

 0.2

 0

 v

 FIGURE 12. K2 as a function of v for the band-pass spectrum (6.1). The broken curve represents the asymptote
 (10.18) when m = 1.

 K2

 ,m= 1

 0.2

 0

 V

 FIGURE 13. K2 as a function of v for the 'ocean swell spectrum' (6.3). The broken curve represents the asymptote
 (10.18) when m = 1.
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 ---- TP. -M.  O- P-M.

 ---^--- JONSWOP
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 m\ \ ?=1 I
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 - 4 2 m=2

 3

 0 0.2 0.4 0.6
 v- v

 FIGURE 14. K2 as a function of v for the Pierson-Moskowitz spectrum (P.-M.), and JONSWAP spectrum. These
 are on the right. The corresponding curves for the truncated Pierson-Moskowitz spectrum (TP.-M.) are shown
 on the left.

 The expression (11.4) is plotted against v in figure 13. Each curve is now monotonic in both
 v and m, over the ranges shown, and when v > 0.15, y2, y3 and y4 are all very small.
 When v = 0.082, for example, the sequence of values of K2 for m = 1, 2, 3 and 4 is 0.76, 0.34,

 0.10 and 0.02, giving Ym = 0.74, 0.32, 0.10 and 0.02. This compares with Goda's (1983) values
 for swell of Ym = 0.65, 0.35, 0.18 and 0.07.

 For wind-waves, however, very different results are to be expected. Figure 14 shows K2 plotted
 against v for the Pierson-Moskowitz spectrum, equation (6.9). In general, the integrals X and
 Y of (10.2) were found by quadratures, through in two cases the numerical values could be
 checked against explicit expressions. For in the case y = oo (the Phillips spectrum), integration
 of (10.2) by parts gives

 X+iY= [(6+2ir-T2-ir3)eiT+r4J du , (11.6)

 the last function being tabulated in Abramowitz & Stegun (1965), table 5.3. Also when y = 1,
 we find from Erdelyi (I954) (1.4.21) and (2.4.31) that

 X+iY = 2a(T/8)2 K4(z), (11.7)

 where z = 2(i,/r)' and K4 denotes the modified Bessel function of order four (see Erdelyi 1953,
 ch. 8).

 The behaviour of K2 shown in figure 14 differs from that in figure 13. For one thing, the value
 of v for the Pierson-Moskowitz spectrum is never less than 0.3536. Also the maximum value
 of K2 is always less than 0.34. It is clear that for this spectrum the narrow-band expression (10.18)
 never applies.

 241
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 However, for the truncated Pierson-Moskowitz spectrum, as shown on the left of figure 14,
 the situation is again different. The lower bound for v' is now reduced to 0.113 (see table 2)
 and K2 can be as great as 0.595 compared with the narrow-band approximation 0.500. The
 sequence of values for y, 72y, 73, 74 is then 0.595, 0.139, 0.080 and 0.052. However, only a
 slight shift to the right, to say v' = 0.16 reduces y, to about 0.33, which is typical of wind-waves.

 Further, 72, 73 and y7 are each reduced to less than 0.01, which can be considered insignificant.

 12. DISTRIBUTION OF G AND IH: MARKOV THEORY

 Kimura (I980) has given a rough but simple theory for the distribution of group lengths
 and of high runs, treating the sequence of wave-heights as a Markov chain, as first suggested
 by Sawnhey (I962). Kimura's theory can be presented in an even simpler way, without the
 use of matrices, as follows.

 h>h*
 P+ P+ P+ P+

 (a) < P)

 h<h*

 h>h*
 p+ p+ p+

 (b) (l-p+)

 (1P

 h<h*

 FIGURE 15. Diagram showing the basis for (a) the probability of a high run ofj waves (12.1) whenj = 5, and (b)
 the probability of a wave group ofj waves, (12.3) and (12.4) when i = 4,j = 6.

