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It  was shown by Stokes that in a water wave the particles of fluid possess, apart from their orbital 
motion, a steady second-order drift velocity (usually called the mass-transport velocity). Recent 
experiments, however, have indicated that the mass-transport velocity can be very different from 
that predicted by Stokes on the assumption of a perfect, non-viscous fluid. In this paper a general 
theory of mass transport is developed, which takes account of the viscosity, and leads to results in 
agreement with observation. 

Part I deals especially with the interior of the fluid. It  is shown that the nature of the motion in 
the interior depends upon the ratio of the wave amplitude a to the thickness 6 of the boundary layer: 
when a2/S2is small the diffusion ofvorticity takes place by viscous 'conduction'; when iz2/rFis large, 
by convection with the mass-transport velocity. Appropriate field equations for the stream function 
of the mass transport are derived. The boundary layers, however, require separate consideration. 

In part I1 special attention is given to the boundary layers, and a general theory is developed for 
two types of oscillating boundary: when the velocities are prescribed at the boundary, and when 
the stresses are prescribed. MTheriever the motion is simple-harmonic the equations of motion can 
be integrated exactly. A general rnethod is described for determining the mass transport throughout 
the fluid in the presence of an oscillating body, or with an oscillating stress at  the boundary. 

In part 111, the general method of solution described in parts I and I1 is applied to the cases of 
a progressive and a standing wave in water of uniform depth. The solutions are markedly different 
from the perfect-fluid solutions with irrotational motion. The chief characteristic of the progressive- 
wave solution is a strong forward velocity near the bottom. The predicted maximum velocity 
near the bottom agrees well with that observed by Bagnold. 
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PART I. THE INTERIOR OF THE FLUID 

As was pointed out by Stokes in a classical memoir (1847), the individual particles in a 
progressive, irrotational wave do not describe exactly closed paths; besides their orbital 
motion they possess also a second-order mean velocity (called the mass-transport velocity) 
in the direction of wave propagation. If the equation of the free surface is 

z = a ei(kx-ct) +0(a2k), (1) 

where x and z are horizontal and vertical co-ordinates ( z  measured downwards), t is the 
time, a is the wave amplitude, k = 2n twave-length, and r = 2nf wave period, then 
Stokes's expression for the mass-transport velocity 0is equivalent to 

- a20-k cosh 2k(z -h)u = 
2 sinh2 kh +c, 

where h is the depth and Cis an arbitrary constant. If it is assumed that the total horizontal 
transport is zero, we must have 

C = - a% sinh 2kh ---a20-
- 2h cothkh.

4h sinh2 kh 

In  deep water (kh+ 1) equation (2) becomes simply 
-
U = a20-k e-2kz. 

direction of wave advance -

mean surface 


level 


bottom 

FIGURE1. A typical profile of the mass-trai~sport velocity in a progressive, 
irrotational wave (kh= 1.0). 

The velocity profile for a typical ratio of depth to wave-length (kh = I )  is shown in figure 1. 
I t  will be seen that the velocity increases steadily with height above the bottr~rn and that on 
the bottom itself the velocity gradient is zero. Both these features can be shown to be 
necessary consequences of the irrotational character of the motion, and not to depend on 
the smallness of the wave amplitude as assumed by Stokes (a11 elegant geometrical proof 
for waves in deep water was given by Rayleigh ( I  876);proofs for finite depths have been 
given by Ursell (1953) and Longuet-Higgins (1953)). 

The irrotational wave is not the only type of wave theoretically possible in a perfect fluid: 
in the exact solution of Gerstner (1809)and Rankine ( I  863) the particles describe exactly 
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circular orbits, and the mass-transport velocity vanishes identically; indeed, Dubreil- 
Jacotin (1934) has shown that a wave motion may be superposed upon a steady stream 
having an arbitrary velocity distribution, so that the mass-transport velocity could take 
any desired value. The hypothesis of irrotational motion was assumed by Stokes on the 
ground that, under conservative forces, no vorticity can be generated in the interior of 
a uniform fluid, even with viscosity; if, therefore, the motion is started from rest it must 
initially be irrotational. The mass transport is then uniquely determined. 

However, the mass-transport velocities observed in laboratory experiments may differ 
markedly from those predicted by the irrotational theory, especially in water of moderate 
depth. Thus Bagnold (1947) has found a strong forward velocity near the bottom and a 
weaker backward velocity at higher levels-the exact opposite of the Stokes velocity dis- 
tribution. Other observers (Caligny 1878; King 1948) have found a forward drift both 
near the bottom and near the free surface, with a backward drift between. 

It appears, therefore, that some assumption on which Stokes's theory is based is not valid. 
Now, in the theory of perfect fluids it is supposed that at a solid boundary the fluid may 
'slip', i.e. that it may have a tangential velocity relative to the boundary. In  fact, however, 
the particles of fluid in contact with the boundary must have the same velocity as the 
boundary itself; on the bottom, for example, they must be at rest. But quite near the bottom 
the fluid is observedto be in motion with velocities comparable to that in the interior of 
the fluid, so that in general there must be a strong velocity gradient near the bottom. This 
implies that there is in fact strong vorticity in the neighbourhood of the bottom; and it 
will be seen that, even if the vorticity is confined to a layer of infinitesimal thickness, the 
total amount of vorticity must still be finite. In an oscillating motion this vorticity will be 
of alternating sign; and the question then presents itself: will any of the vorticity spread 
into the interior of the fluid, or will it remain in the neighbourhood of the boundary? 

In considering the diffusion of vorticity, the viscosity of the fluid must be taken into 
consideration; for, although the viscous terms in the equations of motion vanish when the 
motion is irrotational, they do not do so when there is vorticity. Although the viscosity may 
be small it cannot be neglected near the boundaries; for it is found that, as the viscosity 
tends to zero, so the thickness of the boundary layer decreases; the viscous terms in the 
equation of horizontal motion, which depend upon the second normal derivative of the 
velocity, remain of finite magnitude. 

A straightforward method of taking into account the viscosity would be to proceed by 
successive approximations as in Stokes's solution for a perfect fluid; that is, in the first 
approximation to neglect all terms proportional to the square of the displacement; in the 
second approximation to neglect all terms proportional to the cube, and so on-all the 
viscous terms being retained. For surface waves in water of uniform depth there are now 
four boundary conditions: both components of velocity must vanish on the bottom, and 
both components of stress must vanish at the free surface. This was the method by which 
the present author originally approached the problem. The first approximation, which 
had been calculated by Hough (1896) and Bassett (1888)~ is practically identical with the 
~erfect-fluidsolution except that there are now transitional boundary layers at the bottom 
and at the free surface, and that the motion has a small attenuation, either with the hori- 
zontal co-ordinate x or with the time t (Hough and Basset considered only the latter case). 

66-2 
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To obtain the mass transport, the present author took the solution to a second approxi- 
mation; and when this was done some new and unexpected features appeared. These will 
be briefly described here, although another method, as will be explained below, was later 
found to be more satisfactory. 

Two cases were considered :the progressive wave and the standing wave. O n  the assump- 
tion that the total mass transport in a horizontal direction was zero, a unique solution for 
the mass-transport distribution was found. But, when the viscosity was made to tend to 
zero, the limiting velocity distribution was different from the irrotational, perfect-fluid 
solution. The thickness of the boundary layers at  the bottom and at  the free surface tended 
to zero; but the mass-transport velocity just outside these layers tended to a value different 
from zero and from that in the Stokes solution. I n  the progressive wave, the forward 
velocity near the bottom (i.e. just beyond the boundary layer) was given by 

and the velocity gradient near the surface was given by 

a i7  
-=-4a2ak coth kh; 
dz 

this is twice the corresponding value for the irrotational wave (cf. equation (2)). In  the 
interior of the fluid the velocity distribution was given by the sum of the distribution (2) 
and a parabolic distribution, which was adjusted so that equations (5) and (6) and the 
condition that the total horizontal flow should be zero were all satisfied. Some theoretical 
velocity profiles, for different ratios of depth to wave-length, will be illustrated in figure 6, 
part 111. 

The case of a standing wave, in which the surface elevation is given by 

z= 2a cos kx cos rt, (7) 

had already been partly evaluated by Ray'leigh (r883), who showed that there must be a 
circulation in cells of width one-quarter of a wave-length, very similar to that occurring in 
a Kundt's tube. The magnitude of the circulation is independent of the viscosity, when this 
is small. Rayleigh considered only the case of deep water, and he did not take into account 
the boundary conditions at  the free surface. I n  the general case when the depth is finite 
the present author found that the mass-transport velocity near the bottom (just outside 
the boundary layer) is given by 

- 3 a2gku=----- sin 2kx; 
2 sinh2 kh 

the velocity gradient near the free surface is zero, 

(The distribution of the mass transport in a typical standing wave will be illustrated in 
figure 7, part 111.) The solution again differs from the corresponding solution when the 
motion is irrotational; in an irrotational standing wave the mass-transport velocity vanishes 
everywhere. 
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An interpretation of these results may be given as follows. Suppose the motion is generated 
from rest by conservative forces, or by propagation of the waves from outside into the region 
considered. Then at first the niotion in the interior will be irrotational, and the mass 
transport will be given by Stokes's expression. But this state is not permanent; vorticity 
will diffuse inwards from the boundary layers at the bottom and at the free surface until 
a quasi-steady state, given by the viscous solution, is obtained. Thus the Stokes solution 
describes the initial motion (except very near the bottom) ; the viscous solution describes 
the final motion. 

However, the method by which these results were derived is open to criticism : the process 
of approximation involves, in general, the neglect of the inertia terms in the equations of 
motion compared with the viscous terms; and this implies, as is shown in this part of the 
present paper, that the amplitude a of the motion should be small compared with the 
thickness 6 of the boundary layer (6 is defined as (2vlg) 5 where v is the kinematic viscosity). 
I t  can also be shown that, unless a46 ,  it is not permissible to use Stokes's classical method 
of obtaining the boundary conditions at the free surface, for this involves expansion in a 
Taylor series, which is only valid if the displacement of the free surface is small compared 
with all other distances involved. Since the thickness of the boundary layer may be of the 
order of a few millimetres only, this condition seems to restrict the validity of the solution 
to very small waves indeed. 

