
The Statistical Analysis of a Random, Moving Surface
Author(s): M. S. Longuet-Higgins
Source: Philosophical Transactions of the Royal Society of London. Series A, Mathematical and
Physical Sciences, Vol. 249, No. 966 (Feb. 21, 1957), pp. 321-387
Published by: The Royal Society
Stable URL: http://www.jstor.org/stable/91668 .

Accessed: 21/10/2013 05:45

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

The Royal Society is collaborating with JSTOR to digitize, preserve and extend access to Philosophical
Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

http://www.jstor.org 

This content downloaded from 134.246.158.75 on Mon, 21 Oct 2013 05:45:01 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=rsl
http://www.jstor.org/stable/91668?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


[ 321 ] 

THE STATISTICAL ANALYSIS OF A RANDOM, MOVING SURFACE 

BY M. S. LONGUET-HIGGINS 
National Institute of Oceanography, Wormley 

(Communicated by G. E. R. Deacon, F.R.S.-Received 29 March 1956- 
Revised 31 July 1956) 

The following statistical properties are derived for a random, moving, Gaussian surface: (1) the 

probability distribution of the surface elevation and of the magnitude and orientation of the 

gradient; (2) the average number of zero-crossings per unit distance along a line in an arbitrary 
direction; (3) the average length of the contours per unit area, and the distribution of their direc- 
tion; (4) the average density of maxima and minima per unit area of the surface, and the average 
density of specular points (i.e. points where the two components of gradient take given values); 
(5) the probability distribution of the velocities of zero-crossings along a given line; (6) the pro- 
bability distribution of the velocities of contours and of specular points; (7) the probability dis- 
tribution of the envelope and phase angle, and hence (8) when the spectrum is narrow, the pro- 
bability distribution of the heights of maxima and minima and the distribution of the intervals 
between successive zero-crossings along an arbitrary line. All the results are expressed in terms of the 
two-dimensional energy spectrum of the surface, and are found to involve the moments of the 

spectrum up to a finite order only. (1), (3), (4), (5) and (6) are discussed in detail for the special 
case of a narrow spectrum. 

The converse problem is also studied and solved: given certain statistical properties of the 
surface, to find a convergent sequence of approximations to the energy spectrum. 

The problems arise in connexion with the statistical analysis of the sea surface. 

(More detailed summaries are given at the beginning of each part of the paper.) 
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M. S. LONGUET-HIGGINS ON THE 

orientation. Thus although the sea surface may, for some purposes, be treated as a uniform 
train of waves advancing in one direction only, such a representation is usually far from 

reality. 
The first attempt to toreat the sea surface as the sum of more than a finite number of simple 

sine-waves is due to Barber and his collaborators (I946), who used a harmonic analyzer 
to resolve a length of record, say of wave height or pressure at a fixed point, into its Fourier 

components. The physical basis for this procedure is that, if the waves are not too steep, 
the energy in any particular frequency band may e expected to be propagated indepen- 
dently of the rest of the stthspectrum, and with a velocity characteristic of its frequency. It was 
shown by Barber & Ursell (1948) that for ocean swell this is in fact nearly true. 

Just as sea waves have no single frequency or wavelength, so they have no single direction. 
One must therefore consider the Fourier spectrum of the sea surface with regard to both 

frequency and direction or, what is equivalent, the spectrum with regard to wave-number 
in two horizontal directions. A two-dimensional Fourier analysis for sea waves was proposed 
by Longuet-Higgins & Barber (1946), who also suggested apparatus for finding a certain 
amount of information about the spectrum. Independently, Pierson (I952) has emphasized 
the importance of the distribution of energy with regard to direction when studying the 
generation and propagation of waves and swell. Thus waves from a limited storm area will 

decay more or less rapidly with distance according as the spread in direction of the energy 
is wide or narrow. Similarly, the angular distribution of the energy in a swell will be more 
or less concentrated according as the region in which it was generated subtends a wide or 
narrow angle at the point of observation.* 

A very interesting problem now arises: the relation between the energy spectrum of 
the surface and its observable statistical properties. To take a simple example, suppose that 
we measure the surface elevation C at a fixed point: what is the r.m.s. value of C with regard 
to time; what is the average time interval between the maxima of (; what proportion of 
the maxima have heights between two given values? 

Questions of this kind have been studied theoretically by several authors, notably by 
Rice (1944, 1945) in connexion with the analysis of electrical noise currents. Rice con- 
sidered the function (t) cos (o-nt+ , (1) 

n 

which is the sum of a large number of sine-waves of different frequency OJ/2ir. The phases 
En are random variables distributed uniformly in the interval (0, 2fr), and the amplitudes 
cn are such that in any small interval of r of width da, 

lC2 = E(oS) do, (2) 
n 

say (our notation is slightly different from Rice's). The function E(S) may be called the 
energy spectrum of C. It is the cosine transform of G. I. Taylor's correlation function 

= lim 1f (t') (t`+ t) dt' (3) 

* Some other applications of the two-dimensional spectrum may be mentioned. It has been used to 
calculate the seismic energy generated by sea waves, where the directional distribution of energy is essentially 
involved (Longuet-Higgins 1950). Eckart has used a two-dimensional analysis to calculate the scattering 
of sound from the sea surface (1953 a) and the waves caused by a random distribution of pressure pulses 
(1953 b). St Denis & Pierson (1953) have applied it to ship motion; see also Cartwright (1956). 
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(see Khintchine I934). One can show that the method of harmonic analysis used by Barber 
& Ursell (I948) is essentially equivalent to making an estimate of JE, within limits of 
accuracy imposed by the finite length of the record (see Tukey I949). 

Using the above representation, Rice was able to derive many statistical properties of g, 
in particular the probability distribution of C itself (which is Gaussian), the average number 
of zero-crossings of C per unit time, the probability distribution of the maxima, and certain 
statistical properties of the envelope. 

It was found by Rudnick (I950) that records of sea-wave pressure are in fact Gaussian 
(see also Pierson I952). Barber (I950) considered the distribution of wave heights, that is, 
the difference in level between a crest and the preceding trough, and compared some 
observations with the 'random-walk' (or Rayleigh) distribution,* which is the theoretical 
distribution for a narrow-band spectrum. This distribution has been discussed in more 
detail by the present author (I952), who showed that the theoretical ratios of the mean 
wave height, the mean of the highest one-third of the waves, and the height of the highest 
of N waves were in close agreement with observation. Further observations are given by 
Watters (I953). 

Some two-dimensional statistical properties of the sea surface have also been measured. 
By photographing the pattern and intensity of sunlight reflected from the sea surface, Cox 
& Munk (I 954 a, b) have deduced the statistical distribution of the two components of surface 

slope, in winds of different intensity. They find that the distribution differs only slightly 
from a normal distribution. t One may expect that for swell, which is usually less steep 
than waves under the action of the wind, the departures from the normal distribution will 
be still less. 

For more than fifty years attempts have been made to construct contour maps of the sea 
surface. Some results, together with references to earlier work, are given by Schumacher 

(I952). At the present time some very extensive maps are being made as proposed by Marks 

(I954). These maps may well be suitable for statistical analysis. 
On the theoretical side, Eckart (I946) has considered the intensity of light reflected from 

a random surface whose gradient and second derivatives are all distributed normally; and 
he has also calculated the first and second moments of the total curvature. However, no 
extensive theoretical study of the two-dimensional statistical properties of a random 
surface appears to have been made. 

The purpose of the present paper is to study theoretically the statistical properties of a 
random, moving Gaussian surface, in relation to its two-dimensional spectrum. 

In view of the observations mentioned above, there is reason to believe that some at least 
of the results are relevant to waves in the open ocean. The analysis may also apply to other 

geophysical phenomena, for example, to microseisms or perturbations of the ionosphere. 
In addition, however, the subject is of interest as a branch of geometry, and we shall develop 
it here on its own account, leaving the application of the results and comparison with 
observations to a separate study. 

* So called because it was derived by Rayleigh in connexion with the theory of sound. See Rayleigh 
(I880; I945, pp. 39-42). 

t Schooley (I954) has made similar measurements for the river Anacostia. A different technique was used 
earlier by Duntley (1950) on Lake Winnipeg. 
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The paper is in three parts. Part I is mainly introductory; we define some convenient 

parameters for describing the surface: the long-crestedness, the skewness, the carrier wave and 
the envelope, and we find conditions for the surface to split up in various ways into one or 
more simpler systems of waves. 

The chief results are contained in part II. Expressions are derived for the statistical 
distributions of the surface elevation and the magnitude and direction of the surface slope 
(? 2 1); for the average number of zero-crossings of Y along a line in an arbitrary direction 

(? 2-2); for the average length of a given contour and for the distribution of its direction 

(? 2.3); for the density of maxima and minima (humps and hollows) per unit area of the 
surface, and the density of specular points (points where the two components of surface 
gradient take given values) (? 2 4) ; for the statistical distribution of the velocities of the 
zero-crossings of along a given line (? 2-5); for the statistical distributions of the velocities 
of the contours (? 2-6) and of specular points (? 2*7). In order to interpret the more complex 
results, the case when the energy spectrum is narrow i.e. when the n waves are more or less 
uniform in wavelength and direction, is studied in detail. In ? 28 some properties of the 
wave envelope are considered, and from these are deduced the average number of waves 
in a group, the statistical distribution of the heights of maxima and the distribution of the 
spacing between successive zeros, all for a narrow spectrum. 

In part III the converse problem is considered: given the statistical properties of the 
surface, to find its energy spectrum. To do this, use is made of a striking feature of the 

present distributions, that they depend only on the moments of the energy spectrum up to 
a finite order. Thus the average number of zero-crossings along a line involves only the 
moments of order 0 and 2. The average number ofmaxima and m an inima along a line involves 
only the moments of order 2 and 4. Properties depending on the motion ofthe surface involve 
the odd as well as the even moments. Hence, by considering the statistical properties of the 
surface along a line in a number of different directions, the moments of the two-dimensional 
spectrum up to, theoretically, any order can be deduced. From this it is possible to obtain 
a convergent sequence of approximations to the spectrum (? 3.3). 

Detailed summaries of the results will be found at the beginning of each part. 

PART I. DESCRIPTION OF THE SURFACE 

Section 1 1 introduces the representation of a simple wave pattern by a point in the wave-number 
diagram, and defines the concepts of carrier wave and envelope, which are afterwards to be extended 
to a surface with a continuous spectrum. The fundamental definition of a random surface in terms 
of its spectrum is given in ? 12. 

In ?1-3 conditions are found for the surface to degenerate in various ways. Thus, a simple con- 
dition for the surface to be 'long-crested' (i.e. for the energy to travel always in the same direction) 
is given by (1-3-3). A condition for the surface to consist of no more than two long-crested systems 
is given by (1-3-7), and a condition for no more than n such systems is given by (1-3.8). All these 
conditions are expressed in terms of the moments mpq of the energy spectrum E, which are defined 
by (1-2*7). A condition for E to degenerate into a 'ring' spectrum, i.e. for the energy to have 
uniform wavelength though not necessarily constant direction, is given by (103X11). For standing 
waves, both (1.3.3) and (1-3-11) must be satisfied simultaneously. Necessary and sufficient con- 
ditions for the spectrum to be narrow so that the energy is uniform in both wavelength and direction, 
are given by (1-3-14). Necessary conditions for the existence of not more than two narrow bands 
of energy are given by (1*3-17) and (1*3-18). 
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In ? 1-4 the curve of intersection of the surface by a perpendicular plane in an arbitrary direction 
0 is considered. It is shown how the spectrum E0 of this curve is related to the spectrum E of the 
surface. The principal direction is defined as the direction in which the second-order moment of Eg, 
and so the r.m.s. wave-number, is a maximum. The minimum r.m.s. wave-number is in the per- 
pendicular direction, and the ratios of the r.m.s. wave-numbers in these two directions is a con- 
venient measure of the long-crestedness of the surface. 

In ?1 5 the carrier wave and the wave envelope are defined for a surface having a continuous spec- 
trum. It is seen that in general the principal direction of the envelope is different from that of the 
wave surface, so that the waves form a 'staggered' or echelon pattern. The angle between the two 

principal directions is called the angle of skewness. It is proved that the envelope of the curve in 
which a vertical plane intersects the surface is the same as the curve in which the plane intersects 
the envelope. 

In ?1*6 some special properties of a narrow spectrum are deduced; in particular, that the long- 
crestedness equals the reciprocal of the r.m.s. angular deviation of energy. from the principal 
direction. 

1'1. The representation of simple wave patterns 

Imagine a single long-crested wave of length A travelling in a direction which makes an 

angle 0 with the x axis (see figure 1 a). The wave-number w along a line perpendicular to 
the crest is defined as 

w = 2r/A. (1.1.1) 
The wavelength and direction can be specified very conveniently by drawing a vector OP 

from a fixed point 0 in a direction 0, such that the length of OP equals w. Then if we con- 
sider a section of the surface along any line making an angle 8' with the x axis, it is clear that 
the wavelength along this section is increased in the ratio sec (-80'), so that the wave- 
number is multiplied by cos (8-0'). In other words the corresponding wave-number is 

simply the projection of OP on a line in that direction. In particular, the wave-numbers 

parallel to the two fixed directions (x,y) are the co-ordinates of the point P with respect 
of axes in these directions. The equation of the wave surface is then 

C ccos (ux + vy+t), (1.1.2) 
where u, v = w cos 0, wsin 0, (1.1.3) 

and a is a function of u and v. It will be assumed that o depends only upon the wavelength, 
that is on V(u2+v2) w; ). ( = = (U V)= o(w). (114) 
We may take cr to be positive, so that the direction of propagation is opposite to OP. It 
follows from (1-1-4) that ) ( (15 U(-u, --V) = a(u, v), (1.1.0) 

that is, waves of the same length but opposite in direction have equal and opposite velocities. 
Consider now a pair of long-crested waves of equal amplitude c (figure 1 b). If these 

are represented in the wave-number diagram by the vectors OP1 and OP2, where Pi =(u , v1) 
and P2 = (u2, v2), we have for the surface elevation 

= ccos (ulx+vly+flt) +ccos (u2x+v2y+F2t). (1.1.6) 
This may be written 

= 2ccos (u'x+v'y + 't) cos (ix+vy+ t), (1.1.7) 

where u' = (U1- U2), ' - (V--V2), ff= (-f(1- 2) 
ii +u(+( +(1'1'8) 

U=f (U +U2)+ , V = (VI+v), V=2 2 (lr + 2) J 
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If the wave-numbers (u1, v1) and (u2, v2) of the two original waves are nearly equal, the term 

2c cos (u'x + v'y + r't) (1-1.9) 
in (1-1.7) represents a slowly varying amplitude which we may call the 'envelope' and 

cos (ux + y + ;t) (1 -110) 

represents a 'carrier' wave of approximately the same wavelength and direction as the 

original waves. The carrier wave is represented in the wave-number diagram by the vector 

OM, where M is the mid-point of P1 P2. The envelope is represented by MP, or MP2. 

v 

(a) 

0 

p 

2i9A', 

(b)' 

FIGURE 1. Representation in the wave-number plane of (a) a single long-crested wave and 
(b) the sum of two long-crested waves of different wavelength and direction. 

For example, suppose that the two waves are in the same direction but of different wave- 

length. Then the vectors OP1 and OP2 are in the same direction and so also are OM and MP2. 
Thus the envelope has the same direction as the carrier wave; the crests are infinitely long. 

Again, suppose that the two waves are of equal length but in different directions. Then 

the vectors OP1 and OP2 are of equal length but different direction. The carrier wave, 

represented by OM, lies in the mean direction, but the direction of the envelope is now 
at right angles to the carrier wave. The result is a short-crested system of waves. 

In the general case (figure 1 b) it will be seen that the wave crests are staggered, or form 
an echelon pattern one behind the other. The direction of this pattern is perpendicular to 
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P1P2. The wave-number perpendicular to P1P2 is given by the length OT of the per- 
pendicular from 0 to P1 P2; it is the direction in which the wave-numbers of the two com- 

ponent waves are equal. 
The angle f between OM and P P2 is a measure of the skewness of the waves. 
The envelope (1*19) and the carrier (1 1-10) are not necessarily 'free' travelling waves, 

that is, they do not satisfy equations of the form of (1 1 -4). Their representation in the wave- 
number diagram is valid only so far as the spatial periodicity is concerned. However, 
for a narrow spectrum u, v, o are nearly equal to ul, vl, o- respectively, and so the carrier 
wave does move with nearly the free-wave velocity, if the component waves are themselves 
free waves. But the envelope moves with a velocity whose components are 

(U '_V) (U,-02 ' 222) (1 1 11) \ v) \u- -u- v'-v,2 / 

To a first approximation this is 

(9 daod\ dw dw\ do dao 
-dU v= du, T ) dw- (cos, sin0)d, (11dw12) 

which is the so-called group velocity. Thus in this special case the envelope moves with the 

group velocity of the carrier wave. 

1'2. The representation of a surface having a continuous spectrum 
We now assume that the surface possesses a continuous noise spectrum in two dimensions. 