 Choose a critical wave-height h* as in figure 15. Given that a certain wave-height h1 exceeds
 h*, let p+ denote the probability that the next wave-height h2 also exceeds h*. To determine

 the probability of a high run of length j we know already that the first wave-height exceeds
 h*; the next (j- 1) wave-heights must then exceed h* and the one after must not exceed h* (see
 figure 15a). The probabilities being assumed independent, the combined probability is

 p(H,) = p+-l (1--p+). (12.1)

 The mean length of high runs is then given by
 00

 H= Ejp(Hj)= 1/(I-p+). (12.2)
 1

 To find the distribution of total runs we may reason as follows. In a total run of length j
 the first i waves, say, will be a high run of length i and the remaining (j-i) waves will be a
 low run of length (j-i) (see figure 15b). The probability of such an event is clearly

 242
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 (12.3)

 where p_ denotes the probability that h, < h* given that h, < h*. Summing the above
 expression from i = 1 to i =j-1 we obtain

 (12.4) p(Gj) = (1-p+) (--p_) (pj-l pj-l)/(p+- -)

 when n > 2. The mean length of a total run is then
 00

 G= Sjp(G) = 1/(1-p+)+ /(-p_-).
 2

 (12.5)

 The only question then is to determine p+ and p_ for a given wave record.
 Kimura (1980) proposed that p(hl,h2) be approximated by a two-dimensional Rayleigh

 distribution of the form (10.1), which is reasonable if we assume that h1 and h2 can be
 approximated by 2p, and 2p2 respectively (though Kimura does not make this assumption
 explicitly). Then the conditional probabilities p+ and p_ can be calculated directly from

 P+ = JP(P1lP2) dpl dP2J P(P1,2) dpl dP2,

 r=PP*(P1P)* Cd l P dp, P- = P(Pl, P2) dPl dP2 P(Pl P2) dpldP
 0 o 0 0 0

 (12.6)

 where p* = ph*. Such probabilities are then a function only ofK2, as shown in figure 16. Here
 we plot p+ and p_ against K2, and not against y as was done by Kimura (I980).

 K2

 FIGURE 16. Graphs of p+ andp_ as functions of K2 according to (12.6) and ?10. The dashed curves represent the
 parabolic approximations (12.8).
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 244 M. S. LONGUET-HIGGINS

 TABLE 5a. PARAMETERS OF THE KIMURA SPECTRUM (9.12)

 hmean

 case n v K2 Y P+ P- P+ P1
 1 4 0.8319 0.1253 0.116 0.490 0.574 0.194 0.874
 2 5 .6980 .1513 .140 .498 .581 .207 .876
 3 6 .6118 .1820 .169 .507 .589 .225 .879
 4 7 .5507 .2152 .200 .517 .598 .242 .881
 5 8 .5047 .2493 .232 .528 .606 .260 .883

 TABLE 5b. PARAMETERS OF THE TRUNCATED KIMURA SPECTRUM

 hmean

 case n v K2 y P+ P- P+ P-
 1 4 0.5857 0.2071 0.192 0.516 0.595 0.237 0.880
 2 5 .5453 .2412 .224 .526 .604 .256 .883
 3 6 .5113 .2723 .254 .535 .613 .275 .885
 4 7 .4820 .3011 .281 .545 .620 .292 .888
 5 8 .4565 .3284 .307 .555 .628 .308 .890

 TABLE 5C. MEAN VALUES OF Hj FOR THE TRUNCATED KIMURA SPECTRUM

 hmean h~
 case (12.2) obs. (12.5) obs.

 1 1.96 2.20 1.16 1.28
 2 1.99 2.29 1.26 1.29
 3 2.03 2.34 1.29 1.29
 4 2.07 2.42 1.32 1.37
 5 2.12 2.45 1.35 1.53

 TABLE 5d. MEAN VALUES OF Gj FOR THE TRUNCATED KIMURA SPECTRUM

 hmean h!

 case (12.2) obs. (12.2) obs.

 1 4.31 4.66 9.18 9.33
 2 4.38 4.67 9.33 9.47

 3 4.46 4.94 9.55 10.00
 4 4.56 5.17 9.72 9.95
 5 4.66 5.32 9.90 10.71

 Assuming that Kimura's five 'target spectra' are given by (9.12), we have calculated (see
 table 5a) the corresponding values of K2 and hence of p+ and p_ from figure 16. The
 corresponding values for the truncated spectra are given in table 5b. It will be seen that while
 the truncation changes the values of v, K2 and y very considerably, the values of p+ and p_ are
 much less affectedt.