In  this paper a different, and more general, approach is adopted. We start from the two 
fundamental assumptions that the velocity is periodic in time, and that the motion can be 
expressed as a perturbation of a state of rest. A general definition of the mass-transport 
velocity U can then be given (see 5 2 ) , and equations of motion for can be derived. On 
examining these equations it is found that the expression for the diffusion of the vorticity 
consists of two parts. The first represents viscous diffusion, similar to the diffusion of heat 
in a solid, and the second represents diffusion by convection with the mass-transport velocity 
itself. These two sets of terms may be called 'conduction' and 'convection' terms respec- 
tively. The equations used by Stokes and Rayleigh are only valid, in the interior of the fluid, 
when the convection terms are small compared with the conduction terms, which restricts 
the solution to waves of very small amplitude (a <6). If, on the other hand, ~ $ 6 ,  the motion 
is governed by convection; there is then a quite different field equation for the motion in 
the interior of the fluid (see 5 4). 

The boundaries, however, require special consideration, on account of the large velocity 
gradients encountered there. These are treated in part 11, again in a general manner, so 
that the results could be applied to motions other than those of a standing or progressive 
wave in uniform depth. A general, oscillatory motion of the boundary is assumed, and 
moving co-ordinates relative to the boundary are taken. A boundary-layer approximation 
is made, similar to that used by Schlichting (1932) for a cylinder oscillating in an infinite 
fluid. Two different types of boundary layer are considered: first when the normal and 
tangential components of velocity at the boundary are prescribed (a special case being a 
fixed boundary or bottom) ; secondly, when the normal and tangential stresses are pre- 
scribed (a special case being a free surface, when both components of stress must vanish). 
In  both cases the equations of motion can be integrated through the boundary layer, 
although the order of magnitude of the velocity gradients is different. In the first case the 
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mass-transport velocity beyond the boundary layer (i.e. just in the interior of the fluid) is 
determined in terms of the boundary conditions and the known first-order motion; it differs 
in general from the mass-transport velocity at the boundary itself. In  the second case it is 
the normal gradient of the mass-transport velocity which is determined just beyond the 
boundary layer, and this also differs from the velocity gradient at the surface itself. 

The boundary-layer method just described has the advantage of not depending for its 
validity on the smallness of the ratio a/6. By con-nbining the new 'boundary conditions' 
with one or other of the field equations for the interior of the fluid which are derived in 
part I, the mass-transport velocity throughout the field can be completely evaluated. In  
part I11 the method is applied to the special cases of the progressive and standing waves 
in water of uniform depth. The 'conduction solution', i.e. the solution for small values of 
alS, is identical with that obtained by the method of successive approximations described 
above, as one would expect. The 'convection solution', however, is indeterminate for the 
progressive wave, and for the standing wave there are infinitely many solutions. Indeed, 
is seems very probable that for such large wave amplitudes the mass-transport velocity in 
the interior of the fluid is unstable; the assumption of periodicity then breaks down. 

However, the solution in the boundary layers is still1 well determined, and is suitable for 
comparison with observation. Ira the last section of part I11 the experiments of Bagnold 
(1947) and others are discussed, and rather good agreement with the theory is found. 

When the motion is not progressive, an exact definition of the mass-transport velocity 
for waves of finite amplitude, such as was given by Rayleigh (1876)~is no longer possible; 
but for small motions a definition may be given as follows. 

Let u(x,  t) denote the velocity at the point x, = (x, y, z ) , at time t. We assume, first, that 
the motion is periodic in time with period T :  

u(x,t+r) = w(x,  t) ; (10) 
secondly, that u is expressible asymptotically as a power series: 

U = €UU1+"u2+..., (11) 

where s is a small quantity and u,, en,, etc., are of order 117. Here l denotes a typical length 
in the geometry of the system, for example, the wave-length if the motion is periodic in 
space. Equation (11) implies that we are considering the motion as a perturbation of a 
state of rest. The order of magnitude of the displacements is el, or a, where a denotes the 
wave amplitude, so that s is of order all. Thirdly, if a bar denotes the meanvaluewith respect 
to time over a complete period, we assume 

-
U1 = 0, (12) 

that is, there are no steady first-order currents. I t  may not, however, be assumed that 
-

u, is zero. 
Let U(x,, t) denote the velocity of the particle whose co-ordinates at time t = 0 are x,. 

Then the displacement of the particle from its original position is 

1'udt. 
0 
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We have therefore 

by Taylor's theorem. Since U is of a same order as u we assume that 

whence, on substituting in (15) and equating coefficients of e and e2, we have 

1 

U2= u 2 + j  u ,d tgradu , ,  
0 

and therefore 

The lower limit of integration in (20) has been omitted, since it contributes nothing to the 
mean value. Thus, besides the first-order oscillatory velocity sUl, each particle possesses 
a steady drift velocity given by 

- -
U = e2U2= e2(& +S u ldt grad ul) 

to the second order of approximation. If US,U4, etc., are calculated, they are found to be 
aperiodic in general, so that no mean value independent of the initial value o f t  can be 
assigned to them. Indeed, U cannot in general be expected to be a periodic function oft, 
since in the course of time a particle may drift into a region where the motion is quite 
different from that at its initial position. The progressive wave is an exception, since each 
particle remains at a nearly constant level; but the period of the motion for a fixed particle 
then depends upon the vertical co-ordinate 2,. Thus the mass transport can only be defined, 
in general, if terms of higher order than the second are neglected, that is, for small motions. 
We shall therefore define the mass-transport velocity as being that given by equation (2P). 

The mass-transport velocity may be measured as the ratio of the displacement d of a 
particle to the length t of the corresponding time interval provided that I d I @ I  and that the 
contribution to d from the second-order terms is large compared with that from the first-

order terms; this implies / e2U2i I 9/ eU1T I and so t$ €-IT. Both conditions are satisfied if 
e is sufficiently small and if t is of order, say, e-ir. 

Let f be any periodic quantity associated with the motion and let 

where f, is zero. Then we may show similarly that the mean value off following a particle 
is given by 

e2 f2+  uldt.gradfli-S 
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to the second order of approximation. Suppose f is the acceleration, 

then 

and the mean value off following a particle is therefore given by 

which vanishes by the periodicity of the motion. 
The mean acceleration of a particle is therefore of a higher order than the second. This, 

indeed, is what we should expect. For the mean acceleration over one complete period is 
the difference between the initial and final velocities, divided by 7.But since in this time the 
particle has advanced through a distance of second order, the difference between the 
velocities at  the initial and final positions of the particle is of third order at most. 

In  the following we shall restrict ourselves to the consideration of two-dimensional motion 
only; thus if u,v and w are the components of the velocity, v is zero, and u and w are in- 
dependent of the horizontal co-ordinate y. Assuming the fluid to be incompressible we have 

whence 

where $ is a stream function. The vorticity is given by 

We may write 

so that 
du, dw.+A= 0, 
ax dz 

( i=1 ,2 ,  ...). 

aui dw. 
jz ax' = v2ti ,  
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From (12), the arbitrary function of the time contained in may be chosen so that 

= 0. 

The components (e2V2,s2Wi)of the mass-transport velocity are given by 

Now if A and B denote any periodic quantities we have identically 

d A dB d 1
-B+-A- = - (AB)= - [AB]: :~= 0. 
at at at 7 

Hence 

where 

Thus e2Y? is a stream function for the mass-transport velocity 

4.  THEEQUATIONS OF MOTION 


The equations of motions for a viscous, incompressible fluid may be written 


in the usual notation. On  differentiating the first component of (37) with respect to z and 
the second with respect to x, and subtracting, we find 

and hence 

The second and third terms in equation (38) represent minus the rate of change of the 
vorticity at  a fixed point due to convection; the last term, which is similar to a term in the 
equation of heat conduction, represents minus the rate of change of the vorticity due to 
viscous diffusion. On substituting from equations (30) and formally equating the coefficient 
of the highest power of e to zero we have, from (38), 

-

and from (39) (41) 
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Equation (40) gives 

so that on substitution in (41) we have 
- - ---- -.-- -- --a dv4&= wId' ;) /~4$h1(u, &-t- dt. 

Hence the field equation for Y! in terms of is 

The introduction of viscous terms into the equations of motion iiivolves a new funda- 
mental length 6, E (2v/a)k, and a new dimensionless ratio a/$. In  the case of water waves, 
if v = 0.01 cm2/s and T --= 1-0S, we see that 6 is of the order of 0.02 cm. We may therefore 
assume that 

$11 g 1 

(but not necessarily that a/$< 1 ). Now, a typical periodic solution of the equations 

is given by 
fo -= e i ( k ~ %i kzz-I-ttrt) 

9 


where n is a positive integer and 

Hence, in a direction perpendicular to the plane 

foniust increase or decrease by a factor e in a distance of the order of 6. If fois to remain 
bounded in the interior of the fluid, it can be appreciably large only in the neighbourhood 
of the boundaries, and must decrease inwards exponentially. 

I t  is useful to distinguish between the 'boundary layer' or the region near the boundaries 
whose thickness is of the order of 8,and the 'interior' of the fluid, or the region 'beyond ', 
i.e. inside, the boundary layer. For the remainder of the present section we shall be con- 
cerned only with the motion in the interior. 