Generalizing the representation used in equation (1) we write 

C(x, y, t) = cos (UnX + y+Ont+n), (1'-21) 
n 

where it is supposed that the wave-numbers (un, vn) are densely distributed throughout the 
u, v plane, i.e. there are an infinite number in any elementary area dudv. o?n is a function 
of (un, Vn): ?n -= a(Un, ) v); (1.2-2) 

the amplitudes c, are random variables such that in any element dudv we may assume 

EC2 
- E(u, v) dudv; (1-2-3) 

n 

the phases en are distributed randomly and with equal probability in the interval (0, 27r). 
The function E(u, v) will be called the energy spectrum of ^; the mean-square value of C 

per unit area of the sea surface per unit time* is given by 

lim 1 f dxdydt = cJ2 j E(u,v) du dv. (1-24) 
x,r, T-co 8X~YT -x -YJ-T n 

Thus the contribution to the mean energy from an element dudv is proportional to Edudv. 
We shall write 

JX J E(u, v) dudv - m, (1.2.5) 
00 _It is assumed that avere v s tn 

* It is assumed that average values taken Nith respect to x, y or t are equivalent to average values with 
respect to the phases en. 
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and in general for the (p, q)th moment of E(u, v) about the origin we write 

Jf fJ E(u, v) q du dv= mpq. 
_ 00 _ 00 

(1-2.6) 

These quantities will occur repeatedly throughout the following analysis. It is assumed that 

they exist up to all orders required. 
The function E(u, v) is closely related to the correlation function 4(x, y, t) defined by 

(1-2.7) 
1 PX Y T 

*(x, y, t) = lim XYT-X ! (x', y', t') ((x' +x, y'+y, t' +t) dx'dy'dt'. 
x, r, r-oo0 8XYT x y-r 

On substituting from (1-.21) in the above we find 

?(x , y, t) = cos (x -t v n ), 
n 

which can be written 
(x,g, t) f fE(0 v) c os (ux + v du00 *(x, y, t) = E(u, v) cos (ux + vy + t) du dv, 

_00 oo o 

(1.2.8) 

(1.2.9) 

so that # is the cosine transform of E. The even moments mip are related very simply to 
the derivatives of # at the origin: 

mpq (1-1 )r (OxOPdyq) (1-.210) 

1*3. Conditionsfor degeneracy 
Some important features of the surface can be described immediately in terms of the 

moments. For example, to find a condition that the wave energy shall all travel in one 

direction, so that the spectrum is effectively one-dimensional, consider the integral 

J J 00 ' :E(uLVI) E(u,v^) (Ulv2 -U2V)durldvdu2dv2 
ooj fE(u, v)E(u2, v2) U V -U2V)2 du V du2dv2 

(1.3.1) 

If the spectrum is one-dimensional, the product E(ul, vl) E(u2, v2) is zero everywhere except 
when ul/vI = u2/v2, when the squared factor vanishes. Therefore the integral vanishes. 

Conversely, if the spectrum is not one-dimensional there will be a contribution to the 

integral from some pairs of elements du dvl, du2dv2 for which ul/vl u2/v2, and since the 

integrand is never negative the integral does not vanish. But on expanding the squared 
factor and separating the integrations with respect to ul, vI and u2, v2 we find that (1.*31) 
is equal to 

2(m20m2--ml) = 2 m2 ll =2A2, (1.3.2) 
m11 m02 

say. Thus a necessary and sufficient condition for E to degenerate into a single one-dimen- 
sional spectrum is that A^ - (I.n.q 

\ v "- 

By similar reasoning, a condition for E to degenerate into two one-dimensional spectra 
(see figure 2 a) is that 

... JE(ul, vl) E(u2, v2) E(u3, V3) 
-oo -))oodv dv (14) 

x (U2V3 U3V)2 (U3VIl -V3 )2 (UlV2 -U2VI)2du dl dU2dV2dU3dv3 (1-3-4) 

`'2 -- v 
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shall vanish. The squared product may be written 

u2 u2 u2 2 u u2 u2 
1?1 u2 u?3 U V 1 UV2 U3? 

UlVl U2V2 U3V3 = ijkU UjVj2k Ul11 U2U2 U3 3 
2 2 v2 2 2 2 

vi 2 3 VI 2 213 

v 

0 

(a) 

v 

'. 

I 

I 

0 

(c) 

1 - 

2t \ 
P2 \\ 

2.r 

(1-.35) 

1 
i 

0 

? . 

/ 

2v 
A 

I I 
I . I 

I d 
I I 

(d) 

FIGURE 2. The form of the energy spectrum for (a) two intersecting long-crested systems of waves, 
(b) a system of standing waves, (c) a narrow band of waves, uniform in wavelength and direction 
and (d) two narrow bands of waves. 

(where ei = 1 according as (i,j, k) is an even or odd permutation of (1, 2, 3), and so the 
:+te1N?I i k 111 in tcgra, 1 cquais 

< m40 m31 im22 
6 m3 m22 m13 = 6A4 (1.3 

m22 m13 m04 

say. Thus E degenerates into not more than two one-dimensional spectra if and only if 

A4=0. 

3.6) 

(1.3-7) 

There is an obvious generalization to any number of one-dimensional spectra: the condition 
that E degenerate into not more than n one-dimensional spectra is that 

m2n, 0 m2n-1, I * mn,n 

2n M2n-1,1 M2n-2,2 n-ln+l = 0. (1*38) 
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(In practice A2, A4, etc., must be compared with quantities of the same dimensions. Thus 

A2, may be compared with (m20 + m02)n.) 
A condition for E to degenerate into a 'ring' spectrum, such that all the energy corre- 

sponds to wave components of the same length but possibly different directions, is that 

yyj foof~ 7foE(u1, vl) E(u2, v2) [(U+2 21)-( (U2 +v2)]2duldvldu2dv2 (1.3-9) 

shall vanish. This integral equals 

2[(m40 + 2m22 + m04) mo- (m20 + m02)2], (1.3.10) 
and so we must have 

(m40,+ 2m22 + 04) moo- (m20 +mo2)2 0 (1.3.11) 

The condition for the energy to be situated at two diametrically opposite points of the 

spectrum (giving a standing-wave pattern) is that (1 3-3) and (1.3.11) shall be satisfied 

simultaneously (see figure 2 b). 
A condition for the energy to be concentrated about a single point in the spectrum is that 

fcofcofcofcE(uvl) E(u2 v2) [(u1-u2)2+(v-v2)2] du,dvldu2dv2 (13.12) 

shall vanish. This is equivalent to the pair of conditions that 

J? ~ f E(u1,vl) E(u2, v2) (u u2)2du, dv, du2dv (1.3.13) 
, -o -o00 J -00 J -00 

shall vanish, and a similar integral with factor (v1 - v2)2. These are the conditions that the 

energy be concentrated on lines parallel to the v axis and the u axis respectively (see figure 2 c) 
On expanding the integrals we have 

M20 mlo |o m02 01 = 0. (1.3-14) 
mI m oo mol mOo i10 00 1 00 

A condition for the energy to be concentrated about not more than two points in the 
spectrum (not necessarily opposite) is that 

.fj foE(u, vIl) E(u2, v2) E(u3, v3) II [(Ui-Uj)2- (vi -vj)2] du,dVr du2dv2dudv3 (13-15) 

shall vanish. The term under the product sign may be written 

(u2-U3)2 (U3 -U1)2 (Ul -U2)2 + (2 2-V3)2 (V3-V1)2 (VI -V2)2 

+Z(u/2-U3)2 (U3-U1)2 (Vl- 2)2+ Z(2--3)2 (V3-v1)2 (vI1-V)2. (1'316) 

Since all the terms are non-negative, each separately must vanish. The first two give the 
conditions 

m40 m30 m20 m04 m03 m02 

m30 m20 mo = 0, m03 m02 mo0 = 0, (1.3.17) 
m20 m10 0mo 02 mOl m00 

which are the conditions that the energy shall be at the intersections of two pairs of lines 
parallel to the v and u axes, i.e. at the corners of a rectangle (figure 2 d). The remaining 
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conditions can also be expressed in terms of the moments. Thus the group of terms under 
the first summation sign in (1.3.16) leads to the condition 

m30 m20 mll m30 m20 m22 m40 m20 m21 

4 m21 mln mo2 +2 m20 0 mi1 m + m20 moo ml = 0. (1-3-18) 

Im20 m10 m01 i10 mIO m0 02 21 01 m02 

The last group of terms in (1 3-1 6) leads to a similar condition, the pair of suffixes in each 
of the moments mpq being interchanged. 

We have incidentally shown that each of the combinations of moments on the left-hand 
sides of equations (1-3-2), (1-3-6), (1-3-11), (1-3-14), (1-3-17) and (1-3-18) is never negative. 

1-4. The spectrum of the surface in an arbitrary direction 

Let us consider the curve in which the surface C is intersected by a perpendicular plane 
in direction 0, that is, the plane x sin -y cos 0 = 0. The curve will represent a one-dimen- 
sional random function, whose spectrum Eo with regard to the wave-number u' in this 
direction bears a simple relation to the original spectrum E(u, v). We may call Eo(u') the 

spectrum of the surface in the direction 0. 

First, let x', y' denote co-ordinates in the x,y plane in directions parallel and perpen- 
dicular to the direction 0: 

x' = xcos 0+ysin0, y' = -xsin +ycos 0. (1.4.1) 

Reciprocally, x,y are given in terms of x',y' by similar relations, but with the sign of 0 
reversed. On substituting in (1-2*1) we have 

C = E Cn COS (UnX' + V'y' + t+6n) (1-4-2) 
n 

where u = u cos +V sinO , v = -Un sin +Vn cos, (1-4-3) 

that is, the new wave-number u' is the co-ordinate, in the direction 0, of the point (un, vn), 
and vn is the co-ordinate at right angles. We have also 

n= n {/(u+v2)} = {2)}{ (2+v2)}. (1'4'4) 

On the curve of intersection we have y' = 0 and so 

C= ZcIcos (UX' +nt+en). (1'4'5) 
n 

The spectrum E,(u') of this curve is defined as the function such that the energy corre- 

sponding to any small interval (u', u'+du') is Eo(u') du'. Thus if E denotes summation 
du', v' 

over the strip (u', u'+ du'), 

E(u') du= 2 c = du' _ E(u, v) dv', (16) 
du', v' 

and therefore E(u't)= J E(u,v)dv'. (1.4.7) 

In other words, if we take a section of the surface in any direction 8, the spectrum E,(u') 
of this section is found by integrating E(u, v) along the line through P = (u' cos 8, u' sin 8) 

at right angles to OP. 
4I-2 
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From equation (1-4*7) there follow some simple and fundamental relations between the 
moments of the spectrum E0(U') and the moments of the original distribution E(u,v). 
Let the nth moment of E about the origin be denoted by mn(0). Then we have 

00 00 

m,n()- = Eo(u') u'tdu' = ffE(u,v) u'du'dv'. (1-4-8) 

Since u' = ucos0+vsin0, v' = -usin 0+vcosO (1.4.9) 

and (u v)= 1, (1.4.10) 
d(u,v) 

we have m,(0) = E(u,v) (ucos0+vsino)ndudv. (1'411) 

After expanding the binomial and integrating each term we find 

mn(O) =mn, oCOS +() m_l, COS- lssins+... +m0,sin, (1-4-12) 

where mpq is the (p, q)th moment of E about the origin (equation (1 -26)) and (n) denotes 

the binomial coefficient. 
In particular we have mo(O) = oo, (1.4.13) 

showing that the r.m.s. value of ((x') is independent of the direction 0 and equals the r.m.s. 
value of (x,y). Next, ml () =- ml cos s+m0 sin . (1-4-14) 

If (u, v) denotes the centroid of the two-dimensional spectrum: 

(U),v=i - (1-4.15) 

and if u' denotes the mean wave-number of the spectrum of g(x') we have 

u m1(0) u cos 0 + sin 0, (1-4-16) 

which can be expressed as u' wcos (0-0), (1-.417) 

where (u, v) = (w cos 0, w sin 0). (1.*418) 

w and 0 may be called the mean wave-number and mean direction of the two-dimensional 

spectrum. Thus the mean wave-number of E(u') is the projection of the mean wave-number 
of E(u, v) on to the line of the section. The physical significance of this result will become 
clearer in ? 1-5. 

The second moment m2(0) is particularly important. From (1.4.12) we have 

m2(0) m20 Cos2 0 + 2m11cos 0 sin 0 + m2sin20. (1.4.19) 

The maxima and minima of this expression are given by 

m2max. m2min. -= [(m20+ -M2) ?^/{(m2 -m02)2 + 4m21}], (1-4-20) 

and these occur always in two directions at right angles, given by 

tan 20 2m l (1-4-21) 
m20 m- 2 
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If Op corresponds to the maximum we have 

m2(9) m2max. COs2 ( p) +m2min. in2 (O-0p). (1-4'22) 

The direction Op corresponding to the maximum will be called the principal direction of the 
waves. Now (14 

(1-4.23) \ moo / 

is the r.m.s. wave-number in the direction 0. For a long-crested system of waves the r.m.s. 
wave-number is a maximum perpendicular to the crests and a minimum parallel to the 
crests. In general, therefore, a convenient measure of the long-crestedness is given by the ratio 

(m2max. (142 ........... (1'4'24) 
m2 min./ 

which we denote by 1/y. Thus we have 

2 m2min. (m20 + m2) -/{(m2o-mo2)2+4m1} 
m2max. (m20+m02) + /{(m20-m02)2+4m l}) 

When the condition (13-.3) for a one-dimensional spectrum is satisfied we have 

y = 0, 1/y = 0o. (1-.426) 
The two quantities m2max. m2min are clearly invariant under a rotation of the axes. Hence 
we have also the invariants 

m2max.+ m2min. 
- 

20+ m02 = m, (1-4-27) 

say, and m2max.m2min =m2omo2- 1 A2. (1.4.28) 

1'5. The wave envelope 
By analogy with ? 1-1 we define the mean wave-number as the centroid of the energy 

distribution: 
moo== J E(u, v) ududv = m0, 

(1'5'1) 
mooV = fE(u, ) vdudv = mo, 

and we define also the mean frequency r/27r by the analogous equation 

moo= f E(u, v) rdudv - m, (1.-52) 

say. Now let (1.2.1) be written in the form 

c5n exp X{i(unx+vny+on t + en)} J153) 
n 

-- [ c exp {i[ (-) x + (Vn-) y + (o -a) t+ e]} exp {i(ux + y+ t)}], (1.5.4) 
n 

where S denotes the real part. This expresses C as the product of a carrier wave 

exp {i(ux + vyl+ at)}, (1-5-5) 
and a slowly varying amplitude function 

p ei-= _ c_ exp e{i[(u ) x+ (v--) yX+ (V-- ) t+e]},) (1.5.6) n 
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which may be called the complex envelope. (p and S are real functions of (x, y, t), with 
p > 0.) Any other choice for the frequency of the carrier wave might have been taken; the 
mean wave-number has the unique property that the secular increase of 0 with x and y 
is zero (as will be shown in ? 2.8). 

Comparing (1-5-3) and (1-5-4) we see that the real part of the amplitude function, i.e. 
p cos q, has the same spectrum as ^, only with the origin moved to (u, v); similarly for the 

imaginary part. (p itself, however, is a different type of function, being essentially positive.) 
The properties of the envelope, therefore, are defined by the moments of the energy dis- 
tribution about the mean. Let 

f 7 E(u,v) (u--)(vv)q dudv =l7pq. (1.5.7) 
00 _ -0 

It is easily seen that /oo = moo, Flo -o =- 0, (1-5.8) 

and 1120 m20 m- (m20Mo0o- )/m, 

Ui i = m1l -vmOO = (ml, moo-mO m0O)/m0, (1-5-9) 

#02 = m0o2--2moo -=(mo2mo-0ml)/moo 

The second moment about the mean in a direction 0 is 

2 2(0) = 20 cos2 8 + 2/11 cos0 sin a +#02 sin2 0, (1.510) 

and the principal direction of the envelope is given by 

tan 20e 2 11 (1.5'11) 

The angle kf between the principal direction of the envelope and the principal direction of 
the waves is given by 

tan 5B 2 mtan2-m tan2(0-2 
- 

)--112--?2) (1.5.12) tan 2fl t ( ep) (20 --#02) (m20o- mo 2) + 4#,11 m1 

Thus fl is a convenient measure of the skewness of the waves (see ? 1.1). 
Consider again the curve of intersection of the surface with a vertical plane in direction 

8. We may see that the envelope of this curve is simply the intersection of the two-dimen- 
sional envelope with the vertical plane. For on the one hand we have from (1.5-6) 

^pei4= ^cnexp{i[(nu' --')x'+(V- V)y' +(o--)t+%-]}, (1.5.13) 
n 

where u; and v, are given by (1.4.3) and 

u' = u cos +v sin 0, v' = -u sin 0+v cos O. (1-5-14) 

The intersection of the envelope by the plane y' = 0 is therefore given by 

pei = exp {i[(Un-') x+ (" ),-T)t+6]}. (1.5.15) 
n 

On the other hand from (1.4.5) we may write 

((x, t) = -[xIc'exp i[(u -)) x+(o n-~) t+-en]}exp{i(u 'x'+t)}], (1-.516) 
n 
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where u' is given by (1-.514). But we saw in ? 1-4 that u' is also the mean wave-number for 
the function C(x',t) and therefore exp{i(u'x'++t)} is, by definition, the carrier wave for 

C(x', t) and (15*.15) is the envelope; which proves the result. 

1.6. A narrow spectrum 
A case of special interest is when the energy is concentrated near a single point in the 

spectrum, so that the component waves are nearly constant in wavelength and direction. 
As we saw earlier, the conditions satisfied by the first-order and second-order moments are 
that the left-hand sides of equations (1-3.14) are small. In terms of the moments this implies 
/20 +102 < m20 + m02, or equivalently 

20+ l02 < (U2 + V2) moo. (1.6.1) 

The envelope of the waves, as defined in the previous section, then has some special pro- 
perties. If in (1.5.2) we expand a(u, v) in a Taylor series about (u, ) we have 

moo= J E(u,v) [o({ii,) + (u-u) au(,iiV) + (v-i) o-(ii,i)] dudv 

d d 
= mio?(u, v) +o d-(u (ui, v) +#l d o(u, v), (1-62) 

terms of higher order being negligible. Since #lo = uol = 0 we have 

= a(u, v)). (1-.63) 

In other words, the carrier wave is a free wave with the frequency and velocity appropriate 
to its wave-number. Further, in (1*5-6) we may write 

da da 
-O = (u - -) u+ (Vn - -i) (1-6-4) 

so that pe1i exp {i[(un- ) (x +t d/u)+ (v --v) (y -+td /dv)]}, (1.6.5) 
n 

which is a function of (x + td(/9du) and (y + td9i/dv) only. In other words, the envelope moves 
bodily with velocity (1.6.6 

d\ ; - d=5 ~3=| (1.6.6) 

oa being a function of w - (2 + v2)a only, this velocity is 

dw w\ ddi - o d_,n 

(du 'd} = =-(Cos,sinm)d (1.6.7) 

which is the group velocity of the carrier wave. 
Let axes be chosen so that the u axis passes through the centroid (u, v), making i = 0. 

