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In the past it has been considered unlikely that ocean waves are capable of generating micro- 
seismic oscillations of the sea bed over areas of deep water, since the decrease of the pressure vari- 
ations with depth is exponential, according to the first-order theory generally used. However, it 
was recently shown by Miche that in the second approximation to the standing wave there is 
a second-order pressure variation which is not attenuated with depth and which must therefore 
ultimately predominate over the first-order pressure variations. In §$ 2 and 3 of the present paper 
the general conditions under which second-order pressure variations of this latter type will occur 
are considered. I t  is shown that in an infinite wave train there is in general a second-order pressure vari- 
ation at infinite depth which is applied equally over the whole fluid and is associated with no particle 
motion. In the case of two progressive waves of the same wave-length travelling in opposite direc- 
tions this pressure variation is proportional to the product of the (first-order) amplitudes of the 
two waves andis of twice their frequency. The pressure variation at infinite depth is found to be closely 
related to changes in the potential energy of the wave train as a whole. By introducing the two- 
dimensional frequency spectrum of the motion it is shown that in the general case variations in the 
mean pressure over a wide area only occur when the spectrum contains wave groups of the same 
wave-length travelling in opposite clirections. (These are called opposite wave groups.) 

In $ 4  the effect of the compressibility of the water is considered by evaluating the motion of an 
opposite pair of waves in a heavy compressible fluid to the second order of approximation. In place of 
the pressure variation at infinite depth, waves of compression are set up, and there is resonance between 
the bottom and the free surface when the depth of water is about (Bn+B) times the length of a com- 
pression wave (n being an integer). The motion in a surface layer whose thickness is of the order of 
the length of a Stokes wave is otherwise unaffected by the compressibility. 

Section 5 is devoted to the question whether the second-order pressure variations in surface waves 
are capable of generating microseisms of the observed order of magnitude. By considering the 
displacement of the sea bed due to a concentrated force at the upper surface of the water it is shown that 
the effect of resonance will be to increase the disturbance by a factor of the order of 5 over its value 
in shallow water. The results of $5 3 and 4 are used to derive an expression for the vertical displace- 
ment of the ground in terms of the frequency characteristics of the waves. The displacement from 
a storm area of 1000 sq.km. is estimated to be of the order of 6.6p, at a distance of 2000 km. 

Ocean waves may therefore be the cause of microseisms, provided that there is interference 
between groups of waves of the same frequency travelling in opposite directions. Suitable con- 
ditions of wave interference may occur at the centre of a cyclonic depression or possibly if there is 
wave reflexion from a coast. In the latter case the microseisms are likely to be smaller, except 
perhaps locally. Confirmation of the present theory is provided by the observations of Bernard 
and Deacon, who discovered independently that the period of the microseisms is in many cases 
about half that of the ocean waves associated with them. 
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The word 'microseisms' is commonly used to denote the continuous oscillations of the 
ground of periods between 3 and 10sec. which are recorded by all sensitive seismographs, 
and which are not due to earthquakes or to local causes such as rain, traffic or gusts of wind. 
Since the original researches of Bertelli in the latter half of the nineteenth century, many 
investigations have coilfirmed the close connexion of microseisms with disturbed weather 
conditions, especially with those centred over thc sea. Increased microseismic activity tends 
to occur si~nultaneously over large areas of Europe or of North America (Gutenberg 193 I,  

1932; Lee 1934), and the greatest disturbance is found to be in a coastal region bordering on 
a well-developed depression. I t  is not true conversely (Whipple & Lee 1935) that depres- 
sions of the same intensity necessarily give rise to the same amplitude of microseisms. How- 
ever, Ramirez (1940)~ by using a triangular arrangement of seismographs, has shown beyond 
doubt that microseisms at  St Louis, Missouri, are received from the direction of depressions 
off the Atlantic coast. His methods of direction-finding have also formed the basis of a 
successful project for tracking hurricanes in the Caribbean area (Gilmore 1946). 