From equations (32) and (40) we see that V2+, satisfies equations (46). Therefore, 
assuming that V2$, is expressible as the sum of functions of the type (47) over any region of 
the interior, we may expect that 

V2$h130 

exponentially inwards. The second-order terms in equation (38) now give 

in the interior, so tliat by a similar argument we may expect that 

~ 2 ( $ ~ - $ ; )  -+ 0 ( 5 2 )  

exponentially inwards. Equation (50) states that in the interior the first-order vorticity is 
exponentially small, while equation (52) states that the second-order vorticity becomes 
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independent of the time, though it is not necessarily zero. From the third-order terms in 
(38) we now have 

(;-VT'~) V2$3+ (uI 

so that v2j3=- (Sul dt (54) 

where (55) 

Let us now return to equation (39) and retain temporarily all the terms up to the fourth 
order. Assuming (50) and (52) we have, in the interior, 

We may substitute for VZ$, frorn equation (54). Then since 

in the interior of the fluid we have 

- v v ~ ( & ~ & + € ~ & $ - & ~ & ) = ~ .(58) 

Now if A, B and C are any three periodic quantities we have identically 

But, if A = dB/&, and C is independent of the time, 

Thus writing 

A = u 1 ,  B =  Suldt, C - V2$,= vz&, 

we have 


and therefore (using equation (34)) 


Similarly 

--

and 
d w,dt - V2pk2) -1-

dz 
I U ~  (/ul 

ddt &v2pk2) 



-- 
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Therefore on substitution in equation (58) we find 

w h e r e q  andw2 are given by (35). The first group of terms on the left-hand side represents 
minus the rate of change of the vorticity due to convection by the mass-transport velocity. 
The second group of terms represents minus the rate of change of the vorticity due to 
viscous 'conduction'. These groups of terms may be called the convection terms and the 
conduction terms respectively. 

Suppose that all terms in (66) of higher order tha,n the second are neglected. We then have 

v4T2= 0, (67) 

which are the equations that would be obtained by setting V2$, = 0 in the right-hand side 
of equations (43) and (44). But, if the velocity gradients in the interior of the fluid are not 
large, then the ratio of the convection terms to the conduction terms in equation (66) is 
of order e2r/v, that is, of order a2/J2. Therefore a necessary condition for the validity of equa- 
tions (67) and (68) in the interior of the fluid is that a2/J2 @ l. 

In  most practical cases, however, we shall have a 98; so that the 'conduction equation' 
(67) will not apply. We should expect in this case that the appropriate field equation would 
be that obtained by equating to zero the convection terms on the left-hand side of (66). 
This cannot be deduced from the preceding analysis, which rests on the assumption that 
a2/d241;but the same equation can be derived by another method. Let us assume that the 
viscous terms in the original equation of motion (38) are entirely negligible; thus 

and 

O n  substituting from (30) and equating coefficients of e successively to zero we have from 
(69), in the first approximation, ,d 

(V2$1) - 0, 

so that V2$, is independent oft.  Thus, by (32), 

V2$, = v y l  = 0. 

From the second-order terms in (69) 

Since the second group of terms vanishes, 

and so 
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Similarly in the third approximation 

d ' so that G2$3-- -([uldt,-+ /~,dt;) v2&. (77) 

The terms of highest order in (70) give 
- . --

d d
(u -;W1-)V2$,+(u + w 2 V2$2= 0.

dx dz, dz2 d ~- d l  --

On substituting from (78) into (77) and using the relations (63), (64) and (65) we obtain 

or, from (35) and (38),  

- --- -.- -

In  deriving (79) the first non-zero term omitted owing to the neglect of the viscosity is 
s2vV4$, (since V4$, is zero) ;the largest terms retained are the fourth-order terms in equa- 
tion (79). Hence a necessary condition for the validity of these equations is that 

---a - - d  
t 2 ~ i ~ 4 $2 < ~ 4(u--+w-

'dx 2 d ~  (81) 
and hence that a2 9S2. 

Equations (68) and (80) may be called the 'conduction equation' and the 'convection 
equation' respectively. 

Let us consider equation (79) more closely. I t  may be written in the form 

where the left-hand side is the Jacobian of Y and V~F;.Thus V2Kis functionally related 

Hence the vorticity is constant along a stream-line. Also, since $-,satisfies Laplace's equation 
we have, on differentiation, 

2 I 2 1 
2 A ~ ~ ~ &  d l -d2$1_ 2 j d ~ ~ d t d - - l i ? + 2Vj\: ax 8 x 8 ~  ax2 17'2 axaz 

%dt J2$2 
-=-4Sdx2 dxdz' 

using equation (34). From (84) and (85) we obtain 

an alternative form of the conduction equation, 
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PART 11. THE BOUXDARY LAYERS 

I n  part I the mass-transport velocity in any oscillatory motion was defined, and field 
equations were obtained for the mass-transport stream function yl' in the interior. I t  was 
shown, however, that the neighbourhood of the boundaries requires special consideration, 
on account of the large velocity gradients encountered there; it can no longer be assumed, 
for example, that the first-order vorticity is zero, as in the interior of the fluid. 

An exact solution of the problem of an oscillating plane bounctary, in a fluid at rest at 
infinity, was given by Stokes (1851). Lamb (1932, p. 662) gave the solution to the closely re- 
lated problem of a semi-infinite fluid, with a fixed plarie boundary, moving under the action 
of a harmonically oscillating body force. In  these exact solutions the vorticity remains always 
in the neighbourhood of the boundaries, and the motion beyond a layer of thickness of the 
order of 6, = (2vlr)" is zero. Also the mass-transport velocity vanishes identically. Approxi- 
mate solutions for wave motion in water of finite or infinite depth have been given by 
Basset (1888)~ Hough (1896) and Lamb (1932). In  these approximate solutions the vor- 
ticity is also confined to the boundaries, to the first approximation; but to obtain the mass 
transport it is necessary to study the second-order terms. 

The objections to a direct extension of the solutions of Basset and Hough to a second 
approximation have been discussed in part I .  Briefly, the method would only be valid for 
very small values of the ratio ni8, where a is the wave amplitude. A different method, for 
the case of a circular cylinder oscillating in an infinite fluid, was used by Schlichting (1932). 
This involved initial neglect of SIZ, where I was the radius of the cylinder-essentially a 
boundary-layer approximation. I t  will be found that in Schlichting's analysis there is no 
implied restriction on the ratio a18 for the motion near the boundaries.* In  the following 
we shall use a similar approximation to Schlichting's, but treat a much more general 
problem, assuming an arbitrary oscillating motion of the boundaries, and taking into 
consideration more than one type of boundary condition. 

Since the normal displacement of the boundary may be large compared with S, a co- 
ordinate system must be chosen which is attached to the moving boundary. As in part I ,  
assume the motion to be two-dimensional and independent of y and let 

s = arc length measured along the boundary, 

n := distance measured inwards along a normal, 

K(S,  1) -- curvature of the boundary (positive when concave inwards), 

(see figure 2a) . The co-ordinates (s, n) are to be chosen so as to be in the same sense, right- 
handed or left-handed, as the cartesian co-ordinates (x, z )  of part I. (s, n) are orthogonal, 

* However, for the interior of'the f l ~ ~ i dSchlichting uses the 'conduction ccluation' (see $4), which may 
not I)ejustifiable, 
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the lines n = constant, being parallel curves. The square of the displacement corresponding 
to small increments ds, dn is 

q2ds2-1- d122, 
where 

y = 1-nk-. 

If q, and q, denote the components of velocity, resolved parallel to the directions of s and n 
increasing, the equation of continuity 

implies the existence of a stream function $ such that 

To find the normal and tangential stresses we temporarily introduce rectangular co-
ordinates (S,N )  tangential to (s, n)  at the origin. The corresponding velocity components 
qs and qN are given by 

qs 2 q, cos 0-qnsin 8, 

qN = qs sin 0-tqncos 8, 

where 0 is the angle between the normals s = 0 and s = constant (see figure 2 6 ) .  Thus 

When s = 0 = B we have 

(;IN = Q T Z Y  dn dn' 

The normal stress fin, and the tangential stress fins are given, when s = 0, by 
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where j~ is the mean pressure. Thus frorn (93) 

Since the form of these equations is independent of the position of the origin, they are valid 
for all values of (s, n).  

To describe the motion of the co-ordinate system, let 

K(s, t) - velocity of the point (s, 0)  parallel to the boundary, 

V,(s,t) = velocity of the point (s, 0) normal to the boundary, 

Q(s, t )  = angular velocity of the normal s = constant (positive in the sense of B 
increasing). 

Then the velocity components of the point having co-ordinates (s, n) are 

(Y-nil, K), (96) 

and if (S, rt) denotes the rate at which the co-ordinates of a particular element of fluid are 
increasing, and (q,, q,) denotes its actual velocity in space, we have 

The following relations between V,, and Q will be of use : 

These may be proved as follows. Consider the normals to the surface at two neighbouring 
points A and B, separated by an arc-length ds (see figure 3). Suppose that, in a short time 
dt, A and B are displaced to A' and B' respectively. The displacements of A perpendicular 
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and parallel to the normal at A are Kdt and Kdt; thus, if the tangent and normal at A are 

taken as co-ordinate ares, the vector AI'is given by 

A I '  = (K, V,)dt. (100) 

Similarly, the displacements of B perpendicular and parallel to the normal at B are 

@ + g d s ) d t  and (V,+-ds2 )dt. 

But the normal at B makes an angle ~ d s  with the normal at A. Hence, referred to the 
tangent and normal at A, we have 

to the present order of approximation. From (100) and (101) 

+ 
Now in time dt the vector AB remains of constant length ds (neglecting ds3) and turns 
through a small angle Qdt. The displacement of the vector AB is therefore given by 

A%'-- ~3= (0, ndtds). 
But since 

X~'+A%'= A ~ I =~3+&, 
the left-hand sides of (102) and (103) are equal. This proves equations (98). Equation (99) 

A A 

may be proved similarly: if AB, A'B', etc., denote the angles between the normals at A 
and B, A' and B', etc., we have 

A 

A B = = K ~ s ,  (105) 

A A 

Also AA' ==Qdt, BB' = 

A A A 

But AA' +A'B' = AB' =~2+BQ', 
from which (99) follows. 

As a result of the first of equations (98) we may write 

where pHb) =-1?V,ds, (109) 

and therefore 

where $' = $-Fb) = $+ ('?V,ds. 