On expanding up, = {u+ (u-u)P}, by the binomial theorem we have 

mpq - E(u, v) uPvqdudv 
=oj Eu,v) [u0+puP0l(uu)+i.+(u-u)]0 (v )dudv 

J 00J-0 

- 
Pu/o o+ pUt-P- /+ ... +-p.pq. (1-.68) 
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In particular, since #10o= ,0~ = 0, we have 

m20- 100+#20, ll = 11, i02 02. (1-6-9) 
Thus (1-.49) becomes 

m2(8) -= U-21 Cos2 ( 20cos2 0 2#1 COS 0 sin #sn2 0). (1-610) 

Since ,I < (,20,u02)4 it follows that all three moments 1120, #111, #02 are small compared with 

U2#00. Hence m2(O) has a maximum near 0 -0, or and a minimum near 0 = 'T. In other 
words, the principal direction lies along the axis of u. The long-crestedness y-1 was defined 
as the ratio of the r.m.s. wave-numbers parallel and perpendicular to the principal direc- 
tions. Thus] m2( 

2 - m2 (2) /o,02 
' m2(0) u2Uoo 

Now in the neighbourhood of the centroid we have v = u0 very nearly, so that 

02 =- f fE(u,v) u202dudv. (1.6-12) 
00 00 

Hence y2oo = f Jf E(u,v) 02du dv. (1-6-13) 

In other words, y is the r.m.s. angular deviation of the energy from the mean direction. 
Since the principal direction of the waves coincides with the u axis, the angle of skewness 

, is the angle between the u axis and the principal direction of the envelope, that is, 

tan 2, - 2/11o. (1-6-14) 
//20 -/02 

It will be found convenient to introduce one further parameter for a narrow wave 
spectrum: = j20/i200). (1*6?15) 

v is proportional to the r.m.s. width of the spectrum in the principal direction. We shall 
show in ? 2-8 that v-1 is a measure of the average number of waves per 'group'. 

PART II. STATISTICAL PROPERTIES 

The fundamental statistical distributions of C and its derivatives are given in ?2 1. The following 
three sections are devoted to properties of the surface not involving motion, and the next three 
sections to the distributions of velocities associated with these properties. Lastly, ??2.8 to 2*10 
deal with the envelope of the surface and with properties which can be derived from it. 

The distributions of the surface elevation C and of the two components of gradient /lafx, a/lay 
are normal in one and two dimensions respectively (equations (2.1-8) and (2-1-12)). The greatest 
r.m.s. gradient is in the principal direction of the surface. The distribution of the magnitude a of 
the gradient regardless of direction is given by (2.1-31) and figure 3. For very short-crested waves 
the distribution is a Rayleigh distribution; for very long-crested waves it tends to a normal dis- 
tribution, with an anomaly near cc =0, the shape of which is shown in figure 4. The probability 
distribution of the horizontal direction 0 of the gradient is given by (2.1*37) and figure 5. It is 
shown that as the long-crestedness increases, the direction of the gradient becomes more and more 
certain to be near the principal direction. 

In ? 22 is found the mean number of zeros of the surface along a horizontal line in an arbitrary 
direction 0. The number No per unit distance is given by (2-2-5). Thus No is a maximum when 0 is 
in the principal direction, and a minimum in the direction at right angles. The ratio Nomax./Nomin. 
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is equal to the long-crestedness y-1. The mean number of times that the surface crosses a line at 
arbitrary level is also found (2.2-12), and the mean number of crests and troughs of a plane section 
of the surface in any direction. 

The average length of a contour of constant height drawn on the surface is derived in ?2.3. The 
length s per unit area is given by (2.*316). The distribution of the direction 0 of the normal to a 
particular contour, at points distributed uniformly along it, is given by (2-.323). As in ?2.1, when 
the waves become long-crested, the direction becomes concentrated near the principal direction. 

Next (?2*4) the average density of maxima and minima of the surface per unit horizontal area 
is considered. It is shown that the average density of maxima, Dma., is equal to one-half of the 
average density of saddle-points, and to one-quarter of the total density of stationary points on the 
surface. The actual density is given by (2-4.51), in the general case. For a narrow spectrum, 
the density is given by (2*4*61) and table 1. Dma. depends not only on the long-crestedness but also 
on a parameter a representing the peakedness of the energy distribution with regard to direction. 

Passing now to properties depending on the motion of the surface, we consider in ?2.5 the 
velocity of the zeros of the surface along an arbitrary line. We find that the velocities have a 

probability distribution given by (2.5.15). This is symmetrical about a mean value depending on the 
first-order moments. Similarly, the velocities of maxima and minima of a plane section of the 
surface have a distribution given by (25*.19). These distributions are studied in the special case 
of a narrow spectrum. The width of the distribution depends on both the width of the energy 
spectrum and on the dispersive properties of the medium. 

The motion of a contour on the surface can be defined locally by the velocities of its points of 
intersection with lines parallel to the axes of x, y (?2.6). The distribution of the reciprocals of the 
velocities, which is simpler than that of the velocities themselves, is given by (2-.621). The dis- 
tribution is discussed in detail for the case of a narrow spectrum; the contours of constant pro- 
bability are then concentric ellipses. 

In ?2*7 is considered the motion of the 'specular points' of the surface, that is, points where the 

gradient of the surface takes a certain value. (Such points on the sea surface are, to a distant 
observer, points of reflected sunlight.) The probability distribution of the two components of 

velocity is given by (2-7-31). In the special case of a narrow spectrum the mean velocity of the 

specular points is equal to the phase velocity of the carrier wave. The departures of the velocities 
from the mean velocity have a distribution given by (2 7.37). This expression has been computed 
for three different values of the peakedness a, and is shown in figure 12 a, b and c. 

In ?2.8 we consider some properties of the wave envelope, from which we derive some other 
useful distributions. The distribution of the envelope function itself is a Rayleigh distribution 
(2 8 6). The joint distribution of p, ap/ax and aplay is given by (2-8-15), from which it follows that 
the envelope possesses a number of properties analogous to the original surface. The envelope also 
controls the 'grouping' of the waves, and we find, taking a section of the surface in an arbitrary 
direction 0, that the average length of a group is 2/N, where N is given by (2.8.26). Hence the 

average length of a group is least in the principal direction and greatest in the direction at right 
angles. We find the average number of waves in a group (2 8.27) and the condition that this shall 
be independent of the direction 0 (2-8.28). 

When the spectrum is narrow, the crests of the waves lie practically on the envelope, and so we are 
able to deduce that the probability distribution of the heights of crests is approximately a Rayleigh 
distribution (2-9-1). The distribution of the heights of maxima is found through the distribution 
of the heights of the maxima of the envelope (2 9-8). This distribution is shown in figure 13 for 
different values of peakedness a. The limiting case of two crossing swells (a = 1) is given by (2-8-12) 
and is also shown in figure 13. 

Finally, in ?2.10 is deduced the distribution of the intervals I between successive zero-crossings, 
or between the successive points of intersection of a straight line with a contour at fixed height. The 
distribution of I for waves of all heights is given by (2-10.18). However, if the waves are classified 
according to their height, the distribution of I is given by (2 10-23), and hence it is found that I is 
less scattered for the high waves than for the low waves. The degree of scattering is inversely pro- 
portional to the average number of waves in a group. 

VOL. 249. A. 42 
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2*1. The distribution of surface elevation and gradient 
Let 61, ..., be n quantities, each the sum of a large number of independent variables 

whose expectation is zero. Then under certain general conditions (discussed by Rice I944, 
i945; see also Cramer I937) the joint-probability distribution of i, ..., is normal in 
n dimensions: 

P(61, ) = 
( n exp {-Miji }, (2.1.1) 

where (Mij) is the inverse matrix to 

/61 6162 ... 61 n\ 

(i>) = |62 ... 62I - 6I n ) (2-.12) 

\6n'il Sn62 * . /n 
and A= Ej. (2.1.3) 

The elements of (ij) are the mean products 6i6 of the variables 6i and j over the probability 
space of the independent components. (3ij) is a positive-definite matrix, for if ai,..., 
are any n parameters not all zero 

ijigj = (aZii)2>0. (2.1.4) 

Now according to equation (1 2 1), C and also its derivatives are variables of this type. 
Further, writing for brevity 

UnX+vny+ont+e = qS, (2.1.5) 
we have (2 _ ( cncos n)2 = (2 1.6) 

n n 
since the phases are random. Thus 

(2 E(u, v) dudv moo, (2.1.7) 

and accordingly the probability distribution of 1, = , is 

p(1l) 
- 

(2r)m0 exp {--/2m00}. (2-1-8) 

Similarly = m20_ 
0(~l 

- 
n n 

(d)= (-_CnVnSi nn m)2 Z1 
2 n2 2 (2.1.9) 

0~ye = n sn cn 2 = m02, 

dC' dC 
dx = (y cn Un sin On) ( Cn sin ) = 2CnUn = m 

The matrix of correlations for dC dC 
6263 dx' y (2-1-10) 

is therefore ( (2.1. 
(Ei=P j)-m2) 0 (2.1]11) 

V7M?!i y^02/1 

and the joint-probability distribution is 

P(62, 63) = 2Aex { - (m022-2mll621 3 + m202)/2A2}, (2- 112) Z7ff A| 
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where A2 = m20l m (2-1.13) 
mll m02 

The cross-correlations between g and dg/dx, dg/dy are given by 

d = ( Zc ncos n) (- nUnsin ) = 0, 
X n n (2-.114) 

Cgy 
- (I cn cos 5n) (-I Cn Vn sin n) = 0, 

t/^ ra n 

so that C and dg/dx, dc/dy are uncorrelated. The joint-probability distribution of 

(61 62), 3) (g, d/dx, dC/dy) (2.1-15) 
is therefore given by) (2.1.16) 

P 2 61) ̂2?&3) P(61) P (2, 13), 

wherep(6l) is given by (2-.18) andp(62, 3) by (2-.112). 
In general we find, by repeated differentiation, 

/ )p+q 2 

PqdxP O+yq]' d m2p, 2q 

dPd -q ~dxpSyg 
2P'29 

1 (2.1.17) 
and )1(P+q-'-q') ' or 0, 

dxPdyqdxP'dyq' ( 1r 0 

according as (p + q -p'- q') is even or odd. For example, the derivatives of order p + q n 
are not correlated with those of order p'+ q' = n - 1; but they are correlated, negatively 
in general, with those of order n + 2. 

Slightly different results apply to derivatives involving the time t. We have from (1- 21) 

dt = C- n Cnsin (unx+vny+nt+e,), (2-1-18) 
n 

and so the energy spectrum of dg/dt is oE(u, v). The correlations between the derivatives 
of g and those of dg/dt are given in terms of the moments 

mpq 
= j -- E(u, v) UPVqdudv, 

(2'1-19) 

;q f= Of2E(u, v) upqdudvJ 

of the functions orE(u, v) and o2E(u, v). As in (2.1-9) we have 

- mo, dO - ml?' dt y 
- iml0, (2.1.20) 

(0Wd =d,,, Ox , 

O, 

O,y ,l 

and in general /dP+q+l (2 

d\xPdyqdt m 2p,2q 

landxpdyqdt) \dxpdy ( 1)--p+ or 0, (2 122) 

according as (p +q-p' - q') is odd or even. Thus all the correlations of the spatial deri- 
vatives of dg/dt with the spatial derivatives of g are expressible ill terms of the odd moments 

42-2 
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of oE. The odd derivatives of dC/dt are all independent of the odd derivatives of g but are 
correlated with all the even derivatives; and vice versa. 

Let us now consider more closely the pattern of surface slopes. If the magnitude of the 
surface slope is a and its direction is 8 we have 

(62)3) = y)= (a cos , asin ), (2.1-23) 

and so 
pand 

50so 
(0=8) = (72,3 

6) P(62 ) a- P(6=2, 63), (2-.124) 
d(a, 8) 

or from (2.1.12) 

p2n(,) = 2-exp {-a2(mo2Cos2 0-2mx cos sin O+m2 sin2 )/2A2}. (2 1-25) 

If we take the x axis along the principal direction, so that mll vanishes and m20 m02, then 

a2 
p(a, 0) 2= 2a exp {- a2(mO2 cos2 + m20 sin2 0)/2A2}. (2-.126) 

For a fixed value of 0, the r.m.s. slope is given by 

a2r^Ma, ) da"4 
~JaPo~~ 8)r~ da [2A 2 ]I f(2.1-27) 

[p(C ) d j m2 Cos2 0 + m20sin2 ] (227) 
rp(a0) )dcx 

The maximum r.m.s. slope, therefore, is in a direction 0 = 0, that is to say, in the principal 
direction. The minimum slope is in the direction at right angles to this. 

The statistical distribution of the slope regardless of direction may be found by in- 
tegratingp(a, 8) with respect to 0 from 0 to 2fr. We find 

p(o) = jexp{-2(m20o+ mo2)/4A2} IO[a2(m20-m 2)/4A2], (21.28) 

wher2e Ib(z) -:1 T27r 
where Io(z) = - e-zsin0d8 = J(iz), (2-1-29) 

IO being the Bessel function of order zero with imaginary argument (see Whittaker & 
Watson 1952, chap. 17). Writing 

=-+--2in m (2-1-30) 
(m20 - m02) m 

for the relative slope, and y- = (m20/m02)1 for the long-crestedness, we have 

p(t)= (y+y -1') exp{-y2(y+y-1)2/4}I0[]2(y-2-y2)/4]. (2-1.31) 

This distribution is shown in figure 3, for y = 1, ?, and 0. When y = 1 we have, since 

IO(O) = 1, P(q) = 2e e-,2. (2.1-32) 

Thus for short-crested waves the slopes have a Rayleigh distribution. Now as z tends to 
infinity, Io(z) ' (2rz)- ez (Whittaker & Watson I952, p. 373) and so when y is small we 
have, for general values of , 2 i 

tP(W ) 
(11%) e-lv 2. (2-1'33) 
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1/4 

1 

0 

0 
If 

FIGURE 3. The probability distribution of the surface slope = Oc/(mo0 + m22), 
for different values of the long-crestedness. 

1]0- 

08 -- ------- -------- .- 

0.6- 

0-4- 

022- 

0'2 I~ I I l l I 

0 1 2 3 4 

FIGURE 4. The limiting form of the slope distribution close to the 

origin, for a very long-crested surface. 

In other words, for long-crested waves the slopes have in general a normal distribution (as 
we should expect, for since the slopes are nearly all in one plane, the distribution of o is 
the same as the distribution of d9/dx, which is normal). However, for very small slopes, 
comparable with ym, we must use the approximation 

P() = (lyr) e-"l21472Io(12/42), =f(i/r), 

STATISTICAL 

(2-1-34) 
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say. f(rly) is plotted in figure 4. As rI/y-?oo, sof-> (2/71)i, which is the value of (2-1-33) at 
the origin. The anomalous distribution near the origin appears to arise from directions 0 
which are nearly perpendicular to the principal direction; since the crests are only of finite 

length, the chance of a very small slope in this direction is less than if the waves were 
two-dimensional. Nevertheless, the integral of (2-1.34) from 0 to oo is equal to 1, so that as 
the waves become infinitely long-crested the contribution to the integrated probability 
from the anomalous term is vanishingly small. 

p(9) 

1/4 

,1/2 

FIGURE 5. The probability distribution of the direction 0 of the surface gradient for different 
values of the long-crestedness. 0= 0 is the principal direction. 

Even when the waves are not long-crested, still for large values of a 

(2.1.35) 
A(r]) N( (1- y2) 

Thus for large slopes the distribution always approaches a normal distribution ultimately, 
provided y<l. 

The statistical distribution of the direction 0 of the gradient is found by integrating 
(2- 126) with respect to a from 0 to oo: 

p(0) 2r (mo2 cos2 0 + mn2 sin2 0) 

p(o) = 
27T(y2 cos20+sin2 0) 

' 

(2.-136) 

342 
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When y = 1 (the waves are short-crested), p(O) is independent of 8 and there is no pre- 
ferential direction for the slopes. As y diminishes the slopes become more and more con- 
centrated about the principal direction (see figure 5). When y < 1 we have in general 

p(8) - 2T sin28' 

which tends to zero as y- 0. But near the principal direction, i.e. when 0 is comparable 
with y, we have 

P() 
= 

27(y2 + 82)) 

a distribution whose width is proportional to y. The integral of the distribution from 

O/y = -oo to oo is equal to 2. Thus the probability that 8 is near zero is 2, and so also is the 

probability that 0 is near -t. Hence it becomes almost certain that the gradient is nearly 
in the principal direction. 

It should be noted that the probabilities so far discussed are for points distributed 
randomly and uniformly in the x,y plane. The corresponding probabilities for points 
selected so as to lie, for example, on a particular contour - = constant, are different, as 
will be seen in ? 2.3. 

2*2. The number of zero-crossings along a line 

As in ? 1-4, let us consider the curve in which the surface is intersected by the vertical 
plane x sin 0 = y cos 0. A point where this curve passes through the mean level (g = 0) 
may be called a zero-crossing of C. We shall now consider the number of zero-crossings of g 

per unit distance x' measured along the line of intersection of the vertical plane and the 
mean level. 

The mean number of zeros for a random function of a single variable has been derived 
by Rice (I944, I945). We recall his argument briefly. C and dl/dx' are random functions 
which we shall denote by 61 and 62 respectively. Suppose that C passes through zero at 
some point x' in the interval (x,xo+ dx'), and with gradient d9dx' lying in the range 
(62, 62 - d62). Then at the point x' = xo itself g lies in the range (0, - 2dx'), approximately, 
i.e. a range of height dl = I 2I dx'. The probability of this occurrence is 

p(0, 62) I 62 I dx' d62, (2-2-1) 

where P(61, 62) is the joint-probability distribution of (61, 62). The total probability of a zero 
in (x0, x0 +dx') is found by integrating with respect to 62 from -oo to co. Hence the total 
number No of zeros per unit distance is given by 

No- p (0o, ) 162 d62. (2-2-2) 

Now the matrix of correlations for (61, 62) is 

(') o (mu (2723) 
and so by (2-1-1) 1 

p 2) = 
2r(mom2) exp{ -/2mo-2/2m,}. (2.2.4) 
^.l7T\ltQ/i)4 
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On substituting in (2-.22) and carrying out the integration we find 

1 m2(O) 
No=- m()) (2.2-5) 

In other words ffNo is equal to the r.m.s. wave-number in the direction 0. It follows at once 
from ? 1.4 that 

(1) the number of zeros is a maximum and a minimumfor two directions at right angles, given by 

tan 20= 2ml ; (2 2'6) 
m 20 mo2 

(2) the maximum and minimum values of No are given by 

N max., Nmin. [(m20 + m02) +/{(m20-mO2)2+4m0l}] ; (2-2.7) 

(3) the number of zeros in a general direction 0 is given by 

N = Nmax. cos2 (0- p) + Nmi. sin2 (- Op); (2-2-8) 

(4) the ratio Nomin.Nomax. is given by 
Nomin' 
Noma 

= (2-2-9) 
Omax. 

where y-1 is the long-crestedness; for a narrow spectrum Nomin./Nomax. equals the r.m.s. 

angular deviation of the energy from the mean direction. 
There are similar relations for the mean number of crests and troughs along the curve, 

since these are simply zeros of the derivative d/ldx'. The energy spectrum of dC/dx' is u'2 

times the energy spectrum of C. So the mean number N1 of crests and troughs together is 

10m4(0)\ 
MN1 - Im (0)1 (2.2.10) : \m2(0)! 