 The distributions of Gj and Hj corresponding to the two extreme spectra (cases 1 and 5) are
 seen in figures 17-20. Also shown are Kimura's observations. From these results we may
 conclude

 (1) that truncation of the spectra has a small but appreciable effect upon the theoretical
 distributions,

 t The values of y used by Kimura (i 980) to calculate p and p were determined empirically, and not calculated
 from the frequency spectra as here.
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 0.01

 j  j

 FIGURE 17. The probability Hj of a high run, as a function ofj for the Kimura spectrum (9.12) when n = 4. The
 curves represent (12.1): - - -, original spectrum; , truncated spectrum. Plotted points are data from Kimura
 (I980), figure 9a.

 FIGURE 18. As figure 17, but with n = 8. The plotted points are from Kimura (I980), figure 9e.

 19 20

 Gjo

 -o \

 0.1- -

 ^\ 0 \
 \~ o

 (I980), figure 10a.

 FIGURE 19. The probability Gj of a group of total lengthj for the Kimura spectrum (9.12) when n = 4. The curves
 represent (12.4): .--, original spectrum; -, truncated spectrum. Plotted points are data from Kimura
 (1980), figure i0a.

 FIGURE 20. As in figure 19, but with n = 8. The plotted points are from Kimura (I980), figure 10e.
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 M. S. LONGUET-HIGGINS

 (2) that the observations agree fairly well with either set of curves, but distinctly better with
 those for the truncated spectra (solid lines).

 Based on figure 16, we may also give some rough analytic expressions for H and G. For the
 values of p+ and p_ on the left axis (y = 0) are known:

 + = e-2, p_ -e-2 (12.7)

 where 6 = p/llu. If we approximate the curves in figure 16 by parabolas through the point (1, 1)
 with horizontal axes we must have in general

 --p+ = (-e-2) (1-K2) (12.8)
 (12.8)

 l-p_ = e- 1:(1--2 K2)1

 Now by (10.18) we have (1--K2)A - 27nv and so

 1--p = 2v(1-e-2) (12.9)

 1 -p_ = 2:v e -2.

 Now substituting in (12.2) we get

 Hj = (2/v)-1 e2 2/(e2 - 1), (12.10)
 and similarly from (12.5) (2 12( 1) (12.11)

 Gj = (2nCv)- e /(e2 - ) (12 11)
 These equations indicate that H and G are both inversely proportional to v, as was also found
 in ??4 and 5. In fact if v2 is negligible, (4.5) and (5.5) can be written

 G= (27T)-le 6 /v, (12.12)

 and H= (2n)-~/lv (12.13)
 respectively.

 TABLE 6. A COMPARISON OF THEORETICAL VALUES OF vH AND VG

 h* vHj vH vGj vG
 (12.10) (12.13) (12.11) (12.12)

 hmode 1 0.404 0.399 0.667 0.658
 hmean (7t)i 0.293 0.318 0.642 0.698
 hA 2 0.184 0.199 1.360 1.474

 The functional dependence on 6 in (12.10) and (12.11) is quite different from that in the
 two last equations. However, a numerical comparison is interesting. Table 6 shows the functions
 of 6 evaluated at three different levels: h* = hmode, hmean and hi ( = 1, V() and 2). In every
 case the pairs of formulae, though analytically different, agree to within 10 %. Hence over a
 certain range of v and of 6 the two theories give quite similar resultst.

 t In fact, according to (9.10) we would expect the corresponding values ofvHj and vHto differ by a small amount
 of order 0.5 v. For further discussion see Appendix B.
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 13. DISCUSSION AND CONCLUSIONS

 We have seen how two different approaches to the analysis of wave grouping can lead to
 almost identical results. Of these approaches, the first or Gaussian noise theory is more closely
 related to the wave spectrum, and is valid asymptotically as v -0. The second, or Markov,
 theory has been related roughly to the wave spectrum over an intermediate range of v, which
 includes typical spectra of sea swell, and also suitably filtered spectra of wind waves.

 As against this, the Gaussian theory is applicable strictly only to linear surface waves. When

 the waves become steep the harmonic components in a wave record are not independent, and
 the surface must become non-Gaussian. Markov theory, however, can still be applied, though
 its physical basis is not yet secure.

 Whatever the relative merits of the two approaches, it appears that neither can be applied
 in a sensible way except to sufficiently narrow-band processes, or to data that have been filtered

 so as to eliminate both high and low frequencies. The same conclusion was also reached by
 Nolte & Hsu (1972, I979) though the arguments for the tapered filter suggested in their 1979

 paper do not appear to be conclusive. We have recommended a surface 'square-topped' filter
 with limits 0.5fp and 1.5fp which has two advantages:

 (1) it leaves the peak frequencyfp unchanged;
 (2) two successive applications of the filter have the same effect as only one.
 Moreover, the chosen limits have been shown to give answers in agreement with a visual

 assessment of the group properties of the record.