Clearly $(b) is a stream function for the motion of the boundary itself; $' is a stream function 
for the motion 'relative to the boundary'. There is in general no stream function for the 
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motion of the co-ordinate system at  points other than on the boundary, since the term 
( -nQ, 0) in (96) represents a divergent velocity field. From (97) and (1 10) we have 

Consider now the equations of motion. Equation (38), which is obtained after elimination 
of the mean pressure p, may be expressed in the invariant form 

where D/Dt denotes differentiation following the motion, V2 is Laplace's operator and o 

is the vorticity of the fluid : 
0= V2+. (114) 

With the present co-ordinates 

and 
1 a l a '  d

0 2  r -- .- -1- .[ i ) aT~(ii)].Iq as ,qds  
Thus (1 13) can be written 

V2 being given by (1 16). 
For future reference it will be convenient to state also the equation of motion for each 

component of the velocity separately. If the co-ordinates (S ,N) are taken to refer to a 
definite instant of time, say t = 0, then we have 

Now when t - 0, 

Also, from equations (91) we find 

whence, after some simplification, we liave 
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The equations of motion are therefore 

U p  to the present point no approximations of any kind have been made. 
In  order to define the mass-transport velocity we assume, first, that the motion at  each 

point of space is time-periodic, and that the co-ordinate system is also chosen in a periodic 
way; all functions of the velocities, for given co-ordinates (s,n), are then periodic in t. 
Secondly, we assume that the motion is expressible in the form of an asymptotic series 

9 - €$bl- ! - E ~ $ ~ +  (124)..., 
and we write 2 $ .-1-c2q\qsl =:q., .., ( 1  2 5 )  


with similar expressions for q,, V,, V,, fi, S, li, $(b) and 9'. Thus the motion of the co-ordinate 
system, defined by V,, V ,  and Q, is of first order at  most. O n  the other hand, we write 

allowing for a curvature K, of the boundary in the undisturbed state. As in 3 2 the mean values 
of the first-order velocities at  each point in space are supposed to be zero. Thus, if the co- 
ordinates (S,N) are chosen as above, we have with an obvious notation 

4,s1 = 4n7 1 = 0, (127) 
where a bar denotes mean values with respect to time. I t  follows from (91) that 

4 s  1 = 4 n  1 = 0, (128) 
since 0 is constant with respect 1.0 time except possibly for a first-order variation. I t  may 
be shown also that 

-

-
and, since a= 

dB 
-= [,It=, 
at l=o = 0, (130) 

-- .-

we have Ql = Q2= ... = 0. (131) 

From (98) and (99) we have also the useful relations 

Since, from (88), 7 , = l - - ~ ~ n ,  V ~ = - - K ~ ~ ,  

it follows, by the third of equations ( 1  32)) that 

a
TI* = -Jz( n Q )  dl. 



-- 
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The choice of the normal s - 0 is still at our disposal. If the boundary is rigid, the origin 
(0,O) may be chosen to be a point on the boundary and fixed relative to it, so that, at all 
points on the boundary, == (j7 p' -=. y 

r S )  11 it' (135) 

O n  the other hand, it may be more convenient to take the origin at the point of intersection 
of the boundary with a line fixed in space, say a line normal to the position of the undis- 
turbed surface. Since the angle between this line and the normal to the moving surface is of 
first order in E ,  it follows that y(O, t) is of order c2 at most, i.e. 

y 1 = 0  
when s = 0. But from (132) we have 

so that when K~ vanishes y ,  is constant along the boundary and (136) holds for all values 
of s. In  other words, if the undisturbed surface has no curvature, the co-ordinates may be 
chosen so that K,vanishes at  all points of the surface. 

I n  precisely the same way as in 5 2, it may be shown that the mean rate of increase of 
the co-ordinates (s, n) of a particle is given, to order c2, by 

where, from (1 12), 

But the position of the co-ordinate axes remains on the average unchanged. We therefore 

define the components of the mass-transport velocity s2(Q, ,, Q, ,)by the equations 

1 ---- -
-Q,, = i2+ 
4o 

d ri, 

I t  can be shown by direct differentiation, using equation (134) and the periodic property 
of the motion (equation (34)) ,  that 

where Y,  which is a stream function for the mass-transport velocity, is given by 

- 1 a @ ,Y =  $;+-\(z--k""l 1d" t>z'Yo.  
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In order to simplify the above equations we shall now make a boundary-layer approxi- 
mation. The procedure we shall adopt will be, first, to neglect all quantities of order S/I 
(where S = (2vlu)j and I is a typical length associated with the geometry of the system), 
then to find a first-order solution in powers of s, and finally to derive the mass transport. 
The initial neglect of 6/1 involves relative errors of the order of 6/1 in the first approximation. 
But it will be found that, although the normal velocity gradients may be of order au/S, the 
corresponding components of the normal velocity li relative to the boundaries are in that 
case of order au$/l; by equation (140), the mass transport remains a homogeneous second- 
order function of the velocities. Hence the relative errors involved in the mass-transport 
velocity are only of order 811; no restrictions on the ratio a/$ are implied. 

The orders of magnitude of the different terms will depend, however, on the type of 
condition to be satisfied at the boundary. The two cases where the tangential velocity and 
the tangential stress, respectively, are prescribed will therefore be considered separately 
($5 7 and 8). 

The velocity gradients in the interior of the fluid are assumed to be of ordinary magnitude, 
i.e. of order aull. Thus, over distances which are small compared with I the velocity may be 
assumed to be uniform. The velocities or velocity gradients in the boundary layer, which 
may vary rapidly in the boundary layer itself, will tend to their relatively constant values 
'just beyond the boundary layer', that is, in a region whose distance from the boundary is 
greater than a few multiples of 6 but is still small compared with I. For points in this region 
we shall write n =a,with the understanding that this implies only S<n<l. Thus the 
components of the velocity just beyond the boundary layer will be denoted by qim)and 
qim); those at the surface itself by qiO)and qh0). 

When n = 0 we have 

and 

Assuming the tangential velocity d$/dn to be of order unity (in powers of $11) throughout the 
boundary layer, we have 

and therefore, on integrating from n - 0, 

But, since the tangential velocity qi") just beyond the boundary layer in general differs from 
qio), we must have 

.-a2@ = O(Cyz)-l, --
-
-a2$ o(s/l)-2,

dn2 dn3 



556 M. S. LONGUET-HIGGINS ON 


and so on. $(" and its derivatives being of order unity at  most, we have also (since 


etc. Each differentiation of $' with respect to n raises the order of magnitude by a factor 
(811)-I, whereas differentiation with respect to s leaves the order of magnitude unchanged. 
Retaining only the terms of highest order, we have from (88) and (1 12) 

and 

The equation of motion (1 17) becomes 

and on taking mean values with respect to time we have 

I n  the first approximation (in powers of e) we have from (152) 

and so 

for the expression on the left-hand side, being independent of n, equals its value just beyond 
the boundary layer. From (154) 

a2A== ,,\?!!!!I dt,-. 

dn2 . dn4 

and from (155) 


The terms of lowest order in a in equation (1 53) give 


and so from (156) 


Now from (142): to the present approximation, 
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If (142) is differentiated four times with respect to n it will be seen that the terms of highest 
order in S / l  are simply those that would be obtained by differentiating (160) four times. 
Thus, by Leibniz's theorem 

O n  substituting for d":/dn4 from (159) and using a property of the periodicity (equation 
(34)), we find 

d 4 9 '  J T P - a2F;+6Sa3$1 d3T 
--dn4 - 4j&dtdz + d t - A + 4dn dsdn2 

This is our differential equation for ll! in terms of $;. I t  may be integrated as follows: 
from (156) and (157) (and (34)) 

Thus (162) may be written 

d3$; d2$; d3Y! d 2 YO n  integrating twice from n =- oo,where ---- ---- ----- and vanish to the present 
dn3 ' dn2 ' an3 dn2 

order, we have 

which can also be written 

O n  integrating once more, frorn n = 0, we have 

Now when n = 0 we have from (144), (145) and (160) 

so that altogether 
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Suppose that the first-order motion is simple harmonic, that is, that $,, q$), etc., are 
given by the real parts of complex quantities proportional to eid. Then equation (155) 
becomes 

the general solution of which is given by 

where A and B are arbitrary constants and 

Since the solution is to remain finite in the interior of the fluid, A must vanish. The second 
constant B must be chosen so as to satisfy the boundary condition 

Hence we have a% ==; (c) - ,) -+ (q:t~q:?))
an 

-- e-en, 
(174) 

Thus the first-order velocity tends to its value in the interior of the fluid exponentially, but 
with a phase depending on n, since a is complex. A graph of the function (e-an- 1)eiut for 
different values oft is given by Lamb (1932,p. 623) to illustrate the motionin the neighbour- 
hood of a plane boundary when the fluid at infinity is oscillating harmonically. Equation 
(174) shows that in the first approximation the boundary may be regarded as plane and 
q$), q:?) and 5, as independent of s as well as n. However, the fact that these velocities are 
not completely independent ofs produces a small normal velocity relative to the boundary, 
given by 

Just beyond the boundary layer this velocity is given by 

-@) = - 1 d 110)- Vsl(a). 
n= lx, 

In considering the second-order terms a development of the notation will be useful. 
If Fland F, are any two periodic quantities of the form 

whereflandf2 are complex and independent oft, and 92 denotes the real part, we have 

FlF, . *( fleigt+ f: eigi) x +(f,eigt+tf: e - i ~ t )  

= $(f f 2 e 2 i ~ t-1- 2*e 
-

2iut +fif?+f%),1 f 'f (178) 

a star (*) being used to denote the conjugate complex quantity. Thus 
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If the symbol 2 is omitted in (177)  and (179)  we may write 

it being understood that the real part only is to be taken. Any group of terms in a product 
may therefore be replaced as a whole by the conjugate complex group of terms. 