(the number of crests or troughs separately is half this). m2 and m4 can be expressed in terms 
of the two-dimensional moments of E(u, v) by means of (1 -412). m4 is of the fourth degree in 
cos 0 and sin 0, and it is found that in general N1 (0) has four maxima (in two pairs of opposite 
directions) and similarly four minima; these can be found, if necessary, in terms of the 
fourth-order moments m40, m31, ..., m04 and the second-order moments m20, mil, 0,2. 

In the same way the mean number N2 of points of inflexion on the curve is 

1 
m6(0)\' N2 = 1 

(m6(;5), (2?2 11) 

and the maxima and minima of N2 are given in terms of the sixth-, fourth- and second-order 

moments of E(u, v). 
We may find similarly the average number of times that the curve of intersection 

crosses the level C= 61. For in (2-2-1) and (2-2-2) it is necessary only to replace p(0, 62) 

by p(6, 62) Since 61 and 62 are independent, this simply amounts to multiplying by a factor 

exp {--/2m0}. So in the general case we have 

AT 71 1m2() x21 No = 2 
[mo(0)) exp {-62/2m?(O)}. (2.2.12) Iff O(O)l I~blY"O\/I 
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By similar reasoning, the number of times N1 per unit distance that the curve has a gradient 
62 is given by (0) i 

Nl = g, (m()) exp -2/2m2(8)}, (2.2.13) 

and there are similar expressions corresponding to the higher derivatives of g(x'). 

2-3. The length and direction of the contours 

Let us consider now a corresponding property in two dimensions. Imagine the surface 
contours g = constant to be drawn in the x, y plane. Contained in any region A of the plane 
there will be a certain length s of the contour g = .o The average length of contour, being 
proportional to the area A, may be denoted by sA. The factor s is now to be evaluated. 

n 

PX p 

dA 

FIGURE 6. The length s of contour intercepted by a small element of area dA. 

Let P be any fixed point in the plane, and dA the area of a small region surrounding P 
(see figure 6). Let s denote the length of a contour g =- O intercepted by the region dA, 
and let n denote the perpendicular distance of the contour from P. Suppose that the 
magnitude ac and direction 8 of the gradient are fixed. Then the height g of the surface at 
Pis given by | -C = an. (2.3.1) 

For the contour to cut the element of area, the perpendicular n and the height g must lie 
in certain small ranges (nl, n2) and (YD, 2). If now a, 8 are allowed to vary within small 
ranges (a, a + da), (8+ dO), the expectation s ,,dA dcdO of s over the area dA is given by 

r 2 rn 
s,odAdadO = sp(g, a, 8) ddad d0= sp(c a, ) adnddad8, (2-3-2) 

1 J nl 

where p(g, a, 6) denotes the joint distribution of g, a, a at P. Since , a, a are nearly constant 
over the small range of integration of n we have 

-,odA= -cp(, (, 8) n2sdn 
- p(C, o, 8) dA, (2.3.3) 

and so s p, = op(, a, 0). (2-.34) 

Integrating over all possible values of a, 0 we have 

J= dood f , ) dcd. (23- 5) Now from, ?d2dO ( , 0) p(p(,( )dd. (2-3.5) 

Now from ? 2.1 p(g, o, 0) = p(g)p(o, O), (2.3.6) 

VOL. 249. A. 43 
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wherep(5) is given by (2-1-8), with 6 = , andp(a, 0) is given by (2.1.20). On substituting 
these values in (2-3-5) we have 

1 2o 27T 

(2= (moo/) exp 2/2mOO} a2 exp{-a2(mo2 cos2 + m2o sin2 ) /2A2} da d8. 
(27r)l (MQQA2)em JJ Jo 

(2-.37) 

(It has been supposed that the x axis is taken in the principal direction, so that mlI vanishes.) 
Integration with respect to a gives 

A2 exp d 
=4nm exp{- /2moo }f 

" 
(2.3.8) 

4rm exp62/2MOOJ (mo2 sin2 +m2ocos2 )P (23,8) 

where 0 =0 + i.21 That is to say 

s==( m? exp {-C2/2moo} - (2 -3-9) s r = (moom o) 2 (2.3.9) 
(1 M20sin2 )i' 

where k2= 1-2. (2.3.10) 
Now since d k2sin 0 cos = (k2sin2)+ k2- (2.3.11) 

dq (1 -k2asin2 q) (1 ksink2sin2) (23 

it follows, on integration between 0 and 7r, that 

( 1-k2) ( 1- sin2qs) do = E(k), (2-3.12) 

where E(k) is Legendre's complete elliptic integral of the first kind (Legendre 181i). 
Hence we have finally 

r20 
02 

exp { 2/2moo} (1 + y2)- E{J(1 _y2)} (2-3.13) 

In the special case of long-crested waves, when y = 0, we have E(1) = 1 and further 

m20 = m2(0), m2 = 0, (2-.314) 

giving { 2= -(o)) exp -2/l2o}. (2-.315) 
f \ moo / 

Comparison with (2-.212) shows what we might expect, namely, that the mean length of 
contour per unit area is equal to the mean number of crossings of the contour level per unit 
distance by a plane perpendicular to the wave crests. 

In general (2-.313) may be written 

s = -(20+02) exp {- 2/2moo}f(y), (2-3.16) T\ moo / 

where f(y) (1 +y2)- E{(1-- 2)}. (2-.317) 

This function is shown in figure 7. At the two extreme values we have 

f(o)=1 (2-3-18) 

and f(1)= 22= 1-1107.... (2-.319) 2 2 ,/2 
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Throughout its whole range the function departs very little from unity. There is, however, 
a weak singularity at the origin, where 

f(r) - + ly2ln -Y + 0(y2lny). (2-3-20) 

A very closely related distribution is that of the direction 0 of the normal to a given con- 
tour. Let us suppose that0 is measured at points randomly and uniformly distributed along 
the contour. 8 is also the direction of the surface gradient at the point of measurement. 
However, the distribution of 8 for a given contour is quite distinct from the distribution 
of 0 found in ? 2-1, where it was supposed that the angle was measured, not on a particular 
contour but at points randomly distributed in the x, y plane. 

Y 
FIGURE 7. Graph off(y) = (1 +y2)-{ E[V(1 - y2)}. 

To find the distribution p(8) for the contour = constant we may note that the con- 
tribution of a given length of arc to the distribution of 8 in the interval (8, 0+ dO) is simply 
proportional to the expected length of arc for which 0 lies between these limits, that is, 

P(9O) d8oc fs, dadO. (2-3-21) 

On normalizing the right-hand side by dividing by s we have 

p( O)= fo do= = ap (C,, 0) da. 
Substituting from (26) and (213), and carrying out the integration we find 

Substituting from (2 3 6) and (2?3?13), and carrying out the integration we find 

1 y2 
p(o)9 = 

4E{(1 - y2)) (y2 cos2 + sin2 80) 

,2-3 22) 

(2-3-23) 

43-2 
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(where 6 0 is chosen as the principal direction). The form of this expression is somewhat 
similar to (2-.137). When y = 1 (for short-crested waves) 

p() - 2= ' (2-3-24) 

i.e. the contours have no preferential direction. As y diminishes the distribution becomes 
more and more concentrated about the mean direction 0 = 0. When y is small, we have 
for general directions 2 

p(O)^ 4sin~ ' (2-3-25) 

which tends to zero as y - 0. But near the mean direction, that is, when 8 is comparable 
with y, 2 

p(0) =4(y2+2)_ (2.3.26) 

The integral of this expression from O/y =-oo to oo is equal to 2. Thus the probability 
that 0 is near zero is 2, and so also is the probability that 0 is near Tr. Hence it becomes 

highly probable that the direction of the contour is near the principal direction. 

2-4. The density of maxima and minima 

Let us consider now the problem of how many maxima and minima (humps and hollows) 
the surface possesses, on the average, per unit area. 

At a maximum or a minimum the two components of gradient d9ldx, d9/dy must vanish. 
But not all such points are maxima or minima; we may also have a col or saddle-point, 
where the surface tends to rise in one pair of opposite directions and fall in another pair of 

opposite directions. We shall prove the following theorem: 

On a statistically uniform surface the average density of maxima per unit area plus the average 
density of minima is equal to the average density of saddle-points, or 

Dma. + Dmi. = Dsa.. (2-.41) 

Let a contour map of the surface be drawn, and let a direction 0 be assigned to each 
contour, say to the right when facing up-hill. Thus at each point of the plane, except the 

stationary points, there is a unique direction 0. Consider now the variation of 0 round a 
small closed curve C on the map (see figure 8). C may at first be so small as to contain no 
stationary point, in which case 0 will return to its initial value after the circuit is completed 
(figure 8 a). If now C is expanded so as to enclose a single stationary point, 0 will increase 
by 2f7 on completion of the circuit C if the stationary point is a maximum or a minimum 

(figure 8 b and c), and will decrease by 2ar if the stationary point is a saddle-point (figure 8 d). 
As C is further increased in size, so as to enclose dma. maxima, dmi. minima and dsa. saddle- 
points, say, the variation of 0 round C will be 27r(dma. + dmi. dsa.), or 2fA (Dma. +Dmi. -Dsa.) 
approximately, where A is the area enclosed by C. But since the surface is statistically uni- 
form, the variation of 0 round C will increase proportionally to L at most, where L is the 
circumference of C.* On the other hand A increases like L2, supposing C is of constant 
shape. Thus 2rf(Dma.+Dmi. -Dsa.) is proportional to L-1 at most, and letting L tend to 
infinity we see that (Dma +Dmi. --Dsa.) must vanish. This proves the result. 

* In fact it may be shown that the increase is proportional only to Li. 
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(a) 

(c) 

(b) 

(d) 

C 

C 

FIGURE 8. Illustrating the way in which the contour direction varies round a curve enclosing 
(a) no stationary point, (b) a maximum, (c) a minimum and (d) a saddle-point. 

O^OOO^lOvOvO^ 1\0 \ 0\ 

FIGURE 9. (a) Stationary points on a surface which consists of two intersecting wave systems. 

o 0 o 

o0 .10 .> 

* = a maximum, o = a minimum, + = a saddle-point. (b) Stationary points in a hexagonal 
pattern. 

A simple example is shown in figure 9 a. The surface consists of two long-crested systems 
of waves of slowly varying amplitude. Where a crest from one system intersects a crest from 
the other system there is a maximum, and where two troughs intersect there is a minimum. 
But where a crest from one system intersects a trough from theother there is a saddle-point. 

the the sysem her is maimum an whre to tough inersct tereis aminmu, 
But~, V"V', ihr rs rmoesse nescsatruhfo hohrteei adepi 
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The pattern of saddle-points is similar and congruent to the pattern of maxima and minima 

together, so that (2-.41) is satisfied. 
On this surface the density of maxima is equal to the density of minima. But a case in 

which this is not so is illustrated in figure 9 b. Here the maxima are at the centres of the cells 
of a hexagonal honeycomb, the minima are at the vertices and the saddle-points are half- 

way along the edges. There are twice as many maxima as minima, and three times as many 
saddle-points, so that Dma sa Dmi Dsa (2.4.2) 

ma. - 
sa. Dmi. 

- 
ISDsa. (2 4 2 

In general it can be shown that the stationary points must form a cellular pattern, and the 
theorem (2-4-1) then follows from Euler's relation V+F = E+ 2 connecting the number of 
vertices V, faces F and edges E of a convex polyhedron (Euler 1752-3; Sommerville I929, 
chap. ix). 

The class of random surface represented by (1-.21) satisfies the further relation 

Dma Dmi.. (2-4-3) 

For the phases en of the component waves are randomly and uniformly distributed between 

O and 27r. The statistical properties of the surface are unaffected if a constant, it, is added to 
each phase. But this reverses the sign of and converts maxima into minima, and vice versa. 

From (2-.41) and (2-.43) it follows that 

Dsa. 2Dma = 2Dmi (2.4-4) 

and if Dsta. denotes the total density of stationary points per unit area of the surface 

Dsta. 2Da. = 4Dma. 4Dmi. (2-4.5) 

In other words, of all the stationary points on the surface, one-quarter are maxima, one- 

quarter are minima, and the remaining half are saddle-points. 
We proceed now to evaluate Dsta in terms of the energy spectrum of C. The variables 

entering the problem are 
x dy 3 (2-4-6) 

and d2 d =6465 66) (2.4 7) 
dx2') xdy' dy2 

say. (62, 63) is a pair of functions of (x, y), and if (x, y) varies within a certain small region 
dA, = x, x + dx; y, y + dy), (62, 63) will vary within a region d7 of area 

I dZ I jJI dAl, (2.4.8) 

where J= d(2,) 4= 46 (2'4 9) 
d(x,y) 

The probability that a given point, say a stationary point, lies in dA is equal to the pro- 
bability that (62, 63) lies in the corresponding region dX, which is 

J J J d ci64d5d66 d623d63P , 63, 65, 65 66) (2-.410) 
Si n00 00 J 0 

dE 

Since (62, 63) = (0, 0) somewhere in d2, p62, 63, 64, 656) may be replaced by 

p(0, 0, 64, 65, 6) 

350 
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STATISTICAL ANALYSIS OF A RANDOM, MOVING SURFACE 351 

when dX is sufficiently small, and since 

JJd2d63 = dI, (2.4.11) 

dE 

the above probability becomes 
0oo 0oo roo 

7 f Sdg4d 65d6 6 d2 p(o0,, 6 6 66) (204-12) 

On substituting from (2-4.8) we have for the probability of a stationary value of g in dA, 

DstadA = f Jf_p(, 60, 4,, 62) 1 46 5 I d4d05d 46dA. (2-4-13) 
_a -00 -00 _ -00 

For a true maximum of the surface we must have 64 < 0, 6 < 60 and J? 0; for a true minimum, 
64 >0, 56 > 0 and Jo 0. Thus the true maxima and minima correspond to the region of the 

(4, 5, 66) space given by J=4-6>0 . (2414) 

The boundary of this region is the surface J = 0, which is a cone with vertex at the origin. 
The remaining part of the (64, 65, 6) space corresponds to the saddle-points. 

Now since the second derivatives 64, 55, 66 are uncorrelated with the first derivatives 

62, 63 (see ? 2.1) it follows that 

P(62, 63, 64, 5 6) P(62, 63)P(64, 65, 6) (2.4.15) 

where p(62, 3) is given by (2-.112) and p(64, 5, 6) is the distribution for (4, 5, 66) indepen- 
dently of the other variables. The matrix of correlations is 

/m40 m31 m22\ 

(Eij) - m31 m22 m (2-4-16) 
\m22 ml3 mo4/ 

1 
and hence p(64, 5, 66) = rex{-Mii+3j+3, (2.4.17) 

where (Mij) is the inverse matrix to (ij) and 

A4-= [-"ij I (2-4-18) 

Therefore, altogether we have for the density of stationary points 

Dsta. 
1 ( 2I r 

c 
A Ad '" 

jexp {- W^ I 46 2 I d64d5 d6d. (2.4.19) 
sta. (27)2Miji+3j3} 1 64665 (2rff 1 

2 4 -o -o - 

The density of maxima is given by a similar integral taken over the region 64 0, 6 <0, 
J> 0. The density of saddle-points is given by the same integral taken over the region J< 0. 

Since (6ij) is a positive-definite matrix, so also is its inverse (MAj), and there exists a real 
linear transformation ( T) (. 

(64, 65, 6) = T(qi, q2, %3) (2-4-20) 

which simultaneously reduces the exponent in (2-4-19) to the unit form 

Miji++3+ 3- / -7/2 + 2-3 (2-.421) 

and J to a diagonal form 64 66 -- 6 = 1l - 12]2 +_ 13/3]2. (2.4.22) 
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352 M. S. LONGUET-HIGGINS ON THE 

The quantities 12,, 13 are easily found, for they are the roots of 

1 Soa-lM I O 0, 4(2-4.23) 
where (oij) is the matrix of J: 

(f/j) = 0 -1 (2-4-24) 

0 O/ 

On multiplying (2-4-23) by I I , == I Mj1 , we have 

| ,ij,-1j l |=0, (2.4-25) 

where 8j is the unit matrix of order 3. In other words l, 12, 13 are the latent roots of (Eij oj,): 

?m22- -31 ml40 

mf13 -m22--l m31 0. (2-.426) 

Ym04 --m13 ?m22 -I 

On expanding the determinant we find 

413- 3H1--A4= 0, (2-.427) 

where 3H = m4m04-4 mm313+ 3m~2. (2-4-28) 

Hence 11+12+13 = 0 (2-.429) 

and 111213 - A4> 0. (2-.430) 

It follows that one of the roots, say 1l, is positive and the other two, say 12, 13, are negative. 
We write e write 11 >0>12>13. (2.4.31) 

The solution of the cubic equation (2-.427) is 

(11, 12, 13) = Hi(cos l, cos ?2, cos I3), (2-4-32) 

where l1, l2, f3 are the roots of os 3 = AH (2 .433) 

The modulus of the transformation T is 

d(4, 5, 66) = i M -i = A (2-434) 
d(]i, 1 2 ,3)1 

We find then Dsta. = A I, 12,13), (2-.435) 

where 

I(ll, 12, 13) = j) fexp {- (21 + 2 + 2)} | +l2 + l3| dq d72dq3. (2 4 36) 
Jll 

~ 
12- 13) -, -0]2)} I1 q_ 13 1O1~2 3 Idld2d ] (24136) 

The density of maxima is given by 

ma. ( I, 1 2,13), (2-.437) 
where I'Dla. = JJfexp {-(+ ++2j I((2 ) (238) 

where I'(e1,12,13) = ff fexp{--1 /q2 +e2+ )} 12 ,11 +?12q2 /+13 J d, I dq2d33, (2.4.38) If YD 12~ 13) 1, 2 3 +2 2 333-1. 3 

V 
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STATISTICAL ANALYSIS OF A RANDOM, MOVING SURFACE 353 

and V is the conical region 
7r > O, 111 + 122 + 13q 3 >0. (2-.439) 

Clearly 41'-I= f f exp {- (q + 2 +?q)} (1 12 +l2+?13)dl) dl,d2dq3 

= (27) (1 '+ 12 +13), (2-4-40) 

which vanishes, by (2-4-29). Thus 

I 4', Dsta. 4Dma., (2-4-41) 
in agreement with (2-4-5). 