 This paper has confined attention to the essentially linear properties of wave groups. Some
 nonlinear statistical properties of wave groups deserve further attention, and studies directed
 towards this aspect are under way.

 APPENDIX A. THE SWELL SPECTRUM (6.3)

 To evaluate the moments of the spectrum E(aC) of (6.3) we have from Erdelyi et al. (1954),
 equations (1.4.22) and (2.4.32), that when

 f(x) = x- e-(ax+px-'), (A 1)

 then

 {f(x) cos xy dx = ( 2 2)e-2P2u (u cos w -v sin), (A

 ff(x) sixydx = 1 1y)-, 2o (^+^ 2)
 A0 f(x) 1s2 2PU (usin w + v cos w),

 where

 u = {1[(CX2 +y2) + ]}i,
 (A 3)

 v = {1[ (2 +y2)i- a]}),

 and

 247

 w = 28 v.  (A 4)
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 Now letting y->0 in (A 3) we have

 u = (1 +y2/82), l U = I \ (A 5)
 v = y/2a, J

 to order y2 and then from (A 2), on equating coefficients of 1, y and y2,

 m = (7/lA3) e-2(_) 1

 m = ((sl/cX) e-2(P)I [ + (c/')l], (A 6)

 m=* = (7/-) e-2(a) [ + ()i2 + /].

 Now writing

 (fl) = 2n, (/ix = , (A 7)

 we have
 mo = (2/P) m*,

 f = (al m /ml/m*, } (A 8)

 v = (a,)l (m*--m*2/mo).

 Substitution from (A 6) and (A 7) leads immediately to equations (6.4).
 From (A 2) we have also, in the notation of ? 10

 X2 + y2 = [iC/(C2 +y2)] e-42U(u22 + v2)
 = [T/(LC2 + y2)1] e-4(4)l)[l(l+y2/a)+ (A 9)

 and
 ad -= (7t/o) e-4a), (A 10)

 whenceI1y2 whenceK - (K 2 = ( y2) -- e4(afl)2{[(l+y2/z2)+]-l} (A 11)

 On making the substitution (A 7) this becomes equation (11.4).

 APPENDIX B. ON THE RELATION BETWEEN DISCRETE AND CONTINUOUS VALUES

 OF THE GROUP LENGTH

 Suppose that discrete waves are identified by their crests, and that these are nearly equally
 spaced in regard to the time t. Take the wave period as unit of time.
 In a continuous time interval of magnitude T such that

 i<Tr < i+ , (B1)

 where i is a positive integer, there must be either i or (i+ 1) wave crests. Assuming the crests
 are distributed uniformly in time, the probability of there being (i+ 1) crests in the interval
 is ( - i), and the probability of i crests is (i+ 1 -r) . Hence we have

 p(Hj) = (-j+ 1)p(T) dT+ (j+ -T) p() dr, (B 2)

 where p(T) is the density of T. Identifying r with H, we see that Hj is the weighted mean of
 p(H) by the triangular weighting function with base (j- 1, j+ 1) and height 1 (see figure 21).

 248
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 1; - H
 0 j-1 j j+1

 FIGURE 21. Form of the weighting function for p(H) in the integral for Hi. Full-line: equation (B 2); broken
 line: equation (9.8).

 Exceptionally whenj = 0, only the right-hand half of the triangle is used. If p(Ho) is set equal

 to zero, then p(Hj), j > 0 must be renormalized.
 Now the rough approximation (9.8) amounts to replacing the triangular weighting function
 by the square with base (j- j,j+1) and height 1. Again, whenj = 0 only the right-hand half
 of the square is used, and setting p(Ho) = 0 necessitates a renormalization.

 This paper was begun while the author was visiting the California TechnologyJet Propulsion
 Laboratory, Pasadena, in July 1983. He is indebted to Dr 0. H. Shemdin, Dr V. Hsaio and
 MrJ. A. Ewing for kindly supplying the wave data discussed in ?8. Useful discussions have
 been held with Mr D. J. T. Carter and Mr P. G. Challenor at I.O.S., Wormley. A first version
 of this paper was presented at the Whitecap Workshop held at University College, Galway,
 in September 1983.
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