From equation (174)  we have 

On substituting these results in (169)  and integrating the second term using (172)  we find 

Just beyond the boundary layer we have 

Thus the tangential component of the mass-transport velocity is determined by the 
tangential velocity at the boundary, the tangential velocity qg'just beyond the boundary 
layer, and the velocity V,, which depends partly on the movement of the boundary and 
partly on the choice of origin. When there is no stretching of the boundary we may take 

y = q"". (184)  

Equations (182)  and (183)  then become 

and 

respectively. In  particular when the boundary is stationary we have 

and so 

and 
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At the boundary itself the normal component of mass-transport velocity vanishes and so 
Y must be constant. In  general the normal component of the mass-transport velocity can 
be found from the equation 

d\T= dj:gdn.
ds ds 

For example, when the boundary is stationary we have from (188) 

(191)
and so 

Let P',":denote the tangential stress at  the boundary, which is assumed to be of order 
pvao/l. We have then 

If we assume 9= o(1)
dn2 (194) 

(in powers of 6/1), it follows that d$jds and d$jdn are constant, to this order, throughout the 
boundary layer. Thus 

3 29---v = -q(o) = O(S/l>, (195)ds n Y ds 

The second of the two boundary conditions (193) may therefore be written 

or alternatively, since, when n = 0, 

VZr -+--K-
( 5  :i2 In) 

we have (V2$) n-o = (199) 

But the value of d2$/dn2 just beyond the boundary layer in general differs from that given 
by (197). Therefore we must have 

and hence also 
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each further differentiation with respect to n raising the order of magnitude by (6/1)-l. 
I t  should be noticed, however, that there is a break in the sequence, since both d@'/dn 
and d2$'/dn2 are O(1). This introduces a significant difference between the present case 
and that considered in 5 7. 

The equation of motion (117) now becomes 

This may be compared with equation (152), where the corresponding terms are of a higher 
order of magnitude. It is not possible in the present case to replace V2@ by d2$/dn2 or by 
d2$'/dn2. In  the first approximation we now have 

and so 

On taking mean values in equation (202) we find 

a@;a a@;L),2@, v-d2 - v , 3 4 6= V2@, = 
( a n  as as an dn2 dn4 ' 

so that, by (204)' 

as in equation (159). The mass-transport velocity is constant throughout the boundary 
layer; for from (139) 

. a+! 
- -= qio'-V, = O(1) n 

. 
=-

a$/ 
--= O(S/l)s =  

dn as 

as d2@' d$' dri .-
---

d2@' 
= oc1>, 

(207) 

an=zt~dn+n=~ ( l ) ,  Jy dsdn I

pp

and so from (140) 
dn = ( d - K r )  +/ (q4'-K 1) 

--

dt (q:!'-~ 1). 

-

However the velocity gradient d2Y/dn2 is not constant. We have from (142), after differ- 
entiating four times, using Leibniz's theorem, and retaining only the terms of highest order, 

which may be compared with equation (161). Thus, from (206)' 

= 4  -V2$,dt-(qf"-~,).SIP,: d 
as 

On integrating from n =co we have 

a 
dn3 dt-ds (qy-V,,), 
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and on integrating from n = 0 

To obtain a boundary condition for Y" when n = 0 we have from (140) and (141), after 
differentiating with respect to n, 

or, since i1vanishes and di l /dn  equals -dSl/ds, 

as d2$
But from (207) -= ---1K ($7:" -vi) Q,an dn2 (216) 
so that from (197) and (132) 

(217)
n=O P'J 

Hence 

Thus altogether 

From (219) we have, on replacing V , ,  by q:;), 

1
(V2$l),=o= -pgl -2 r 9  +KO q:O)), (220)

P'J 
so that (219) can be written 

Also Y is to be constant along the boundary. 
When the first-order motion is simple harmonic, equation (203) becomes 

The only solution of this equation which is finite for Large n and which satisfies the boundary 
condition (220) is 

1 (0)v ~ + ~= [-Pi:)l -2 (++ K O  q:Y))]e-'". (223)
P 'J 
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Thus from (219) 

----
2 

+ K  -= ,--2 r $ + K o q : y ) ) ] z ( q L ? ) * - G ) ( e - a n - l )d 2[1 d 

dn2 O dn lo pv 


1 -- 1 d 1
+ - [ p : : \ + G p n s , z ( ~ ~ ) * - ~ ~ ) + G ( q $ ; ) - ~ l ) ~ ] ,  (224)PV 

and just beyond the boundary layer we have from (221) 

1 --- 1
+ p y [ ~ ~ - S ~ n i  1 

At a free surface p::) vanishes, making the last group of terms in (224) and (225) zero. If 
also K~ = 0, then the co-ordinates may be chosen so that K1 vanishes (see 5 6). We have then 

--J2Y-- 4 dqi!) dq:;)* (1-e-an),up-


dn2 io ds ds (226) 

and just beyond the boundary layer 

(0,d * 4 d q n l  qsl 
(227) 

Thus, in the present case, it is the normal gradient of the mass transport which is deter- 
mined throughout the boundary layer. 

Suppose that it is desired to find a periodic motion satisfying, at the boundaries, one of 
two types of condition: either the normal and the tangential velocities are prescribed to be 
equal to qL0) and qLO)respectively or else the normal and tangential stresses are to be equal 
to pi: and $I,",)respectively. Suppose also that a perfect-fluid solution +, exists, satisfying 
Laplace's equation in the interior of the fluid, having the normal velocity q',O) at the first 
type of boundary, and having value ofp equal to --pk: at the second type of boundary. 
(+, will not of course satisfy the other two boundary conditions, in general.) Let s$,, be the 
first approximation to +,, in powers of s; $,, is to be considered as being referred to co- 
ordinates normal and tangential to the boundaries. Since $, , satisfies Laplace's equation, 
it satisfies also the equations of viscous motion in the interior of the fluid. Also, since p, 
apart from the hydrostatic pressure, is a function of the velocities of the order of pao2Z (see 
equation (122)) and since, from equation (94), 

P n n  = -P + 0(~vaa/') (228) 

it follows that s$, , gives the prescribed value of the normal stress fin,, with relative errors 
of the order of (6/1)2.Further, from $$7 and 8 we see that by adding to +, , functions, say 
$, ,, which vanish exponentially inwards from the boundaries, the conditions of prescribed 
tangential stress or velocity ma.y be satisfied (to order s). The functions e+, , produce also 
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additional stresses and velocities normal to the boundaries. But, considered as functions 
of the velocities, these are at  most of order 611 relative to the corresponding functions for 

,. Hence E(+, f +b ,) satisfies all the prescribed boundary conditions for c$,,  with neglect 
only of 611. I n  the interior of the fluid tends exponentially to E+, ,. Hence the velocities 
qiy), q:?), K and V , , may be calculated by the ordinary theory of perfect fluids, and will be 
correct to order 611 in the interior. The effect of surface tension, which enters only into the 
normal stress, may be taken into account by calculating its effect on +,,in the usual way. 

Thus the theory of perfect fluids can be expected to describe the motion in the interior 
of the fluid successfully to order e. But to order c2 this is not so. From § 7 we see that when 
the normal and tangential velocities at  the boundary are given, the mass-transport velocity 
dY/dn just beyond the boundary layer is well determined, and not arbitrary as in the theory 
of a perfect fluid. To  the present order of approximation the velocity is independent of the 
viscosity, and, as v tends to zero, it tends to a value different from that at  the boundaries. 
This phenomenon was noticed by Schlichting (1932) and Rayleigh (1883) in special cases. 
Similarly, from § 8, when the tangential stress is prescribed at  the boundary the normal 

gradient of the mass-transport velocity, or rather ---+K -- ,is determined just beyond 
n O 

the boundary layer. 
T o  determine Y in the interior of the fluid, suppose that the first-order solution +,, is 

found by the classical theory; q!:), qI,:), qiy),etc., are then known. At the first type of boundary 
we have 

and just beyond the boundary layer (if the velocities are expressed as the real parts of 
complex quantities) 

by (183). Since the boundary layer is only of thickness 6, the second condition may be 
supposed to be satisfied at  the boundary itself, or at  the mean boundary, for this will not 
affect the value of 'P" in the interior to the present approximation. Similarly, at  the second 
type of boundary we have dY 

--= 0,
ds 

and from (221) 

In  the interior of the fluid the field equation may be taken to be either (68) or (86), accord-
ing as a2@J2 or a2aJ2. Solutions of these equations may be called conduction solutions 
and convection solutions respectively, corresponding to the names for the equations 
suggested in $4. 
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Since the conduction equation is of the fourth order we may expect that a conduction 
solution satisfying all the boundary conditions exists in general. But since the convection 
equation is only of the second order, a convection solution can be expected to exist only in 
special cases. 

Let us consider more closely the conditions to be satisfied by the convection solution near 
a free surface, say z = 0. Settingph!) = = =r 0 in equation (232), we have 

or, on replacing (s,n) by ( x ,z ), 
d2\r d2$a 1( )  .=o -8/%dt_dz = 

ax2 dxdz  ' 

Now since Y is constant when z = 0 we have from the convection equation (86) 

d 2 Y  J2$a 1 
= constant -4 ----- dt --

Jdi5l axaz.(PI2=(, 
From (234) and (235) it follows that a necessary condition is 

ST& dt%
dx d z  

= constant, 

1% dt% = constant,
ax dz 

since , satisfies Laplace's equation. This is equivalent to 

(on differentiating with respect to x and using the property of the periodicity, equation (34)). 
Now the condition of constant normal pressure at the free surface gives, for the perfect- 
fluid solution, 

where #,, is the velocity potential corresponding to $a , (Stokes 1847). On differentiating 
with respect to x and replacing d$, ,/ax by -d$, ,/dz we have 

Thus the left-hand side of (238) may be written 

Each term vanishes, by the periodicity; thus the necessary condition is satisfied. The proof 
can be extended to the case when the surface tension is taken into account. Hence, if both 
normal and tangential stresses at the surface vanish, it may be possible to satisfy the con- 
dition (232); but if the stresses do not vanish a convection solution cannot in general 
be found. 
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PART 111. WAVES IN WATER OF UNIFORM DEPTH 

In parts I and I1 a general method was described for finding the mass-transport velocity 
in any oscillatory motion of small amplitude, given the first-order motion for a perfect fluid. 
In  this part the method will be applied to the case of waves in water of uniform depth. 