The integral I' may be evaluated by means of the substitution 

71/ l4r, 

72 = (-12)- rsin 0 cos X, (2.442) 

3 = (- 13) - rsin sin X, 
where 0<r<oo, 0<0<7ir, 0<X<21r. (2-4.43) 
We have then 

1 rX r 7T 2IT 
I' = 

l 
1 

Jdr dJ dX exp {- (1 +fsin2 s) r2/2l} r4 co s3 0 
sin 0, (2-.444) 

(1l1213) 0 o o 

where ff(x) == -- cos2 X sin2 . (2.4.45) 
12 13 

Integration with respect to r gives 
-2 i IT 27T cos3 sin 0 IT=1 3 .(fJod x (11 +fsin2 0). ' (.2-446) 

Further integration with respect to 0 gives 

I' =4(17) (/ll3)i ? d{X f2+f2(lf )i] (2 4 47) 

This is an elliptic integral and may be evaluated by known methods (Legendre I8I ). 
We find finally 

I' = (81rT)I[(213)(2)E(k, Iff) (-F) (k 2 )) : tl\ ~2 
E? ~ 

[2- 1 

-(1 +12 + 13) {F(k', 0) E(k, 2rff) +E(', E 
) F(k, -7r) F(k', 0) F(k, i1-) - 1)], (2.4.48) 

where E and F are the Legendre elliptic integrals of the first and second kind: 

E(k, 0) = (1-k2 sin2 )j do, 

(2-4-49) 
F(k, 0) = (1 -k2sin2 4)-i d, 

and k2 11(13 12) 12(ll 3) tan- 
1 

aIf e nOd make sef te (1k2 1) We find r the de n1- (2-4fi50) 

If we now make use of the condition (2-4-29) we find for the density of maxima 

(12 13) '2 
_ 

12 
O ma = 1 [( ) )E(k, W - ) F(k, W] 

. (2.4.51) 
44 VOL. 249. A. 

44 VoL. 249. A. 
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M. S. LONGUET-HIGGINS ON THE 

The density of stationary points Dsta. is four times this value. 

Equation (2-.451) may also be written 

Dma.= 25J 'D(-12/l), (2.4.52) 

where ()(a)= {a(l- a)}[(1a) E(k, ir) -( )F(k r1)]' 
(2-4-53) 

k2 1- 2a (O<a<i) 

~~l~ ~ ~ ~ ~ ~ --a k 

1l00 

0.98- 

096- 

0-94- 

0-92- 

90.9 
- 

0'90 . l a _ l . 
0 0'1 0'2 0-3 0-4 0*5 

cc 

FIGURE 10. Graph of D(a) (defined by (2-.453)). 

The form of 4D(a) is shown in figure 10. When a -> 0, k2 - 1 and F (k, 2r) - oo logarithmically. 
Hence aF(k, Itf) -> 0 and 2Hence ccF(k, r) -O0 and lim ((ac) 

1. 
(2.4.54) 

Also when a = 1, k2 = 0 and so 

<(D() = (31-3,-) r/4 = 0-917 .... (2-4-55) 

Throughout the whole of its range, ( departs very little from unity. 
A particularly interesting case is when the energy spectrum E(u, v) is narrow. Let us 

take axes of (u, v) so that the u axis passes through the centroid (u, v), making v = 0. Then on 

substituting from (1-6-8 and 16-9) and retaining only the terms of highest order we find 

A2 = U2#/oo0o2 
3H = u4(0004 + 3#2) (2-4*56) 

A4 #= (00/02#04 -l00/03 -l2). 

Now /oo, 02, 103, #04 are moments of the energy spectrum Ej, of a section of the surface at 

right angles to the mean direction. We have 

02 - (yr)2mo0 03 = b(yi)3MO, #04 = a2(y)4moo, (2-4-57) 

where y-1 is the long-crestedness (defined in ?1-4), a2 is a non-dimensional parameter 
(always greater than 1) which represents the peakedness of the spectrum El, and b is a 

354 
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STATISTICAL ANALYSIS OF A RANDOM, MOVING SURFACE 355 

measure of the asymmetry of E about its mean (but is independent of the angle of skewness 
/). If we assume #03 = 0 and so b = 0, we have 

^2 = (y-2)2 m 0, 

H- (yu2)4 m20( +a2/3), (2-458) 

A4- (yU2)6mo(a2 -1) 
and so from (2-.432) 

(11, 12, 13) = (yu2)2 m00(1 + a2/3)1 (cos 1, cos ?2, cos ?3), (2.4.59) 

a2 -1 where cos 3 - +a2/3 (24-60) 
(1+a2/3) 

v 

Thus from (2.4.52) we have Dma y (a), (24A61) 
Dm a. y2C(a), (2-4-61) 

( 
cos 12 

where C(a) 212(1+a2/3)icos ( co5-- C 2 (2-4-62) 

which is a quantity depending only on the peakedness a. For a given peakedness, Dma is 
proportional to the square of the wave-number of the carrier wave and inversely pro- 
portional to the long-crestedness y-1. To illustrate the effect of varying peakedness, C(a) 
has been computed for a number of different values of a, including some interesting special 
cases. The results are given in table 1. 

TABLE 1 

a2 C(a) a2 C(a) a2 C(a) 
1 0.0507 4 0.0695 8 0.0880 
9 
5 0.0562 5 0.0747 9 0.0919 
2 0 0578 6 0'0794 10 0.0956 
3 0.0639 7 0.0838 20 0.1265 

a2 = 1 corresponds to a pair of intersecting wave trains, for then A4 vanishes (by (2-4-54)), 
which is the condition for the spectrum to degenerate into two one-dimensional spectra 
(equation (1-.37)). In the limit as a2- 1 we find from (2-.460) that 

(?1, 2, ?3) = (-6fA, 2 7T, ?57T), 
and hence 

C 2n -= 0-05066.... (2.4.63) 

This is what we should expect, for the wavelengths of the pattern in the u direction and the 
v direction are 2r/lu and 2rT/yu respectively. Reference to figure 9 a will show that each maxi- 
mum is at the centre of a parallelogram (bounded by troughs) whose diagonals are of 

length 27T/U and 27T/yu, and whose area is therefore 2712/yiU2. The density of maxima is the 

reciprocal of this area, i.e. yU2/21T2. 
The case a2 = 9 has been included, since this is the peakedness of a low-pass spectrum, 

when the wave energy is uniformly distributed with regard to direction over a narrow 
sector. a2 = 3 corresponds to a normal distribution of energy with regard to direction. 
Another special case is a2 9, when (1, 2, !3) == (0,o ?i 3ff ), and so 

C = (31- 3-) -0*09189.... (2-4-64) 

44-2 
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Finally as a->oo we find 
C_ a-2Oa (2-4-65) 

472 

On the whole, however, the variation of C with a is slight. As a2 increases from 0 to 10, C is 
less than doubled. 

The density of specular points, i.e. points on the surface where the gradient takes a given 
value, not necessarily zero, may be found similarly. For it is only necessary to replace 
p(0, 0, 4,5,66) in equation (2-4-13) byp(62, 3, 4, 5, 66), and, from equation (2-.416), this 
amounts to multiplying by the exponential factor in (2.1 12). So the density Dsp of specular 
points with gradient (62, 63) is given by 

Dsp. 4Dma exp { -(mo262-2m116263+ m202) /2A2}, (2-4-66) 

where Dma. is the density of maxima. 

2-5. The velocities of zeros along a line 

In this and the following two sections will be considered some statistical properties of the 
surface which depend on its motion, that is to say properties involving the time t. 

Let ((x', t) denote the curve in which the surface is intersected by a fixed vertical plane 
in direction 8. Consider the movement of a point where the curve crosses a fixed level C. If 
x' and x' + dx' are its co-ordinates at two successive instants of time t and t+ dt, then we have 

0o d =z dx'+dC dt. (2.5.1) -x' dt 

Therefore the velocity of the point is given by 

c ' dx' C/dt (2.5.2) 
dt dy/dx'' 

Consider now the statistical distribution of c. 
Let the variables C, d/ldx', d(/dt be denoted by 61, 62, 63 respectively, so that c -3/62, 

and letp(61, 62, 63) denote the joint distribution of61, 62, 63 at an arbitrary point x' on the plane 
section. The probability distribution of 2, 63 at points x' where 61 takes a given value will 
be denoted by p(2, 63)1. This may be found as follows. If (x', x' + dx') is any fixed interval 
of distance, the probability of 61 taking the given value in (x', x' + dx') is 

N0(6l) dx' (2-5-3) 

(evaluated in ? 2 2). But if, at the point x', the variables 1, 62, 63 lie in certain ranges of width 

dl, d~2, d~3, then we have dl = 1 2 1 dx', (2.5.4) 

so that the probability of 41 taking the given value in (x', x' + dx') and of 62, 63 lying in the 

given range is p(, ,3) dl1d2d53 =p(i1, 2, ?3) I Id dx'd2d3. (2.5.5) 

The probability of 62, 63 lying-in the ranges d62, d3 given that 61 crosses the given level in 

(x',x'+dx') is the quotient of (2-5-5) and (2-5.3)> Hence 

( =P(1 2,5 63) 1 62 1 
No(l1) 
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Now the matrix of correlations for1, l, 6, 3 is 

0 0 

0 m, ml' 
and therefore 

p({ ,6 = (2) (m )1exp ({-- /2mo} exp {-(m' 6-2ml g263 + m62)/2A2}, (2-5.8) (2f)i (m0A2,)1x 
where A = m2m-m. (2-5-9) 
From this and (2.2*12) we have 

1 
P^(2g 3)t = A2(2 r)i (m2A,)t | I I exp{-(m62--2mla2 3+m232)/2A2,}. (2-5-10) 

We require now the statistical distribution of -63/,2. Writing 

-63162 = C, 63 = C' (2.5-11) 

d(c,c') 3 g in (2-5-10), so that d - (2.5.12) 

_21 C'2 
we have p(c, c')g 2(2r) (m2A2) c3 exp {-(m/c2 + 2m'/c+ m2) c'2/2A2'}. (2.5.13) 

The distribution of c is found by integrating with respect to c' from -co to oo. Thus 

P(Cw 
'/M2 

(2 -5-14) p(c)g, 2 (m + 2mt c +mc2)' (2514) 

[1 t21A2,m or P(c)1 (2.5.15) 2, [(c 2)= +A2 ,/m2]i' 

where G =-ml/m2. (2-.516) 

This distribution has a maximum or mode when c = and is symmetrical about this mean 
value. The second moment of the distribution is divergent, but the interquartile range is 
given by 2 (2A5 

(2-5-17) da m2' 

It will be seen that the distribution (2-5-15) is independent of the height 61 at which the 
velocity is measured (provided this height is constant). 

We may consider similarly the distribution of velocities of points on the curve having 
a given gradient (say, zero). The velocity of such a point is given by 

d2y/dx' dt 
C1l= d2/dx'2 (2-5-18) 

Hence the probability distribution is the same as for the velocities of zeros, except that the 
index of each of the moments is increased by two. Thus 

p(cl) [(--)2A4m] (2-5-19) 

where A4 = m4m"-m'2 (2-5-20) 
and C1 = -m/m4. (2'5'21) 
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This is a distribution with mean c and interquartile range equal to 

2A4' (2-5-22) 
,/3 m4 

Similar distributions can be written down for the velocities of points having given higher 
derivatives of y. 

Let us interpret the above results for a narrow spectrum. Without loss of generality we 

may take the u axis to pass through the centroid. On expanding in a Taylor series about 
this point we have 

11 d2 d2 mn = nluo + -( 2 o 2 + 211 + du+102 i )Un+.a 

1(#n-2 d2d2 
mn un/100?+ 520 k -2 ++2/Ul dd' +#102d-) (u'n-) +-'" 
m' 

n 
= u'neto- 20~2+2~11 0/0/+/./021 (//no')-+ ..., 

. 
(2'5'23) 

mn = u"20u0oo + (2 2 +22lduv +o2 2) ( 2) +.-, * 

where u', v' and ar are to be evaluated at (u, 0). Suppose that 0 = 0, that is, let the plane of 
intersection be taken parallel to the principal direction. Then u' -u and, ff being a function 
of (u2+v2) only, d ( 

=0 , -=0. (2.5-24) dv odudv 

From (2.5-16) and (2-.521) we find first 

c cl =-a/, (2-5-25) 

showing that the mean velocities of zeros and of specular points are equal to the phase 
velocity of the carrier wave. Also from (2-.59) and (2-5-20) 

A = o#00o202(^a/u- da/du) 2,) (2-5-26) 
A4' /00#20U6(0'/U- d'/-du) 2, 

so that m2 _ A4' - (#2 /u-d/du (2.5.27) m2 m4 -\/oo u 

Thus the interquartile ranges of both the velocities of zeros and the velocities of specular 

points are equal to 2 
(2.5.28) 

where v is defined by (1-6-15) and F = oa/du is the group velocity of the carrier wave. Thus 
we see that the width of the velocity distribution depends both on the r.m.s. width of the 

spectrum (given by vu) and also on the dispersive properties of the medium. If the medium 
is non-dispersive, r = and so (2-.528) vanishes. This is what we should expect, since in 
a non-dispersive medium a long-crested disturbance advances without change of form and 
the zeros and specular points move with uniform velocity in the direction of wave pro- 
pagation. 

For gravity waves in deep water the group velocity is half the wave velocity and so the 

interquartile range equals vc/V/3. 
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2-6. The motion of the contours 
Consider first how to define this motion. Let P be a point in the plane lying on the contour 

= constant. A moment later the contour at the same level will have moved to a new 

position, say QSR (see figure 11 a). If PQ and PR are axes parallel to Ox and Oy, the rates 
at which PQ and PR are increasing, which we denote by c, and cy, define the local displace- 
ment of the contour uniquely, and we have 

(cx, c) =(-Cx' dydy (2.6.1) 

R -R 

/P Q\ QP U \Q 

(a) (b) 
FIGURE 11. Definition of the motion of a contour (a) by its intercept 

on an arbitrary line, (b) by its normal displacement. 

However, if we take a line through P in an arbitrary direction 0, and if this line intersects 
the displaced contour in S (figure 11), then it may be shown that 

1 1 1 
PS PQcos + -Rsinn, (2.6,2) PS -PQ 2PR 

and so if c is the rate at which the intercept PS is increasing 
1 I 1 
- -cos0+- sin. (2-.63) c cx cy 

This shows that the reciprocal quantity (l/lc, l/cy) is transformed like a vector, but not 
(cx, cy) itself. It is therefore more appropriate, and in fact more convenient, to consider the 
distribution of ()/dx d/d)64 

(Kx, Ky) (1/Cx, 1/C) O- - / a ' (26.4) 

rather than the distribution of (c,, cy). However, each may be derived from the other by 
a simple substitution. For since 

a(K, K) - K 
d(KxKC) = K2K 2 (2'6'5) (cx, cy) :x -y2 - Yx 

we have p(cx, cy) 2= 2P(K Ky). (2-6.6) 
cxCy 

The distribution of the velocities of the contours normal to themselves can also be found. 
In figure 11 b, T is the foot of the perpendicular from P to QR, and TU, TV are drawn 
perpendicular to PQ, PR. It can be shown that 

PQPR2 PQ2PR ( 7) 
QR2 , QR2 , 
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and hence the components of the normal velocity are 

X2 c2 Kx KyK. '6) (^2 CX2 + - (^ )2 2- 2+1 

Solving, we have 

K I_ + 
_ /\______ d0 (2.6.9) {x'y (d +2q42+) d(t q' (qq, 2+q)2' 

and so p(qx,y = q)p(KxKy) (2-6.10) 

Let us write dx' dy dt 612 4, (2.6 11 

and let P(61, 62, 63, 4) denote the joint distribution of 61, 62, 3) 4 at an arbitrary point P 

in the (x, y) plane. We require the joint distribution of 62, 63, at points distributed uniformly 

along the contour 61 constant. Let this be denoted by P(2, , 34)&. To find this dis- 

tribution let dA be a small area surrounding P. If62, 3, 64 at P are restricted tolie in certain 

ranges of width d2,1 d3, d64, the contribution of the area dA to the distribution over these 

ranges is, by the argument of ? 2-3, 

p(61 62, 63, 4) adA d2d63d4), (2-6-12) 

where o = (j62+3) But the total expectation of contour length over the area dA is sdA 

(see ? 2-3). Hence we have 

P(62, 3, =)4) S2)P( 234)- (2-6-13) 

Now by ? 2 1, the elevation l1 is uncorrelated with the first derivatives 2, 63, 64. Therefore 

P(61,2' , 6364) - (61)P(62) 63, 4) (2-6-14) p(^ 4) =p^)p{, (2.6.14) 

where p(1) is given by (2.1-8). The matrix of correlations for (6253, 64) is 

m20 ml1 i 1 

,y) = |11 MiM02 MiO. (2-.615) 

m0 mo mo0o/ 

Hence P(62, 63, 4) = (2l exp {- Mi6i+ +l (26 16)} 

where (Mij) is the inverse matrix to (Eij) and where A3 = . j. On substituting these 
values in (2-.613) we have 

P (234E{V(l ) (2 1 -I)exp {--1{Mji?j+ 1i}. (2'6'17) P(s2, ~, ~4)~2= 4 +r(m20o+mo2)A3E{(1 _7)2}( (22+ ) 
3exp{- 