As shown in part I,  the motion in the interior of the fluid has a different character when 
the ratio a2/62 is small, and when it is large, compared with unity (a denotes the amplitude 
of the first-order oscillation, and 6 = (2v/g)*, where v is the viscosity and 2n/a is the period). 
In  the first case the vorticity is diffused throughout the fluid by viscous conduction, and 
in the second case by convection with the mass-transport velocity. There are two different 
field equations for the two cases (equations (68) and (84)). The mass transport near the 
boundaries, however, does not depend critically on the ratio ai6, but is determined by the 
first-order motion and the local boundary conditions. The thickness of the boundary layer 
is of order 6. Just beyond this layer either the mass-transport velocity dY/dn itself or its 
normal gradient d2Y/dn2 takes a certain definite value, depending on whether the boundary 
is fixed or 'free'; and, by combining the known values of dYy/dn or d2Y!/dn2 just beyond the 
boundaries with the approximate field equations for the stream function Yy in the interior 
of the fluid, a 'conduction solution' or a 'convection solution' may be obtained. 

In  order to treat the progressive and the standing wave together we shall consider a 
motion which, in the first approximation, consists of two waves of the same period and 
wave-length travelling in opposite directions; that is, we suppose that the equation of the 
free surface is 

z = a, cos (kx -gt) +a2 cos (kx 4gt) 

in the usual notation; or, if the real part only is taken, 

The corresponding stream function is given by 

(Stokes 1847). The condition of constant pressure at the free surface gives 

g 2  = gk tanh kh. (245) 

To obtain a single progressive wave of amplitude a travelling in the direction of x increasing 
we shall write 

a, = a, a, - 0. 

To obtain a standing wave of amplitude 2a we shall write 

We shall first evaluate the motion in the boundary layers, and then proceed to consider the 
motion in the interior of the fluid. Finally, the results will be compared with some observa- 
tions of mass-transport velocities. 
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In  equation (188) we write 

s = -x , n=h-z,  


(7and Gqi;o)= -_- (al e-k- a, eik.Y) e i ~ t .
sinh kfz 

This gives 

e2-d y  --- gk 
(a: -a$ - -3(1+i) (1-e-(a+a*)(h-z))].2a1u2sin 2kx) [8(1-- e-@@-~)) 

dz 4sinh2kh 


h-z
Now a(h-z) = ( I  +i) ---
6 ' 

Thus, retaining only the real part, we have 

€2- d Y  - gk ( a - a )  +2ala2sin2kxf(s)
dz - 4 sinh2 kh . 

where 
f@)(,u)= 5-8 e-iu cos ,u$.3 e-2p, 
f ( s ) ( p )  - -3+ 8 e-Psin,u+ 3 e-2iu. 

(a) The progressive wave 


Assuming (246) we have 


S'*'(P) 

FIGURE4. Graph of f'iP)(p),representing the profile of the mass-transport 
velocity in the boundary layer at the bottom, in a progressive wave. 

.f(#)(,u),which-represents the typical velocity profile near the bottom for the progressive wave, 
is plotted against p in figure 4. I t  will be seen that f(P)(,u) is always positive and, when ,u 
tends to infinity, tends to the value 5 . Thus, just beyond the boundary layer, 
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Also df (b)
- 8 42 e-p sin (p f $ 7 ~ )  -6 e-2p, 

d~ 
so that stationary values of the velocity occur when 

3
sin (p + $ 7 ~ )  = -

4 .I2 e-p' 
The lowest root is given by 

p = 2.306, f(@)= 5.505, 

so that the maximum value of the velocity is given by 

Subsequent maxima or minima occur when 

p +(m-&) 7~ (m = 2,3, ...). 

(b) The standing wave 

Assuming (247) we have 


h-z
€ 2  ay-=---sin 2kx f ( ~ ) ( ~ ) .dz 2sinh2kh 

f(s)(p) is plotted against p in figure 5. As p tends to infinity f(s) tends to -3. Thus just beyond 
the boundary layer we have 

8 3 a2cke2-=--p- sin 2kx. dz 2sinh"h 

FIGURE5. Graph off (s)(p),representing the profile of the mass-transp0r.t 
velocity in the boundary layer at the bottom, in a standing wave. 

However, for small values of p, f cs) takes positive values. There is one zero, namely, when 
p = 0.93. Since df CS) 

--- = 8$2 e-p sin (p + $ 7 ~ )  -6 e-2p, (263)d~ 

maxima and minima occur when 
3 e-p sin (p+in) = --. 
4 J 2  
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The first two stationary values occur when 

p = 0.49, f C S )  = -0.41 

and 	 p = 3.94, fQ= 3.11. 

Subsequent maxima or minima occur when 

,D =(m-971) (m = 3,4, ...). (267) 

We see from (261) that the horizontal mass-transport velocity varies as sin 2kx; in the planes 
x = 0, +&A, &+A, ..., it is zero, and in the planes x =&+A, &+A, ..., it is a maximum. The 
particles very close to the bottom tend to move towards the planes of greatest horizontal 
first-order motion and away from the planes where the motion is purely vertical, but for 
larger values of (h-z)/S the particles drift in the reverse sense. Hence there is a circulation 
in the boundary layer itself, in cells whose length is ;A. The vertical velocity is given by 

dY a2Sk2a (h-z) /& 
---- ___€2 _ 

dz sinh2kh cos 2kx so .f'"(PI d ~ .  

This vanishes when 	(h-z)/S = 0 and 1-47. 

Since the boundary is moving we retain at first the co-ordinates (s,n). In  equation 
(226) we write 	 eqh?) = e-iks +a, eiks) eigt 

(269) 
and 	 sqkl)==-a coth kh (a, e-iks-a, eiks)eiut, (270)

aY
giving € 2  --- =-4ak%coth kh (a: -a$ -2iala, sin 2ks) (1-e - ~ ~ ) .  P71)dn2 

Thus, retaining only the real part of (271) we have 

d2Y
e2--- = 4ak2coth kh 	 f 2a1a, sin 2ksgCs)dn2 

where 
g(b)(p)=-1i-e-i"cosp, (273) 
g@)(p)=-e-p sinp. 	 (274) 

(a) The progressive wave 

In  this case 


d2Y
e2 ----=4a2ak2coth khg(@)

an2 

As p tends to infinity g(@)tends to -1. Thus, just beyond the boundary layer the velocity 
gradient is given by d2Y 

€2 --,=-4a2akcoth kh,
dn 

which is twice the corresponding value for the irrotational wave (see Stokes I 847). Hence 
there is a vorticity given by 

e 2 V 2 K=-2a2ak2coth kh. 	 (277) 
From (273) we see that g(@)is always negative except at the free surface, where it vanishes. 
The stationary values of g(@)are given by 
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The greatest value of the velocity gradient is given by 

m = 1, y = 
4 Y 

g(@)= -1-67. 

(b)  The standing wave 
In  this case we have from (274) 


a2y

€2- = 8a2ak coth kh sin 2ksgo dn2 

As y tends to infinity gcS) tends to zero. Thus, just beyond the boundary layer 

as in the irrotational wave. In  the boundary layer itself the velocity gradient may take 
both positive and negative values. The stationary values of are given by 

,a = (m-9) .;rr (m = 1,2, ...). 

The greatest and least values of the velocity gradient occur when 

y = in, =-0.67, 

and p = a n4 3 g(~)=0.14, 

respectively. The velocity gradient vanishes when 

As boundary conditions for the motion in the interior we find the values of dY/dn (or 
d2Y/dn2)just beyond the boundary layers ( n 9  6), and suppose that these are to be taken at 
the mean boundary itself. Thus from (252) and (273) we have, so far as the motion in the 
interior is concerned. 

ak 
[5 (a? -a;) -6a1 a, sin 2kx] 

2ak2 sinh 2kh ---- -.and 
z=o sinh2 kh (af -a;). 

On  each of the mean boundaries Y'" is to be constant. The arbitrary constant in Y may be 
chosen so as to make Y? vanish at the upper boundary. Thus 

and (Y),,, = constant. 
Also from equation (244) we have 

d I -
a sinh 2k(z -h) 

E2 S% dtar -4 Sinh2 kh (a? -OH), 

so that the conduction equation for Y"in the interior of the fluid is, by equation (68), 

v4y= v4 asinh 2k(z--h) 
(at-a;).4 sinh2kh 

http:g(~)=0.14
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However, the equations (286) to (289) and (291) are not quite sufficient to determine Y 
uniquely; one further condition is required. We may suppose that 

i.e. that the total horizontal flow due to the mass transport is zero. Assume a solution 
of the form 

& 2 y = ___-_ (r 
[(a:-a j )  (sinh 2k(z-h)  +Z(p)(z))  +2a, a ,  sin 2kx ZcS)(z)] .

4 sinh2kh (293) 

Then Z(p)and must satisfy 
d4Z(b) 

= 0,
dz4 

==-4k2sinh 2kh, =(Z(fi))z=osinh 2khj 

and 

The solutions of these equations are given by 

Z(p)= sinh 2kh+3kz+k2h2sinh 2kh(z3/h3-2z2/h2+zlh)++(sinh2khf 3kh) (z3/h3 -3z/h) 

and (296) 

Z(")= 3 2kh 
-

cosh 2kh sinh 2kz-2kz cosh 2kz sinh 2kh 
sinh 4kh-4kh (297) 

This gives the solution (293) uniquely. But if the condition (294) is relaxed an arbitrary 
multiple of 

a2a(z3/h3-3z/h) (298) 

may be added to Y?. The expression (298)represents a parabolic velocity distribution which 
vanishes on the bottom and has zero velocity gradient at the free surface. 

(a)  The progressive wave 


When a, = a,  a ,  = 0,  we have from (293) and (296) 


where F(p)(,u)= 4 sinh2kh [2co~h2kh(~-- . l )+3+khs inh2kh(3~2--4 ,u+l)  
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In figure 6, F(b)is plotted against ,u for kh - 0.5, 1.0 and 1.5. I t  will be seen that the curve is 
always concave towards the right. For small values of kh the velocity is greatest near the 
bottom. When kh is negligible we have 

Y 5b2nkand so € 2 - = - (3z2/h2- I ) ,dz 8 

where 6 is the amplitude of the horizontal motion: 

6 - a coth kh = alkh. (303) 

FcB)(z/h) 
FIGURE6. when kh= 0.5, 1.0 and 1.5, representing the profile of the mass- Graphs of F(@)(z/h) 

transport velocity in the interior of the fluid in a progressive wave (conduction solution). 

Equation (302) gives a parabolic velocity distribution, which is zero when z /h  = J 3  and 
has a vertical tangent at the mean free surface. However, for small values of kh the present 
approximation may not be good unless the wave amplitude a is very small; for the method 
can only be expected to remain valid if the mass-transport velocity is small compared with 
the orbital velocity of the particles; it will be seen that this requires a/h+ 1. 

For large values of kh the velocity is greatest near the free surface. When (kh)-I and e-kh 
are negligible we have F ( P ) ( ~ )-Bkh(3P2-4p+ I ) ,  (304)= 

dY
and hence , 2 _ _ = 1 2  ,a ok2h(3z2/h2-4z/h+1) .

dz (305) 

This represents a parabolic velocity distribution which is zero when z /h  = 1 and z /h  = +, 
and has a vertical tangent when z /h  = $. 

( 6 )  The standing wave 

When a, = a, = a we have from (293) 

&2Y= a2g 
sin 2kx Z(s)(z) ,  (306)

2 sinh2kh 

Z(5)being given by (297) . Contours of the function sin 2kx Z(s)((zwhen kh = 1.0 are shown in 
figure 7 .  The circulation is in cells bounded by the vertical planes x = &mh(where m is any 
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integer) and by the horizontal planes z =0 and z =h. I t  may be shown that ZcS)(z) has only 
one stationary value, given by 

2kz tanh 2kz = 2kh coth 2kh -1. (307) 

Z 


FIGURE7. Contours of sin 2kx Z(")(z)when klz = 1.0) representing the circulation 
of mass transport in a standing wave (conduction solution). 

Hence there is only one cell in each vertical line. When kh is small we have 

e 2 y  =-$b2ukh sin 2kx (z3/h3 -z/h), (308) 

where b is given by (303)) so that there is a point of zero velocity where 

x =  (&n+t)h,  z/h=J3. 
When kh is large we find 

e2IIr =%a2@ -z) e-2k(h-z). (310)sin 2kx e-2kh 2k(h 

This is the special case found by Rayleigh (1883) .* The velocities are very small, owing to 
the factor e-2kh. The circulation is driven by the tangential velocity near the bottom, and 
takes place almost entirely within a quarter of a wave-length from the bottom. There is 
a point of zero velocity where 

The boundary conditions for I%;"are given, as before, by equations (286) to (289), but the 
field equation, from equation (84), is now 

a sinh 2k(z -h) 
v~[Y-vP--4 sinh2 kh (a: a ; ) ]  =F ( Y ) .  

(a) The progressive wave 


In  this case a solution is simply 


* Rayleigh did not examine the motion near the free surface, or show that the mass-transport velocity 
gradient vanishes there. His solution is therefore incomplete, even for waves in deep water; for, a non-zero 
velocity gradient near the free surface would produce additional velocities near the bottom of order 
a2&e-2kh, which are comparable with those produced by the tangential velocity near the bottom. 
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where H(z) is an arbitrary function satisfying only the conditions 

) = 5k, 
Z=h 

d2H ' 

(=)z=o 
= -2k2 sinh 2kh, 

and, if the total horizontal flow is assumed to be zero, 

for, equation (313) defines z as a function of Y, and then Fcan be defined byequation (312). 
The motion represented is a horizontal flow depending only on z. I t  can only be defined 
further if the conditions at x = &-co are specified. 

( 6 )  The general case 

When neither a, nor a, vanishes, we assume, as the simplest hypothesis, that Fis a linear 
function of Y?: 

where C and r are constants to be determined. The differential equation for Yis then 

2 - 2 

(V2+r2) = 4 sinh2 kh [Ck2+ 4k2sinh 2k(z -h)]. (317) 
Let 

4k2 sinh 2k(r -h) +Z@)'(z)+ 2a, a, sin 2kr ~" '(z)] .  
4 sinh2 kh 

(318)
Then Z@)'and Z@)' must satisfy 

and 
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From the first and the last two of equations (319) it follows that 

C = -4 sinh 2kh. 
The first three equations give 

Z(B)'= (12k2+ 5r2)k sin rz (2k24-r2) 8k2 cos r(z -h)
--- sinh 2kh .

(4k2+ r2) r cos rh '(4k2+ r2) r2 cos rh 

Equations (320) possess a solution 

Zb)' = sin (r2 
------

-4k2)+-3k z 
(r2-4k2)*cos (r2-4k2)+h7 

provided that r2 = 4k2+ m2rr2/h2, 

where m is a positive integer. In  this case (323) may also be written 

3kh
Z(S)'= ( - l ) m + l - sin (mrrzlh). (325)mrr 

Once m is chosen, both Z(")' anti Z(@)' are completely defined. There is an infinite number 
of solutions, each corresponding to a different integer m, but solutions corresponding to 
different values of m are not of course superposable. Now when z = h we have 

c2Y= "(a:-a:) akh+--.-(12k2+ 5r2)k 2kh sec rh] .[-Fsinh tan rh + ( 2 k 2 + r 2 E ~ i n h
4 sinh2kh (4k2+y2) r (4k2+r2)7 

I t  may be shown that the expression in square brackets cannotvanish when kh> 0. Hence 
the present solution does not represent a motion having zero total horizontal flow, except 
when a: = a: (the case of the standing wave). 

(c) The standing wave 

When a, = a, = a we have from (31 8) and (31 5) 

c 2 y  = ( - - - . l )m+l-_-___ akha2 sin 2kx sin (mnz/h). 
2 mn sinh2 kh 

This represents a circulation in cells similar to those in the conduction solution (§ 13), 
except that in each vertical line there are now m cells instead of only one as formerly. The 
vertical boundaries of the cells are the planes x = &m'A (where m' is any integer), and the 
horizontal boundaries are the planes z = m"h/m (0e m "  e m ) .  The circulations in adjacent 
cells are in opposite senses; those in the lowest cells are in the same sense as the circulations 
in the corresponding cells in the conduction solution. 

The results of the present section may be summarized by saying that for the progressive 
wave the convection solution is arbitrary, for the standing wave there is an infinity ofpossible 
solutions, and in the general case of two opposite waves of unequal amplitude there exists 
an infinity of homogeneous solu.tions of the present type; these, however, represent motions 
with non-zero total horizontal flow. 
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The conduction and convection solutions for the first-order motion which is represented 
by (244) are exact, to the present degree of approximation. However, owing to the dissipa- 
tion of energy by viscosity, equation (244) itself is only approximate; for the motion cannot 
be exactly periodic in both space and time. The assumption usually made (see Basset r888; 
Hough I 896) is that the motion is periodic in space and has a small decrement in time. But 
since one of our fundamental assumptions is that the motion is periodic in time, we must 
here suppose that the motion is attenuated in a horizontal direction. For a progressive 
wave in which the energy is propagated in the direction of x increasing, there will be an 
exponential decrease with X;  instead of a 'standing wave' we may consider the sum of 
two progressive waves attenuated in opposite directions. 

Now the energy dissipation E per unit volume is proportional to pv times (velocity 
gradient)2. Thus in the interior of the fluid, and in the boundary layer at the free surface, 
E is only of order pva2rq2, or pg~~nk(S/ l )~,  where 1 is the wave-length. But in the boundary 
layer at the bottom the velocity gradients are of order ar/6, and hence the energy dissipation 
is of order pgn2rk per unit volume, or pga2r(S,/l) per unit area of the bottom. Thus most of 
the eiiergy dissipation takes place in the boundary layer at the bottom, provided the depth 
is not too great. But the transfer of energy horizontally can be shown to be almost in- 
dependent of the viscosity, so that the proportional rate of attenuation horizontally is of 
order 811 per unit wave-length at most. This is of the same order as quantities already 
neglected. 

The conduction solution for the progressive wave given in 5 13, which is independent of 
the horizontal co-ordinate x, satisfies also the convection equations; for the stream-lines 
are parallel, and the vorticity along each is constant. I t  might therefore be supposed that 
the solution is valid for all values of a2/S2. However, if the horizontal attenuation of the waves 
is taken into account there must be a small vertical component of velocity, and the con- 
duction terms no longer vanish identically. I t  then becomes difficult to find a convection 
solution. The conduction solution, on the other hand, can easily be modified to take account 
of the attenuation. Since the vertical velocities are small it is possible that, for the progres- 
sive wave, the range of validity of the conduction solution (for which it was specified that 
a2/62< 1) is slightly greater than that assumed. However, in the case of the standing wave, 
where the convection terms do not vanish identically, the condition a2/S2< 1 cannot be 
relaxed. 

Let us now consider the possible sequence of events, supposing that the motion is started 
from a state of rest. For definiteness suppose that waves are generated in a rectangular tank 
of length L, width D, and depth h (where L is large compared with a wave-length) by an 
oscillating plunger or paddle at one end of the tank. If a progressive wave is considered, 
the waves may be supposed to be dissipated by a 'beach' or wave absorber at the far end 
of the tank, or they may be partially or wholly reflected by a suitable obstacle placed in the 
tank; if they are wholly reflected a standing wave is formed. 

Observation has shown (see Cooper & Longuet-Higgins 1950) that the wave energy 
travels down the tank with approximately the theoretical group velocity g/2u, and that 
soon after the passage of the 'wave front' the first-order motion is well established. The mass- 
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transport distribution in the boundary layers can be expected to be set up almost immedi- 
ately, for it depends, as was shown in part 11,only on the first-order motion and on the local 
boundary conditions. There may be some departures from the theoretical velocity dis- 
tribution owing to the presence of large velocity gradients just beyond the boundary layer, 
for these might not at first be smi~ll compared with the velocity gradients in the boundary 
layer itself, as was assumed. But after a few cycles the velocity gradients just beyond the 
boundary layer can be expected to be smoothed out by the viscosity. 