/ +6 

Writing now K ,=- 2164' KY =- 63 K= 4 (2 6 18) 

so that "fd(K (26,K,) 1 1) so that d(2x, K3, K4) 
= 

2 -- (2-6-19) 

we have 
4 AA M201 (l+ 72)i 

p(f xY,) 1 4ffA4(m,20+mn2)iE{J(1 -2)} 1 ( X Y) 

x exp{--K2(M11K +2MI2KXK+M222 -2M -3Kx-2M23Ky+M33)}. (2.6.20) 

360 
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To obtain the distribution ofK K , we eliminate K by integrating from -so to so; thus 

1 (1+y2) (K 2+Kv2) 

PT(Kx,3Ky)g A(m20o +m2) IE{(1 y2)} R2 (2 621) 

where R = M1 12 K + M2 2M1222 M13 Kx-- 2M23 Ky +M33 (2-6-22) 

We may also write 

R = Ml(Kx-K) 2+2M12(K--Kx) (Ky -K) +M22(Ky -y)2+M, (2-.623) 

M A13M 2_2M2___ M 
where - 13 12 22 - 1lO 

M, Mll M - 2M12 ml (224) 

M1122- 2M3 -- m(224) 
Ml I M22 12 moo 

M = M33-(MIKX2 +2M12KXKY+M22K) m" moo 

The denominator R is thus a symmetrical expression with a maximum at 

x^ -I m5 m m(o mo 1') (2.6-25) 

The distribution (2-6-22) itself is not in general symmetrical. However, when the spectrum 
is narrow, R is appreciable only in the neighbourhood of (Kx, ky), giving 

1 (?2 i)2 
p(Kx, Ky) = - R2 ' (2.6.26) 

approximately. The curves of constant probability are then the ellipses R = constant. The 

major axis of each ellipse makes an angle zu with the x axis given by 

tan 2- 2M2 (2 627) 
M1l1 _M22 

Since P(Kx, Ky)gl is proportional to R-2, it may be shown that the fraction of the distribution 

lying outside the ellipse is proportional to R-1. At the centre, R =M. Therefore the ellipse 
enclosing just half the distribution is 

R =2M. (2-.628) 

The semi-axes of this ellipse are of length 

rl r2 - [(Ml l+M22) ?{(M1 M22)2+4M } (2'6'29) 

To interpret these results, let the u axis be taken so as to pass through the centroid (u, v) 
of the energy spectrum. The spectrum being narrow, we may expand in a Taylor series 
about (u, 0) thus: 

1 / 92 d2\ 
mO =- +oo 2 20 2 +V02 +OdV2) + +** *. 

m,o = uo o+ o00 ( +220 d+02 V2) (u) + *- (2 .630) 

d2= (v 

VOL. 249. A. 45 
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where u u. Making use of (1 6-9) we obtain 

M Al#02 (c/U)2 11 
20#02-U1 (oru - dfldu)2' 

flu cr^/u M - /11 i/g/ 
1 20102 -121 o\/U u- doIdu' (2-6-31) 

M 20 M,22 = - 0 2' 

A3 = o00(20#02-/1) U2(/lu-daldu)2.. 

Hence (K,K,) =(-U, o), (2-.632) 

and tan 2=,= 2#1 1 cr/u(ar/u-dc/du) (2- 633) 
1120 (r/u - dralu)2 -202 (r/u)2 

showing that the centre of the distribution is the inverse of the phase velocity, and that 
tan 2z7, like tan 2/, is proportional to ,iu (cf. equation (1-6-14)). When the spectrum is 
symmetrical the semi-axes of the distribution are given by 

) fr0 U-/u , r2 
- ) (2-6'34) /vwo a' /U \0 (r 

that is, r1 = | vK(1-r) , r2 = yK 1, (2-.635) 
where K, -u/, is the mean reciprocal velocity; r, = - ddu, is the corresponding group 
velocity; v = (,20/,00 u2)1 and y= (,o2/00 ou2)1. This shows that r2/k which represents the 
width of the distribution perpendicular to the principal direction of the waves, depends 
only on the long-crestedness y-I and is proportional to y. On the other hand, r2lK, which 
represents the width of the distribution parallel to the principal direction, depends not only 
on the r.m.s. width of the spectrum, represented by v, but also on the dispersive properties 
of the medium. For gravity waves in deep water 1rK = 2 and so 

r 2 vK\. (2-6-36) 

2-7. The velocities of specular points 
A specular point on the surface is defined as a point where the two components of the 

gradient take given values. Such points would be indicated to a distant observer as the 
points where light was reflected from a distant source. In ? 2-4we deduced the mean density 
of such points per unit area; let us now consider the statistical distribution of their velocities. 

If (x, y) are the co-ordinates at time t of a point whose components of gradient 

dx' _y 62^ 63 (2.7.1) 

are fixed. At a subsequent time t + dt the point will have moved to a position (x + dx, y + dy), 
where 

edx X2 dxdxy d+dxdt 
(d;)\dxl dy dx2+- dx + dxt dt. ^(2.7.2) 

O=d( -dd d2dx C 
dy- 

d2 dt. - 
dxdy x y2 dydt 
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The ratios dt' dy = ' C (2 .73) 

are the required velocities. Writing 

d2C d24 d2C 
dX2' dxdy' dy 65 66 

(2-7.4) 
d2a d2_ 

dxdt' dydt = 67 6 

in (2-7.2) we have 4Cx+64y =-7, (275) 

65 Cx 66C -68.(-7- 

Since the velocities cx, cy are given in terms of 64, ... 6, we require first the joint distribution 

P(64, 68) 2, 3 of these quantities at points where 62, 63 take the given values. 
Let dA denote any small area of the x, y plane, and P a neighbouring point. As usual, 

p(62, *, 6s) will denote the ordinary distribution of 2, ..., 3 at P. Now if 2, 63 take the given 
values at some point in dA, and 4, ...,58 are fixed, then (62,63) at P lies within a certain 

region d2 of area d =d (2*7 6) dz -2416 - dA (2.7.6) 

(cf. ? 2-4). Hence the probability that 62, 63 take the given values in dA and that 64, ...5 8 

lie in ranges of width d d4, ..., d68 respectively is 

P(62,63, ..., ) 1 466-6|5 dA d4d d5 ... d68. (2-.77) 

But the total probability of 62, 63 taking the given values in dA is 

Dp dA, (2-7-8) 

where Dsp is the density of specular points with gradient (2, 63). Therefore the probability 
that 4 ... 8 lie in their respective ranges given that there is a specular point in dA is the 
quotient of (2-.77) and (2-.78), that is 

P~2, ....,3a)|l4~6-621|d64 ... d68 62 ) d68) 16466?5 '(2.7.9) Dsp. 

In other words P(64 8)2,3 
62 8) 1 6466--2 I (2-7-10) 

Now the first derivatives62, 3 are statistically independent of the second derivatives 4 ... 8. 

Therefore 
P(2,Therefore2, 8) = P (s) 2,) 3)(64, .., 8), (2.7.11) 

where p(62,63) is the ordinary distribution of 62, 63 given by (2-1-12) and p(4, ..., 68) is the 
ordinary distribution of 4,, ~8. The matrix of correlations for ..., 68 is 

mi40 m31 m22 m30 m21 

m31 m22 m13 m2 m12 

i( n)= 22 m13 04 m 12 m03 (2-7-12) 

lm130 m21 m12 m20 m(27 

m21 m12 m03 I mll m2 

45-2 
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1 
and so exP A i?j+, and so tP{ **4*- , 68) = (2ff exp{-Mj i+3 j + 3}, 

where (Mij) is the inverse matrix to (ij) and where 

A5= S,i. 
Substituting in (2-7-10) we have then 

1 
P(4, .-., 68)2, 3 4 (2ff) (A2 A) I 1 646-6 I exp - Mi +3 +} 

where Dm. is given by (2-.451). 
The distribution of the velocities c, cy is now obtained from the relations 

we write also 
C, C2, C3 

- 4 55, 66 

and transform to the variables c, cy, C1, c2, 3 we have 

(4?, ".', 8) 4 46__2 __ C __.2 

d(x, cyc, c2, ) 46 5 = 13 C2 

Hence p(cx, cy, c1, c2, c3),= 4 ) (C1 c3-c) )2 exp{-- Nicicj}, 

where ( ) is the (33) matrix whose elements are 
where (Nij) is the (3 x 3) matrix whose elements are 

Nl1 =- 44 ,2 -2M41 x 

N22 = 
Msc+2M45Cxy+M44C2-2M52 cx N22 - -555 

33 - M5 C 

N23- M55Cxcy+M45C2- M53Cx 

N31 M45 cxy - M43 Cx 

N12 = M45 2+ M44CxCy N12 - 4cx 

- 2M42Cy +M22, 

-2M53c +M33, 
- (M43 + M52) Cy +M23, 
- 

M51cy +M31, 

- 
(M42 +M51) CX- M41Cy 

On eliminating cl, c2, c3 by integration between +oo we have 

P(Cx ,Y)2, 63 4(21T) (A2A5)I 
Dma .-o J- J- (C1c3-C 2)2exp {-?Nijcicj} ddc c2dc3. (2-7'20) 

The matrix (Nij) is positive-definite. For, if any real values of cl, c2, c3, not all zero existed 
which made the quadratic form Nicicj zero or negative, a corresponding set of values of 

64 ... e could be found from (2-7-5) which made Mij,1+363 zero or negative. But this is 

impossible, since (Ayl) is positive-definite. Therefore (Nij) is positive-definite. Therefore 

by a real linear transformation of variables c1, C2, c3 -1, 2, 3 we have 

NijCicj- 12 
+ 

1-2 1 

C1 3 -2 - 1 +12 2 +13 I32J 

where 11, 12, 13 are roots of the equation 

(2-.721) 

As in ? 2-4 we have then 

P(cx, C -)5 2, 3 4(2 ) ( A2A (11 12' 13), 
4(2r)S (A A5 I Nij I )Dma.(72 

(2-.713) 

(2-7.14) 

(2-7-15) 

(2.7.5). If 

(2-.716) 

(2-.717) 

(2-7-18) 

(2-.719) 

(2-7-22) 

364 

I r-lN =l o. 

1 

(2-7-23) 
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where 

I(1,12, 13) ={-_ 7 Sf ( +l2+I3q+12 2+1)2exp {-? (1]2+ql+)} dq1ldq2dq3. (2 .724) 
-00 -00 -00 

This integral is much easier to evaluate than the similar integral I(l1, 12, 13) of equation 
(2-4 36) on account of the factor in the integrand beingsquared. In factwe have immediately 

I(, 12, 13) (21r)i [3(12 + 12 + 12) +2(1213 + 131+1112)]. 

(2)i [3 (11+ 12 + 13) 2-4(1213 + 13 11 + 11 12)] 

Therefore 

(2.7.25) 

(2-.726) I1) =^ |) P )2 ij]. p (c, Cy) 2, 3 16T25 [3(11,)2- 4 1 lilj]. 
AA57T2(a2n51 Nij D Dma. i i,j 

Equation (2-.722) on expansion becomes 

N-13- (23- 22+n-3)12+(Nl13-IN22 +N31)1- = 0, 

N=N- Ij where 

and 

Therefore 

and so finally 

n= N21 N32 -N22N31 = 

,1i nl3 ~n22 
li- N ' 
li 

1 
p(c~ cX) , - 1 6?1T 2(A2X5) Dm 

231, n22- NllN33 N222 

V 131 - n22 I N22 
i*ji N 

3 (nl3-n22) 2+ (N22-4N13) N 
N 

It will be seen that in general the quantities Nj, nij and Nwhich occur in this expression are 
polynomials in c., cy of degree 2, 4 and 6 respectively. 

As before, we may study this distribution in the special case when the energy spectrum 
is narrow and has symmetry about the principal direction. Taking the u axis along the 
line of symmetry we have mpq = 0 whenever q is odd, and so 

im4 0 m22 

0 i 0 O m22 0 

(. ij) 
-- 22 ? 04 

mi3 0 mj2 

\ 0 m2 0 

m3o 0 

0 ma2 

m'2 0 

0 m" 2 0 i 02: 

The reciprocal matrix (Mi) is given by 

All 0 A12 A13 0 

0 Bll 0 0 B12 

(M)= A1 0 A A23 0 
A31 0 A32 A33 0 

0 B21 0 0 B22 

/m4o mi22 m30\ -1 
where (Ai) = 22 0 2 (B) = 22 

I I m2t m 
i 

122 \m.^ m. m- /m 

(2-7-32) 

(2-7-33) 

M2\1 

m"; 
' (2-7-34) 

(2-7-27) 

(2-7-28) 

(2-.729) 

(2-7.30) 

(2.-731) 

\V "u0 ,"12Z ""ZU/ 
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Since the spectrum is narrow, each coefficient may be expanded in a Taylor series about 
the centroid (u, 0). Thus 

d2 
m40 = oo0 u4 +- 2/20 - 2 (u4) 4. , 

d_ d2 
m22 = #02u2+#U12- (u2) + 22 2 (U2), du 

m04 -= 04, 

92 92 \ 
m30 = #oo1U3a +220 u2+02-2 )+..., + (2.7.35) 

m12 = u02a+/112 u (ua) + o2 (/22 a2+/04 dv2 () + ..., 

"',r,2 82~d 1 / d2 d2 
m20 =-- ~002ff2 +- 2 0 

--d-2 
+02 ~-2 (U202) +*-f . 

, 

ml2- = 02 2 +/12 du (Uo2) + 2 (/'22 V2 +/04 d2) (a2) +... 

where u = u and a = a(ui, 0). Thus we find for the determinants of (A,j)-l and (B?>)-l 

| Aij -1 = _3u6(a/u-da/du)2, (2736) 
I Bi I-' =_ 2u2(a/u-do/du)2, 

w eO00 0 /02 
where 8= 0 120 11 2 ' 2 = |l2 

I12 |. (227U37) /l12 /i22 

102 112 /104 

(Each zero term in a 3 could be replaced by /,o.) Further, on evaluating (Aij) and (Bij) 
and substituting in (2.7.19) we find eventually 

2U24l + 2^2Uql + xal a22u2q1q2++al2uq2 23u3ql + 13U2 \ 

a1 |22uqlq2+ al2U2 oa22u2q2 a2dU3q2 

(NJ,)-4 +|u + q2 1 +2fl2u3q1 +11l U2 +?224ql q2+f12u3q22 

23 1+ U3q +13 U2 ^23^ q2 u33U4 

w e +/224ql q2+Al22u3q2 +722u4q / 

(2'7 38) 

where a, and /, are the (i,j)th elements of the reciprocal matrices of e 8 and l2 respectively, 
and sg i ( fia 

q, q22= a/u-d/du' /u-da/du (2 7 39) 

Thus q, q2 are non-dimensional quantities proportional to the departures of c2 cy afrom their 

mean values (- c/u 0). In deriving (2 7U38) it has been assumed that q is of the same order 

of magnitude as y, (0u2/12O0)l, but that q2 is of order 1; this makes the matrix (3Nj) 
more homogeneous. Before proceeding further we may make the additional restrictions 

/12 - , 22 -= 20#02/#00, (207'40) 

and we may write #20 = 2U21oo, o02 ==Y2200, #04- a2y4U4/1oo0 

366 
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where v, y and a have the same meanings as before, namely, v-1 is a measure of the average 
length of a group of waves, y-~ is the long-crestedness and a is the peakedness of the 

spectrum in the v direction. Then (2-7-38) reduces to 

/(62 +d2 +l) /Y -_d2/y2 

(Nij) = 4#I 6IlY (62+ 2 +l)/Y2 6SIy3 (2-7-42) 

\ d2/Y2 7/]Y3 (6 2+ 2)/74/ 

where = ql/v, = yq2/v, d2 = l/(a2-1). (2-7-43) 

Clearly the (i,j)th term of (Nj) is of order l/yi+j. Therefore 

li.Li.L^y2U4# ,) ^2-7-44) 11, 12,13 =2u4]/00 (1, 1, 1) (2 7 44) 

where 1I, 1V, 1 are the corresponding roots of the equation 

! jj-I'N'\ I=0 o (2-7'45) 

and (NJV) is the non-dimensional matrix 

62+d2+1 -_d2 

(N/j)= 6/ 62+12 1 ?. (2-7-46) 

-d2 ]2+ d2 

Also I N, I = N /(y762fo0). (2.7-47) 
So from equation (2-7.26) 

_ y7U1441io 
3( )2--4 llj 

h(f r\ - ' u ^0? i Wf9.7.4i4=j 
p(cxc,-= 1-6I2(A2A5) Dma. N (27Ni48) 

It is convenient to state the solution in terms of the non-dimensional variables 

c -/lu 7'cy 2-7-49_ 6' :V(ou-d-j/du)'v(/u-dt /d)' (2'7u49) 

so that p( v2(au- /u)2( c) (2-7-50) P(2,3 Cy) o2 .g3 

First, on expanding the left-hand side of (2-.745) we have 

N'1'3+ -21'2 -[(62 + q-12- 1)+--d2]l = 0, (2-7-51) 

where N' = I N I = (2 +2+ 1) 2 (+{ )+ 1()2-J 1}d2, (2'7-52) 

giving l 1~ = --1 2/N', 11; lj = - [I (2 + q2 + 1) + d2]/N'. (2-7-53) 

Secondly, from (2-4.58), (2-.736) and (2-.737), 

A2 = y u0oo, As =A A2 I-1 Bij -1 = S23u8(0u -d0./du)4, (2-754) 

and V283 = /120/122/o2(loo/o04-/ 22) = r4yaU1/2,a0(a2 1). (2-7-55) 

Thirdly from (2.4.61) Dma = yu2C(a). (2-7-56) 
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(a) a2= 1 

(b) a2=3 

FIGURE 12 
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0-02 
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01 

- 02 

0'5 1 
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20 

. 1. 2 
1i VV . 

-1 

-- 

FIGURE 12. The probability distribution of the velocities of specular points, for a narrow spectrum 

Therefore, altogether we have 

P (6) 62,63 1 6i 
d 374+ [(62+72+ 1) +4d2] N' 

(2-7-57) 

where C(a) is given by (2-4-62) and N' by (2-.752). 
Two special cases are of interest. Suppose first that the surface consists of two systems of 

long-crested waves, intersecting at a small angle 2y. As we saw in ? 2-4, this corresponds to 
the limiting case when a-> 1 and d-+oo. Equation (2.7.57) then becomes 

1 1 
(2-7-58) 

The distribution is shown in figure 12 a. There are two ridges of high probability, in the 
directions = ? , that is c+/u = ?cy, (2.7-59) 

or when the vector difference between the specular velocity (c, cy) and the mean velocity 
(- ou, 0) is in the direction of the crests of one of the two wave systems. 