In the interior of the fluid the motion will at first be irrotational, since no vorticity can 
be generated there. The mass-transport distribution should therefore be as described by 
Stokes (1847). Subsequently the nature of the motion will depend upon the ratio a2/S2. 
If a2/S2< I, that is, for very small waves indeed, the motion would be as described by the 
conduction solutions of $ 1 3  (except possibly near the vertical sides of the tank, where the 
motion has not yet been considel-ed). In  order that the solution should be valid it must be 
supposed that the width D of the tank is great compared with the depth h of water. By 
analogy with the diffusion of heat, the time taken for the vorticity to diffuse into the interior 
and for a steady state to be reached will be of the order of h2/v. 

In  nearly all practical cases, however, we shall have a2/S2+ 1, so that, if a steady state 
exists, it is given by the convection solution of 5 14. For the progressive wave, this solution 
is arbitrary, or rather it depends on the boundary conditions imposed at x =kco. In prac- 
tice, therefore, we may expect that the motion will depend upon the special conditions at 
the wave maker and the wave absorber respectively; vorticity will be generated at these 
points and will be diffused horizontally along the stream-lines. The time taken for the whole 
interior of the tank to be affected in this way is of the order of L/(a2uk). In  the meantime, 
some vorticity will be diffused inwards from the bottom, from the free surface and from the 
vertical sides by viscous conduction. The width affected in this manner is of the order of 
(Lv/a2ak)"this quantity is assumed to be small compared with h or D). However, it is by 
no means certain that a steady state will exist which is compatible with the boundary con- 
ditions at both the wave maker and at the wave absorber, or that, if it exists, it is stable. The 
situation is even less predictable when one considers a partially reflected wave, for which 
no convection solution satisfying the condition of zero total transport has been found, or 
the standing wave, for which there is an infinity of such solutions. 

I t  appears from the preceding discussion that the theory can best be compared with 
observation, first, in the boundary layers, where the motion is well-determined irrespective 
of the ratio a2/S2, and, secondly, in the interior of the fluid before vorticity has had time to 
be diffused inwards; the motion should then be described by Stokes's irrotational theory. 
Not many quantitative determinations of mass-transport velocity have been made under 
controlled conditions, but the chief observations will now be discussed. 

Caligny (1878) 

The earliest quantitative observations seem to be due to Bertin & Caligny (Caligny 
1878). These authors used a tank of length 29.7 m, depth 47 cm and width 50 cm; the depth 

71-2 
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of water was 36 cm. Waves were generated at  one end by a steam-driven plunger, travelled 
down to the far end and were dissipated on a sloping plane 'beach'. The movement of 
particles of resin suspended in the fluid was observed through glass windows in a side wall 
of the tank. Caligny gives the following values of the niean horizontal velocity for waves 
of period 1s, wave-length 130 cm and height 6 cm: 

distance above bottom (cm) 0 5 9 16 33 27 36 
mean velocity (cm/s) 0.4 0.0 -0.3 -0.5 0.0 0.3 0.5 

This shows a forward velocity both near the bottom and near the free surface, with a nega- 
tive velocity between. Assuming a - 2n s-I, h- = 277; 130cm-1, h = 36 cm and a - 3 cm we 
find that the theoretical velocity just in the interior of the fluid, according to equation (265), 
is 0.45 cm/s, in good agreement with the observation at  the lowest level. The velocity 
gradient near the free surface was not recorded; the theoretical value given by equation 
(276) is -0.56 s-I, compared with a mean value of -0.02 s-l between the two observations 
nearest the upper surface. Caligny, however, mentions that the observations at  the upper- 
most levels were rather scattered. This might either be because the motion was not steady, 
or because the velocity gradient was so large that the velocity depended critically on the 
depth of the particle of resin below the free surface. 

In  some previous but less precise experiments (1861) Caligny had observed a backward 
movement of grains of sand and resin on the bottom. But this movement diminished 
rapidly with distance from the wave maker and seems to have been due to the fact that 
locally the waves were not progressive. 

Mitchim ( I939) 

A systematic experimental study of deep-water waves was made by Mitchim (1939)using 
a tank 6Oft. long, 1ft. wide and 3ft. deep. The depth of water was 2*5ft., and the wave- 
lengths investigated were from 2 to 6 ft., or less than twice the depth ofwater; thus the waves 
were, effectively, in deep water. The motion was generated at  one end of the tank by 
a wooden flap hinged on the bottom, and was dissipated at the far end on a sloping plane 
beach. The mass-transport velocities below the free surface were measured by photographing 
the tracks of white liquid particles suspended in the fluid; the velocities at  the surface were 
measured by observing the progress of a small wooden cylinder goin. in diameter. 

The surface velocities agreed fairly well with the irrotational theory, being mostly within 
20 %. The velocities in the interior were in qualitative agreement with the irrotational 
theory, being forward near the surface and backward at  the lower levels; but the scatter 
of the observations, even on the same run, was such that it seems unlikely that a steady state 
had been reached. No observations very near the bottom are reported. 

The United States Beach Erosion Board (1941) 

Some mass-transport observations are included in an experimental study of surface 
waves by the United States Beach Erosion Board (1941). The wave-lengths h used were 
between 3.5 and 12.2ft., and the depth of water was between 1,and 3 ft. There were no 
observations near the bottom, nor is it stated for how long the waves had been running a t  
the time of the observation. I n  deep water (h>&h)there was reasonable agreement with 
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Stokes's theory in the upper half of the fluid (though no observations within 2 in. of the 
surface are given) ;in shallow water (h<$h) the agreement with Stokes's theory was poor 
and the observations show considerable scatter; it seems unlikely that a steady state had 
been reached. 

Bagnold (1947) 
In  the course of a study of the movement of sand by water waves, Bagnold (1947) also 

made observations of the motion of the water particles themselves. His apparatus consisted 
of a glass-sided channel 1 I, m long, 30 cm wide and 30 cm deep, opening at one end into 
a slightly deeper channel 3 m long. A paddle hinged at the bottom of the deeper channel 
generated waves which travelled down the channel and were dissipated on a beach of pebMes 
or sand. To observe the mass transport, grains of dye impregnated with fluorescein were 
inserted into the water; these fell to the bottom, leaving a vertical streak which then 
gradually deformed, giving a direct picture of the velocity profile. 

dye inserted 

here direction of wave advance 


FIGURE8 (after Bagi~old 1947). Successive positions of the dye streak, indicating the profile of 
the mass-tra~lsport velocity (a) after one wave (b) after 10 waves. 

Bagnold's first observations were made with a sandless bed, the bottom being of painted 
tl;ood. His sketch of a typical velocity profile is reproduced in figure 8. I t  shows a strong 
forward drift near the bottom, and a weaker backward drift at higher levels. The upper- 
most part of the profile was unsteady; but in all cases there was a forward bend at the top 
of the curve. 

The velocity of the foremost tip of the dye was observed; Bagnold's two series of obser- 
vations are tabulated in the final column of table 1(a) and (b) .  The parameters used by him 
to define the motion were the period 2n/a, the wave height 2a and the height of the wave 
troughs above the bottom (h- a in the present notation). For each observation the non- 
dimensional parameter 02h/g has been calculated, and kh found from equation (246). In  
the fourth column of table 1 is given the theoretical maximum velocity in the boundary 
layer, calculated from equation (259). 

The agreement between the last two coluinns of table 1 (a) is within 15 %, which is 
satisfactory considering the errors probably involved in the observations. In  table 1 (b) 
there is good agreement at the two ends of the range of observation, but some discrepancy 
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for intermediate values. No explanation of the 'kink' in the experimental curve has been 
found. 

O n  reaching the point at  which the waves broke, the dye was observed to rise vertically 
from the bottom and to become dispersed in the upper layers, which drifted slowly away 
from the shore. From the velocities in table 1 we should expect that the motion, if controlled 
by convection, would be established in a few minutes. After starting the paddle, a few 
minutes were always allowed for the motion to settle down; afterwards the velocity profile 
remained the same shape indefinitely. However, the initial drift profile could not be 
observed very well owing a to 'seiche9 which was set up in the tank when the motion was 
started. 

TABLE1. COMPARISONOF THE OBSERVED AND THEORETICAL MASS-TRANSPORT 

VELOCITIES NEAR THE BOTTOM IN A PROGRESSIVE WAVE 

u2fz/g kh limax. (cmis) 

(a) a =3.0 cm, h = 16.0 cm 
1.05 1.24 3.1 

0.83 1-06 3.6 

0.71 0.96 3.8 

0.55 0.82 4.4 

0.37 0.65 4.9 

0.26 0.53 5.3 


( 6 )  a= 1.55 cm, fz = 14.5 cm 
1.67 1.77 0.5 

0.96 1.117 1.0 
0.61 0.87 1.3 

0.49 0.76 1.4 

0.35 0.63 1.5 

0.24 0.51 i.6 


Similar observations to those of Bagnold, but on an inclined wooden ramp, were made by 
King (1948). I n  this case the forward movement was found both near the bottom and near 
the free surface, with backward movement between. 

Conclusions 

The strong forward velocities near the bottom, which were observed by Bagnold and by 
Bertin & Caligny, are accounted for quantitatively by the present theory. I n  a progressive 
wave we may expect a forward bending of the velocity profile near the free surface-twice 
that predicted by the irrotational theory-but no carerul observations are yet available. 
I n  the standing wave there should be a circulation in the bottom boundary layer in cells of 
width one-quarter of a wave-length. Although there are some indications from the motion 
of sand particles that this may be so, there is as yet no direct experimental verification. 

The observations of mass transport in the interior of the fluid may be divided into two 
classes : those in deep water and those in shallow water. I n  deep water the observations seem 
to be not greatly different from those predicted by the irrotational theory-as one would 
expect if the waves had not been running for long, I n  shallow water the observations appear 
to be very scattered; it is uncertain whether, in any of the observations quoted, a steady 
state had been reached. 
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Further experiments are desirable to determine the range of validity of the boundary- 
layer theory for progressive waves, to verify the results predicted for standing waves and 
to determine whether the motion in the interior is stable. 
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