This particular case may also be derived quite simply as follows. We have seen that the 
velocities of specular points have the same probability distribution as the velocities of the 
maxima only. Now with two intersecting systems of long-crested waves, the maxima occur 
at the points of intersection of the crests of the two systems, and at no other points (see 

(c) a2=o o 

-------- 

_c~~~~~~~~~~~~~~~~~-------~~~~~~~~~~~---"~~~~. 

-2 -1 

- 

I) 

Ai 

) 

I 

n 

j ^--^"^~~~~~I 

_----- 

- _---I"-- 

-- 

p(6{)62,69 = 2{(E+q)2+I}I{(6 -)2+ 1} 

VOL. 249. A. 46 
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figure 9 a). If the point of intersection of two crests has components of velocity cx, cy parallel 
and perpendicular to the mean direction, then the rates of advance of the crests in the two 

systems of waves are 
c) =- cXcos~cycsiny, c(2 = cxcosy-cysiny, (2 7 60) 

where 2y is the angle between the two wave systems. But the distribution of cl for a long- 
crested system of waves was found in ? 2-5 to be 

A 
_ 1 v2(ou-I do-/du)2 2 

P(c1) -2[(cl + -r/u)2 -+ 2(-/U- do/du) 2] (761) 

where u is measured in the direction of propagation. Since the two systems are independent, 

p(cM), C)) = p(c(l)) p(c(2)) (2.7.62) 

When the angle of separation 2y is small, v and u are effectively the same for the two systems 
and for the combined system. Thus 

c"l ) + /lu = (ctx + /lu) + ycy = (6 + q) v (o u- doIdu) ,a (2'7'63) 
c2) +a/u - (c,+a/u) -ycy - ( --) v(r/u--a/du)( (c +Oc/u)-?yc5= (? -r) v(olu-do)/du).{ 

Further, p( , p(, (c2)) (2-764) 0(2, 93 d ()q) pI(9) 2,3) 

and so P(6, q)2,63 2v2 (/u- dou)2p( (2-.765) 

from which (2.7.58) follows. 
A second case of interest is that of infinite peakedness: a -oo and d-> 0. For large values 

ofa, (2.7.57) becomes 13 2 (62 + 2 +1)2 
P(, 2,633 42 3(2+q2+l) (2.7.66) 

This distribution is shown in figure 12 c. There is only one ridge of high probability, namely, 
that in the principal direction of the waves. The expression is valid only asymptotically, 

as is shown by the presence of the factor 1/4a2 and the fact that ffp(6, q),, 6 d6dq diverges. 

An intermediate case, a2 3, d2 = , is shown in figure 12 b. This corresponds to a dis- 
tribution of energy distributed normally with regard to direction, over a narrow range. 

2.8. Properties of the envelope: the number of waves in a group 
We shall now consider briefly some statistical properties of the envelope of the wave 

surface, as defined in ? 1-5. The envelope function p is essentially different from the surface 
elevation g, in that p is always positive whereas g has a mean value zero. Nevertheless, many 
of the properties of p will be seen to be analogous to corresponding properties of C. 

It is convenient to introduce the auxiliary variables 

6 = pcos X = C ccos {(un -u) x+ (Vn-v) y+( (a-) t + 6n} n ' 

=62~ p sin Cn sin ( U) X+ (V t + 
(2 -81) 

n 

which are the real and imaginary parts of the complex envelope function p ei (see equation 
(1-5-6)). 61, 62 have the same form as C, each being the sum of an infinite number of sinusoidal 
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components with random phase. In fact, the energy spectrum of 1, 62 is the same as that of 
C, but with the origin moved to the mean wave-number (u, v). Thus 61, 62 are normally 
distributed with mean value zero. Since 

gl = 62 = m OO0, (2-8-2) 

we have ( 2) =exp)/2 } (2-8-3) 

We now transform back to the variables p, b. From (2.8.1) 

6g+g2=2 (2 , g)= (2.8 4) 1 2 :=P'p d(p,O) = p' 
and so p(,o ) = Pexp{-p2/2moo}. (2-8-5) 

This is independent of the phase angle 0. The distribution of p alone is found by integrating 
with respect to q5 from 0 to 2?r: 

P(p) = P exp {-P2/2m00}, (2-86) 
Moo 

which is the well-known Rayleigh distribution. 
The joint distribution of p, 0 and their first-order derivatives with respect to x, y may be 

found as follows. Let 

63, 64 =gl TX l = 2 52 (2s 827) Ox' ~; g,' g = Ox ', a[ ' 
The matrix of correlations for 1,, .. is 

/Uoo 0? ? /o10 /i01 

o /1oo 0 #0 0 0 
^00 

- 
-01 0 0 

(ij)= ? - 
10 /120 11 0 ? , (2.8.8) 

0 -/01 ,11 /102 0 ? 

/1io 0 0 0 /120 /1 

/o/0 0 00 / //102 

where /p,, is the (p, q)th moment of E(u, v) about (u, v). But since (-i, v) is the centroid of E, 
the first-order moments /10o, /ou, vanish. Hence 63, 64, 65, ~6 are independent of61, 62, and 

P(61, .. , p6) P(, 2)P(3, ..., 6), (2-8-9) 
where 

P(g , 7 ...,^) ( exp2+) 22)]/2 (2-8-10){ [ 

and we have written = #20 /U . (2-.811) 
/1l 1 02 

Now since 63 = - (p cosS ) = pr cos --px sin 0, (2-8-12) 

etc., 

we have (12 =_p3, (2-8-13) 
(p~, 0, p,ox, OPy,, p ,) )46' 2 

46-a 
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and hence 

(p,P 0 PX, X PY Y) (2f) 3 m a P3 exp { -P2/2m00} 

x xp {-(2P 211 Pxy +20Py)/2} exp p2{02 02 1 X y +20}/2 (2-8-14) 

From this distribution some immediate conclusions may be drawn. First, by integrating 
with respect to 0 (from 0 to 2r7) and x, y (from -oo to oo) we obtain the joint distribution 
of P, p and py. Thus P, =P()P(p,p), (2.8,15) 

where p(p) is given by (2-.86) and 

P(pX, P) = 2^exp {- (#o2-2l 2#pXpy+/2op)/2}. (28.16) 

This shows that px, py are statistically independent of p, just as d/dx, d(/dy are independent 
of g. Further, the distributon (2-8-16) is formally identical with (2-1-12), if the moments 

jupq about the centroid are substituted for the moments mpq about the origin. We deduce 

immediately that 

(1) the steepest r.m.s. gradient of the envelope is in the principal direction of the envelope, 
and the gentlest r.m.s. gradient of the envelope is in the direction at right angles; 

(2) the most probable direction of contours of the envelope is perpendicular to the 

principal direction of the envelope, and the least probable direction is parallel to the 

principal direction. 
We see from (2.8.14) that the mean values of x and (y are zero. It follows that the phase 

angle S of the envelope has zero secular increase in any horizontal direction. Now the phase angle 
of g is the sum of the phase angles of the envelope and of the carrier wave. Hence the phase 
angle of g increases at the same average rate as that of the carrier wave, in any horizontal direction. 
This property is the result of our having chosen the centroid (u, v) of the energy distribution 
as the wave-number of the carrier wave (? 1-5). 

By integrating (2-.814) with respect to Px, py and 0 we obtain 

p(p, OS, qy) = P3 exp {-p2/2moo}exp{ -p2(/0o2 0-2 / lx ,x+y +20o)/28} (2-8-17) 

This shows that 5 and qy are not statistically independent ofp. In fact the standard deviation 
of (Ox, qy) (defined as the square root of the mean value of (q+2 -q2)) is 

(X + 2) = (#20 +02), (2-8-18) 

which is inversely proportional to p. Roughly, this means that the higher waves are more 

regular than the lower waves (cf. ? 2 10). The joint distribution of Ox and qy alone is found 
from (2-.817) to be 

1 m0o0/8 
P(x' Y) = [1 + (#o02x-2/#] (X8+#2o002) moo/]2 (2.819) 

It will be useful to consider also the statistical properties of the envelope of the curve in 
which the surface is intersected by a vertical plane in a direction 0. When 0 = 0, x = x', the 
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distribution ofp, P, px, P may be found from (2- 8 14) by integration with respect to py and ̂ . 
On replacing #20 by #2(0) and x by x' we have in the general case 

P(P, PXP =4X) (2lT)2 mfP2 exp {-p2/2moo} exp {-(pfx +p2q2 )/22}. (2 .820) 

Alternatively, the distribution may be derived from first principles by the method used to 
obtain (28- 14). The joint distribution ofp and px is found by further integration with respect 
to 0 and x,: 

1 
Pp ,) (2P1r) moo4 u exp {-P2/2moo} exp {-2/2/,2}. (2-8-21) 

Similarly the joint distribution of p, 0 and x, is 

1 
p(2pr)m00,u 

p2 exp {-p2/2mo} exp {- p202/2}, (2-.822) 

and the distribution of 0 and Ox, is 

p(' X,) = T(1 +q2, moo/#2) ' (2-.823) 

From these distributions one can state immediately some general conclusions for the one- 
dimensional envelope analogous to those for the two-dimensional envelope of surface. Thus 
PX/ but not x, is independent of p; the mean secular increase of S with x' is zero; the 
standard deviation of , is inversely proportional to p. 

When the spectrum is fairly narrow, the envelope follows closely the crests of the waves. 
In any particular plane section the waves will appear in groups, and a rough measure of 
the average length of a group is given by 2/N, where N is the average number of times per 
unit distance that the envelope crosses an arbitrary level p. Now by the argument of ? 2-2, 

N(p) p(p, p,) PX, dpx (2-8-24) 

On substituting from (2-.823) and carrying out the integration we have 

N(p) = ( f) pexp--p2/2moo}. (2-8-25) 

For definiteness we may take the largest possible value of N, which occurs when p = mo00 
giving 

N= --(r (2-8-26) \ m00/ ? 

Now by ? 1-5 12(0) is greatest when 0 defines the principal direction. It follows that the average 
length of a group of waves is least in the principal direction and greatest in the direction at right angles. 

A rough measure of the number of waves in each group is given by No/N, where No is 
the number of zero-crossings of g in the direction A (see ? 2-2). When p I- m0 we have 

No ?(e (m2) (e m20 cos2 0+2mll cos 0 sino +mO02sin2 0~ 
N \27-j \22 ~-J --7- L /o20cos2 -+2,ll cos 0 sino +l02 sin2 _] 

' ) 

In general this number will vary with the direction 0, but it may also be constant. The 
condition for constancy is ., . m o.Q.o 4 )0 O P20 'P11 '* 02 - "'20 * "11 ?- "02 
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When this condition is satisfied the number of waves in a group is independent of the 
direction. 

If we write v m'(0) ( m (0 ) (2-8-29) M / m(0) m ̂oo / 
so that (for a narrow spectrum) 

-(_2(0)~- (e )? No (2.8.30) 

it is clear that v' is inversely proportional to the number of waves in a group. In particular, 
when the section is taken in the direction 0 0 we have 

VIo\ =o )o = vMO (2-8'31) 

where v is the parameter defined in ? 1-6. Now 0 = 0 was taken there to be the mean direc- 

tion, and also the principal direction. It follows that v is inversely proportional to the number 

of waves in a group corresponding to a vertical section taken in the principal direction. 

2-9. The heights of maxima 

Throughout this and the following section it will be assumed that the spectrum is narrow. 
We shall see that from the properties of the envelope one can then derive some interesting 
statistical properties that are otherwise difficult to obtain. 

Consider first the distribution of the heights E of the crests. A crest may be defined as the 
locus of the maxima of all vertical sections of the surface parallel to the mean direction 8. 
Now when the spectrum is narrow, the waves will be long-crested and regular, and the 
crests will lie almost on the envelope. Further, the crests will be spaced at more or less equal 
intervals in the x, y plane. It follows that the distribution of the crest heights is practically 
the same as the distribution of the envelope function p. So from (2-.86) 

p(s) = exp{-62/2moo}. (2-9.1) 
moo 

In other words, 5 has a Rayleigh distribution. 
Consider, on the other hand, the distribution of the heights of the maxima. A maximum 

of the surface is simultaneously a maximum perpendicular and parallel to the mean 
direction. The distribution of maxima of the surface therefore approximates to the dis- 
tribution of the maxima of the envelope of a section at right angles to the mean direction. 

Now the distribution of the maxima of the envelope of a single random variable has been 
studied by Rice (I944, I945). Making the simplifying assumption that /1 = /3 = 0 (in 
our case /, = 0 anyway), he obtains for the joint distribution of x' and the height R of a 
maximum 1 

o A z 

p(x R) -- #(a2_- l)t ze-a2z2 ( 
nz (2-.92) 4~r~#o , n~-o (~-n-?3) !' 

47iTl() p n=0 (7-'n +'S 

where a2 - = 2 R 
(2f9 3) 

2an [A(a2-- l) (29 

and A = (n-m+-1) (- ) (29-4) 
m==0 m 2 2 
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(the term corresponding to m - 0 in (2 9 4) is n + 1). To obtain the probability density of 
R alone we must normalize (2-.92) by dividing by the number N of maxima per unit dis- 
tance x'. N is found by integrating with respect to R from 0 to oo. We have 

N 1(2 (= t ) 2 4 ;(-i)!An (2'9'5) 
-4(2-ff )l 

2- 
)8 

o11g af_3 (n +.a)! an 

(Rice I945, p. 83). 
This may be checked immediately by comparison with our previous work. For, since the 

maxima occur only at the crests of the waves, which are more or less evenly spaced at 
distance 2T/jU apart, it follows that the mean density of maxima per unit area is Nu/27T 
approximately. On replacing (fl2/#0)i by yu, where y-1 is the long-crestedness, we have 

Dma NSu 1 (a2- 1)2 (I2n+) 2 4 n -2 (2.9.6) 
2-f4(2r) a n==0 (2n+ -4-)!an (.) 

This expression should agree with (2-3-57). Rice summed the series in (2-9-6) for a2 = 3 

(the normal distribution) and found it to be about 3-97. With this value (2.9.6) becomes 

Dma = 0-0638yu2, (2-9-7) 

which is in agreement with the more accurate value Dma. = 00639yu2 given by (2-.357) 
and table 1. 

The distribution of the heights of maxima may be stated in terms of the non-dimensional 
parameter - R/l = R/moo. On dividing p(x', R) by Nf,l, we find 

3^ - 0A 
2-1x2f"/0lnyFly+{) 

! 
A (2.908) p() = (l -a2) 1 exp {--2/2(1_a-2)}E n[2(a1) o +) 

4 n (29 8) 

This distribution has been computed for a2 = 2, 3, 5, 9, and the curves are shown in figure 13. 
When a2 = 1 the above series becomes unsuitable for computation, but we may obtain 

a solution by an independent method as follows. a2 1 corresponds to two narrow bands 
of energy of slightly different frequency. These form beats, and the maxima of the envelope 
occur when the two wave bands are in phase. The height of the envelope R is then the sum 
of the amplitudes Pi, P2 of the two wave trains at that point. But the amplitude of each wave 
train has a Rayleigh distribution: 

2p, 2 ) = expi -plmo}, P ) 2= exp{p/moo} (2-9-9) 

(the mean energy for each wave train being 'mo0). The distribution of the sum of these is 

p(R) -- P(PP2) dpi , (2.9.10) 
o 

where P2 R Pl. In terms of non-dimensional variables we have 

p(?2) = 2 f e-2 (1--) e-(-)2 d. (2-9-11) 
Jo 

On evaluating the integral we have 

p( ) =e_ [ e--12+ ( - l) e-?t2 dt], (2-9-12) 
fo 

which is the distribution shown in figure 13 for a2 = 1. 
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It can be seen independently that this is the appropriate distribution for two long-crested 
systems of waves intersecting at an angle. For the maxima of the combine system occur at 
the points of intersection of the crests of the two long-crested systems. The height of a maxi- 
mum is the sum of the heights of the crests of the two systems. Consequently q is the sum of 
two variables each having a Rayleigh distribution. 

1 2 3 

FIGURE 13. The probability distribution of the heights of maxima, 
for a narrow spectrum (a2= 1, 2, 3, 5, 9). 

2' 10. The intervals between successive zeros 

Finally, let us consider the distribution of the intervals I between successive zeros of the 

surface, along a line drawn in an arbitrary direction 0. An approximate expression for the 
distribution of intervals for a one-dimensional function has been derived by Rice (I945, ? 3.4) 
after a series of approximations assuming that the spectrum is narrow. It will now be shown 
how the same distribution can be derived very simply using the properties of the phase 
angle 0. Further, the distribution will be derived for a section of the surface in an arbitrary 
direction 0, and for waves of any particular amplitude p. 

For simplicity we may take initially 0 = p = 0 and x' = x, and we may generalize to 

arbitrary values of 0 at a suitable stage. The equation of the curve at an arbitrary time, say 
t = 0, may be written _ ^ to. . 

where X=ziiX+VS, X, 
- 

ii+ox, (2-10-2) 
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and u = ml/mo. Like S, X is a multivalued function of x, having branches separated by 
multiples of 2n. Since a(x 

(X = X 1 (2.10.3) 

we have from (2-.823) 
(mO/#2)i P(X, xx) = P(O, x) (2.10.4) 47r{1l + (Xx)- uI)2 m0/2}'04) 

Now g has a zero -crossing when and only when X nin, where n is an integer. By the same 
reasoning as in ? 2*2, the probability of X taking the value 2rnr in (x, x + dx) is 

H(X) dx = fP(x X) X I dxdx = 1- dx. (2.10-5) 

The probability ofX taking the value (2r+ l)n is the same. Therefore the total probability 
of a zero in (x, x + dx) is twice this value, or 

- dx, (2-10-6) 
in agreement with (2-3.5). 

Let I denote the interval between successive zeros. The average value 1 of the distribu- 
tion of I may be written down immediately; for it is simply the reciprocal of the average 
number of zeros per unit distance, i.e. 

I= 7() = (i+2) (2-10.7) 

where v is defined by (2-8-31). When the spectrum is narrow (v is small) we have 

I= 7T-U, (2-10-8) 
approximately. 

Let us now consider the whole distribution of 1, on the assumption that v is small. In the 
first place we may note that where X crosses any level nir it nearly always has an up-crossing. 
For the probability of a down-crossing (X, <0) in the interval (x, x + dx) is given by 

JP(X, x) I x dxdXx = 4- (m) [1--(l+ 2)-] dx, (2'10-9) 

and the proportion of down-crossings is therefore 

2[ - (1 +12)-i] 42 (2-10-10) 
which is negligible. If each crossing of 2rrn or (2r + 1)r is an up-crossing, it follows that 
between any two successive zeros xl and x2, X must increase by TT. Hence 

T= X(X2) - X(X1)= [1X + 2xx+ ...], (2-10-11) 

where we have expanded in a Taylor series about x = xl. It can be shown that Xx is of order 
v2, and so to our present order of approximation 

I = r/x. (2-10-12) 
Now the distribution ofX,, at points where X takes a particular value, is given by 

P(X, x,) I x, I 
P(xx)x -- H(X) 

, (2'10.13) 

VOL. 249. A. 47 
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where H(X) is given by (2.10.5). That is to say 

2 12) [i+ (X-)2mo/)W (2.10.14) 

On substituting from (2-10-12) we have, when > 0, 

p(l) [12/2 (l/-1)2v2] (2-10.15) 

where [is given by the approximate relation (2.10*8). Clearlyp(l) is appreciable only when 
I differs from I by an amount of order v. Writing 

--= (l-l)/l (2-10-16) 

for the relative departure of I from its mean value, we have finally for the approximate 
distribution of ~ in the neighbourhood of the mean 

P(O) + 2)i (2'10*17) 

This is similar to the approximate distribution found by Rice (1945, p. 63) by a rather 

longer method. 
In the general case when the line drawn on the surface is in an arbitrary direction 0, 

v may be replaced by v'(0). Thus we have in general 

f^-^HW~~~)=~~~ ~(2.10-18) () 2v'(l +62/v2) (21018) 

The second moment of this distribution is divergent, but a convenient measure of its spread 
is the width of the interquartile range, given by 

2V. (2-10-19) 

So we may say that the width of the distribution of is inversely proportional to the average number of 
waves in a group. The width of the distribution of I is given by the above expression multiplied 
by 1, that is to say (2 10 

w -O~~~~~ ~(2-10-20) 
,/3 ml 

To find the distribution of intervals I for waves of a given amplitude (say with amplitude 

lying between p and p+ dp), we may start from the distribution of (q, 0X) for values of p 
lying between these limits. This is given by 

JP(P )I= p (p) -(2 )0Xpexp{-p2e2/2p2} (2-10-21) 

from (2-.86) and (2-8-22). Hence 

Pp(X, Xx) = (-2P exp {-P2(Xxi-)2/2,2}. (2.10-22) 

On carrying out the same calculation withpe(X, Xx) in place ofp(X, X) we find, with 5 given 
by (2-10-16), that 1 

pp() =(27r) v, moo P exp {-p262/2v'2mo}. (2-10.23) 
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This is a normal distribution for 6, with mean value zero and standard deviation 

v'mnoo. (2.10.24) p 

The mean and standard deviation of I are equal to I and v'mol/p respectively. Hence we 
may say that the expectation of I is independent of the height of the waves (to the present order of 
approximation) and also the width of the distribution of I is inversely proportional to the wave height. 
If we take this width as a measure of the irregularity of the waves as regards their intervals, 
we may also say that the lower the waves, the less regular are their intervals. 

PART III. A METHOD OF DETERMINING THE ENERGY SPECTRUM 

In the two previous parts of this paper we have derived some statistical properties of a random 
surface in terms of its energy spectrum E(u, v). In this part we solve the converse problem: given 
the statistical properties, to find the energy spectrum. 

The best method of determining E depends to some extent upon which properties can be 
measured most conveniently. We assume that it is possible to obtain the height ~(x') of the surface 
along a line in an arbitrary direction 0. (In the case of the sea surface one may imagine the 
observations to be made by an aircraft flying on a fixed course at high speed and constant altitude 
and recording by radar its height above the waves.) We also assume that ac(x')/&t can be measured 
(by a pair of radar sets, or otherwise). 

In ?3 1 it is shown how from the statistical analysis of such measurements the moments mn(0), for 
each value of 0, can be deduced. In ?3-2 it is shown how to obtain the two-dimensional moments 

mpq from the moments mn(O); and in ?3*3 how to obtain the energy spectrum from the moments mpq. 

3-1. To obtain mn(O) 
We saw in ? 2'2 that the number of zeros of((x') per unit horizontal distance x' is given by 

N -rm2(1 (3.1.1) 

and in general the number of zeros of the rth derivative of ' is given by 

Nr m2r(8) (3.1.2) 

Now from the record of , the numbers No, N1, etc., may be determined by simple counting 
of zeros, maxima and minima, points of inflexion, and so on. mo0() can be determined as 
the r.m.s. value of along the curve. From (3-1-1) we have 

m2(0) = n2N2m0(O) (3-.13) 

and from (3-.12) m2r2(8) r2Nm2r() (3-14) 

So m2, m4 ..., m2r+2 can be determined in succession, or else directly from 

m2r+2(0) = 2r+2N2 N .. . N2mO(). (3.1.5) 

To obtain the moments of odd order we have to use some property involving the motion 
of the surface. We take the distribution of the velocities of zeros of (x'), which was derived 
in ? 2-5. It was shown that the mean velocity of the zeros of C is given by 

c- m(), (3.1.6) 

47-2 
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and that the mean velocity of points where the rth derivative vanishes is 

r m2r+l () (3.1.7) m2r+2(0) 

Now m2r+2(0) is already known, from equation (3 1.5), so from 

m2+,1 () =- -rm2r,2(0) (3-1-8) 
we may determine m2r+ (0). 

It is true that the odd moments mr+i () correspond not to the original function E(u, v) 
but to o-(u, v) E(u, v). However, we shall show in ? 3-3 how this difficulty can be overcome. 

3*2. To obtain mpq 
In ? 1-4 we saw that mn(8) is related to the moments mpq (p+q = n) by the equation 

mn(O) ==mn,ocos n0+() mn_-l,cosn-10sin+...+m, nsinn . (32-1) 

The expression on the right-hand side is a trigonometric polynomial of degree n, with 
coefficients which are linear combinations of the moments. Therefore we may expect to 
solve for mpq by taking the Fourier components of mn(0), that is, by considering the quantities 

1 2('' 
an,1 -- mn(O)ei"d . (3-2.2) 

Going back to equation (1.4.11), we have 

anl 
2' 

f E(u,v) (ucos 1 +vsinO )ndudvei10 dO1 
n, 1 -2 ,O - oo 

= l f2 E(u,v) {wcos (O-01)}ndudveilldOl, (3-2-3) 

where (wcos , wsin) = (u,v). On writing 1-8 = 02 and reversing the order of inte- 
gration we have 

1 rfO r ?27r 
a1 7 27E(u, v) wn cosn 82 ei(+02) dS2 du dv 

y= ,7 7E(u, v) wneil dudv, (3-2-4) 

where Yn, is a numerical constant: 

I f2r 21-nn)2 when n--= 2r>0 
Yn, I- -| CoSn02 eHd02d d rV (3-2-5) 

0 otherwise. 
Now 

mpq =7 J E(u, v) upvqdudv 

== S E(u, v) wn cosP sinq du d 
J _oo J - 

= -- E(u, ) wn (ei + e-i0)n ei-e-) q du dv 
o _00 q q 

= f | E(u,v) wn[eino(P q) ei(n-2)0+ q'ei(n-4)0+...+(-1)qe-in0 dudv, 

(3*2*6) 
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where (P ) is the coefficient of xr in the expansion of (1 +x)P (1-x) In full, 

(P ^n r p ) _ (r (rl(l+r-2 )--(2) ( )()' (3-27) 

where (P) 1 and (P) = for r>p. From (3.2.4) and (3.2-6) we have 

,-1 2ign, n+ -(P 1)/a(n, nn-2+( 2 )/( 2an, -- +..- (-l .)qan n] (3-2-8) 

TABLE 2. FUNCTIONS Cpq(8) 

C J-1 C,=Cio-cos o 1 COS 0 
00-"2C = sin 0 

{C20 = cos 20 + C30= cos 30 + cos 0 
Cl = sin 20 C21= sin 30+i sin 
C2 = -cos 20+ C = -cos 30 + cos 0 

3 = - sin 30+ sin 0 

C40 = cos 40+cos 20 + C50 = cos 50 + cos 30 + cos 0 

C31 = sin 40+ sin 20 C41 = sin 50 + sin 30+ isin 0 

C22 -cos 40 + C32 = -cos 50-k cos 30+1 cos 0 

C13 = -sin 40 + sin 20 C23 = -sin 50+ sin 30 + sin 0 
C04 = cos40-cos20 C14= cos 502-= cos 30- cos 0 

C05 = sin 50 - sin 30 + sin 0 

So on substitution from (3.2.2) 
1 27r 

mpq Jo mn() Cpq(O) dO, (3,2.9) 

where Cp(O) = [ein+ (P q) /(1 e +i(n-2)0+ +(1)ne-in] (3-2-10) 

The quantities mn() being known, this determines the moments mpq. The first few functions 

Cpq(O) are listed in table 2. 

Incidentally, when the spectrum E(u, v) has circular symmetry, mn(0) is independent of 
0 and so from (3-2-9) 

p(0)= ( 1)q(PL)/ (n) mn when p, q are both even (3211) 
1 0 otherwise. 

In particular, 2 m4 (3 2.12) 
m20 = m02 == m2m M40 m0422 1 (3-2-12) 

and so the condition (1.3-11) for a narrow ring spectrum reduces to 

m4mo-4m2 = 0 (3-2-13) 

m o (3214) orm0 (3-2.14) m22 
As a corollary, we see that mn4 mo/m is never less than -. 

47-3 
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3-3. To obtain E(u, v) 
We have so far obtained the even moments mpq of E(u, v) and the odd moments mpq of 

o(u, v) E(u, v). Now consider the function 

F(u, v) = [E(u, v) + E(- u, -v)]. (3-3.1) 

This is clearly an even function of (u, v), since F - u, -v) F(u, v). Therefore its odd 
moments vanish. But its even moments are the same as those of E(u, v). Therefore both 
the odd and even moments of F(u, v) are known. Similarly 

G(u, v) = [(, v) E(u,v) -( - u, -v) E(- , -v)] (3-3-2) 

is clearly an odd function of (u, v), since G(-u, -v) =-G(u, v), and so its even moments 
vanish. But since o(-u, -v) = ar(u, v) (equation (1 1-5)) the odd moments of G are equal 
to those of (u, v) E(u, v). Therefore both the odd and even moments of G are known. If 
F and G can both be determined from their moments we may then determine E, from the 
identity E(u, v) = F(u, v) + G(u, v)/r(u, v). (3-3-3) 

We have then simply to consider how to determine F and G from their moments.* 
Formally, if the moments were known to all orders, the problem would be solved. For 

since the even moments mpq are equivalent to the derivatives of the correlation function 

l(x,y, 0) (equation (1.2-10)) we have 

(x,y,O) =- (-- 1)r Mq xyq. (3.3-4) 
p+q=2r P\q\ 

But by (1 2 9), #(x, y, 0) is the cosine transform of E(u, v) and so of F(u, v). Hence 

"I ?00 
F(u, v) =(2)2J J (, y, 0) cos(ux +vy) dxdy. (3.3.5) 

Similarly, if we define a function 

?'(x,y,0)= 1 (-l) r+ IMqxpyq, (3.3-6) 
p+q=2r p q! 

we have G(u, v) (2)2f f '(x,y 0) sin (ux+vy) dxdy. (3-3-7) 
G2T, ) 

v) 
21n) 

In practice, however, only a finite number of moments can be obtained, and if (3-3-4) 
is replaced by only a finite number of terms of the series, (3-3-5) does not converge. The 

problem then is to find a convergent sequence of approximations to F and G, each approxi- 
mation depending on the moments of the function up to a finite order. 

It was shown by Weierstrass (I885) that a function of a single variable may be approxi- 
mated over a finite range by a polynomial, and that this may be done in a variety of different 
ways. A simple method is given by Courant & Hilbert (I953, ? 4), which we generalize to 
two dimensions as follows. Consider the functiont 

gn(u, v) - (1 -u2- 2)n. (3-3-8) 
* For a discussion of whether a function is uniquely determined by its moments, see Kendall (1952, 

chap. 4). 
t This is different from the generalization suggested in Courant & Hilbert (1953, p. 68), and leads to 

a more homogeneous approximation. 
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As n tends to infinity, gn tends to zero for all values of (u, v) inside the circle u2 + v2 1 except 
the origin. Further, if S is any smaller circle of radius S< 1, 

Jgn(u,v) dudv = (1-w2)wdwd- +1l-(12)1], (3-3-9) 
s 

which also tends to zero. However, the dominant part of the above integral is contributed 
by the neighbourhood of the origin, that is, if S' is any interior circle of fixed radius 8', 
however small, almost the entire contribution to the integral comes from S': 

fgn(, v)dudv 
lim s' lim 

1 -(1 '2)n+ 1 (310) lim lira .. ..1 (3-3-10) n-o 
fg (u v) du dv )n 

S 

Now suppose thatf(u, v) is any continuous function of two variables that we wish to approxi- 
mate in the region S, (u2 + 2) < l. Then if (u, v) is any interior point of S, the function 

Jf(ul, Vl) [1-(u-u1)2- (v-v)2]n du1 dv 

fn(u, v) = (3.3.11) 
,[1-ul2-v2l]n"dul dv 

S s 

is a weighted mean off(u, v), with weighting function gn(u-u, v-vj) centred on (u,v). 
And since the neighbourhood of (u, v) contributes almost all the weight when n is large 
we see that limfn(u, ) =f(u,v). (3.3.12) 

n->oo 

The convenience of this approximation lies in the fact thatfn(u, v) is a polynomial in (u, v) 
of degree 2n, and with coefficients that are definite integrals taken over S. Further, if we 
assume that f(u v) is negligible or zero outside S the coefficients in fn(u, v) are simply 
combinations of the moments off of order not greater than 2n. 

To apply the representation in the present case let us assume that E(u, v) is negligible 
when (u2 + v2)i> w0, say. In other words, we assume a cut-off at high wave-numbers (some 
such assumption is in any case necessary in order to ensure the uniqueness of the solution.) 
Then we take as an approximation to F(u, v) 

n+l ffF 
Fn(u, f) = I r(Ui, 1l) [1- (-ul U1)2/W (- 2/Wo]n dul dv (3-3'13) 

Si 

where S1 is the region (u2+v2)j<_iw0. Similarly we take 

Gn(u,v) = ̂-- L|G(ul,vx) [1 (u--u-)2/Wo- -l)2/w2]n , (33u14)l 
WO 

S1 

and finally En(u,v) = Fn(u,v)+Gn(u,v)/o(u, v). (3-3-15) 
On expanding the polynomial expressions in (3.3-13) and (3-3-14) and carrying out the 
integrations we find, say, for n = 2, 

3 
F2(u, v) = - [m0(wI -u2-v2)- 2(m20+m02) (W -U2-v-V2) W2+ (M40m+M04+2m22) w4 (3-3-16) 
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and 
3 

G2(u, v) = [4(mou +m41 v) u(wm-u2-v2) wo -4{(m-I-+ml2) u+ (m21 +m03) v} wJ], (3-3-17) 

so that F2 and G2 are expressible as polynomials in (u, v) having as coefficients the moments 
of E up to degree 4. Approximations of higher order may be written down at will. 

FIGURE 14 
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FIGURE 14. Successive approximations En(u, v) = W.(u, v; w0/4, 0). 

We have seen that F, and G, are essentially weighted averages ofF and G by a weighting 
function proportional to g [(u-u1)/w0, (v-v1)/w0]. The weighting function corresponding 
to E, is somewhat different owing to the presence of the factor o(u, v) in (3-3.15). In fact 
we have from (3-3-1) and (3-3-2) 

En(u, <v) 2 InuX [1l' )- [1 U 2 
(v-Vl 
-2 n 

E^uv] -v E+ (v \ W o / du dv 
wo 2W (u V) \ W 

S1 

n+X )+ 2 

+27'_W2 (, Vl) (U ') 
[-(u2v 

- Ivv ldu1dv.. (3.3.18) 
(, o $1 

On changing the sign of (ul, vl) in the second integral we have 

E(u, v)= E2 u Jo(Ul, vl) Wn(u, v; u1, vl) dul du1, 
Si 

,nI, + 1 (U1, V11) I u-1uA2 V-V 2-' n 
where WJ(u, ul,v) n= 1 + [+ (uv) (- ( W 

1 2] (+9 () o.)2]. 

n+l [1 ?(U,' VI) W1- +u0 W ^ 
27r J(u,v) w0 / \ o 

' 

(3-.319) 

(3-.320) 
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WJ is not a function of (u - u) and (v - vl) alone. However, the second half of (3.3.20) only 
gives a contribution when (u,, vl) (u, v), and then this is small owing to the presence of 
the factor [1 -a(ul, vl)/o(u, v)]. 

To obtain an idea of the accuracy of successive approximations we may consider the case 
of a narrow spectrum, when E(u, v) is appreciably large only in the neighbourhood of a 

single point, say (- -w0, 0). Then 

E(u, v) -= Wn(, v; -w0, 0). (3-.321) 

Wn has been computed for n = 2, 4, 8 assuming that, as for gravity waves on deep water, 

o(u,v) oC (u2+[2)i. (3U3 22) 

The results are shown in figure 14 a, b and c. It will be seen how the functions become pro- 
gressively more peaked as the degree of the approximation is raised. When n = 8 the area 
in which Wn exceeds half its maximum value has a radius of about 0.3wo. For large values 
of n we have, in the neighbourhood of (ul, vl), 

n 
W,-~- exp {-n[(u--u)2+ (v-v])2]/w2}, (3-3-23) 

and so the 'radius' of Wn is proportional to n-?. It will be seen then that En converges to E 
rather slowly. In order to distinguish parts of the spectrum separated by a distance S, it is 

necessary to take n to be of order (wo0/)2. 

I am indebted to Mr D. E. Cartwright for advice in evaluating the elliptic integral 

(2-4-47) and to Mr E. A. Steer and Miss S. A. Yeo for assistance with the computation for 

figures 12 and 13. 
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