Several suggestions as to the cause of microseisms have been put forward, none of which, 
however, is entirely satisfactory. Gherzi (1932) has considered inicroseisms to be due to 
'pumping' of the atmosphere such as is sometimes shown on barographs near the centre of 
intense tropical cyclones. This cause cannot be excluded for storms of tropical intensity, where 
observations taken in the path of the storm show that the amplitude may be as much as 
0 - 2nim. of mercury (Bradibrd 193s). Ramirez, however, has pointed out (1940) that there 
is practically no connexion between the microseisms at  St Louis and the barograph oscilla- 
tions at St Louis or Florissant, even during the close passage of a tornado during March 1938. 
Also the periods of the oscillations quoted by Gherzi for the Shanghai typhoon are of several 
minutes, which would appear to be too long. I t  is considerably more doubtful whether 
microseisrns could be caused by the rnuch milder atmospheric oscillations found in tem- 
perate latitudes. The observations of Baird & Banwell in New Zealand (1940) have indicated 
amplitudes of only a few inches of air. 

Scholte (1943) has sought to demonstrate that inicroseisrns may be generated by atmo- 
spheric pressure on the surface of the sea, by showing that the amplitude of the compression 
waves generated by an oscillatory pressure spread suficiently widely over tlie sea surface 
is as great as 10-4 times the amplitude of the gravity waves (ocean waves) so generated. The 
weakness of this argument is apparent. Ocean waves are not generated by oscillating pressure 
dislributions of the type described by Scholte, but more probably by a systematic difference 
of pressure between the front and rear slopes of the crests of a wave train (aJeffrcys 1925). 
The effect of a pressure clistributiou of this latter type, while tcrlding continually to increase 
the energy of tlic gravity waves, would tend to cancel out for the much longer waves of 
compression. 

An earlier theory, due originally to Wechert and until reccntly strongly supported by 
Guteiiberg, was that rnicroseisms are caused by the impact of waves breaking against a steep 
coast. I t  is argued in favour of this theory that there is a statistical correlation between, for 
exaniple, the amplitude of thc microseisms at  Hamburg and the height of the waves off the 
coast of Norway (Tams 1933). This theory will account for some of the facts, although it 
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involves a coefficient for the proportion of the wave energy imparted to the ground which 
some may consider too high (Bradford 1935). Observations also seem to show that micro- 
seisms associated with storms at sea may be recorded several hours before the waves reach 
the coast (Banerji I930; Ramirez I940; Deacon 1949), so that a further explanation, at any 
rate of these latter observations, is required. 

Possibly the most natural explanation of microseisms, and one that might have been 
previously considered more seriously but for theoretical objections, is that they are generated 
by pressure variations on the sea bed due to ocean waves raised by the wind. I t  is unfortunate 
that in the past use has had to be made of Stokes's well-known theory of progressive waves, 
with the result that the pressure variations on the bottom, at any rate in deep water, appeared 
far too small (Gutenberg 193 I ;Whipple & Lee 1935). The physical reasons for this are 
twofold. In  the first place the pressure variations in a progressive wave decrease exponentially 
with depth, and secondly the wave-length of gravity waves is extremely small compared to 
that of seismic waves, so that the contributions from different part of the sea bed effectively 
cancel one another. Banerji (1930) sought a way out by supposing that the water motion is 
not strictly irrotational, but his analysis cannot be defended. I t  was also shown (FVhipple & 
Lee 1935) that the compressibility of the water makes little difference to the general result.? 
A further difficulty was that investigation of the wave periods usually showed them to be 
considerably greater than the corresponding periods of the microseisms. Bernard's careful 
studies of the periods of swell off the coast of Morocco (1937, 1941 a, b)  indicated that they 
were in fact about twice the microseism periods. In a comparison of the Kew seismograms 
with records of waves taken at Perranporth in Cornwall, Deacon (1947) independently 
arrived at the same conclusion. 

I t  has been pointed out (Longuet-Higgins & Ursell 1948) that Miche, in a theoretical 
study of wave motion (1944), discovered that the mean pressure on the bottom beneath a 
train of standing waves is not constant, as in a progressive wave, but fluctuates with an 
amplitude independent of the depth and proportional to the square of the wave height. This 
oscillation is of precisely the type required for the generation of ground movement, for not 
only is it unattenuated with depth (and is therefore the most important term at depths greater 
than about half a wave-length) but also, being in phase at all points of the bottom, it is suit- 
able for producing long seismic waves. A further remarkable fact is that the frequency of 
this pressure variation is twice the fundamental frequency of the waves. Owing to the cus- 
tomary neglect of terms of higher order than the first, this term had been overlooked, the 
standing wave being in the first approximation the sum of two progressive waves of equal 
amplitudes travelling in opposite directions. A shorter proof of Miche's result, bringing to 

t An attempt was made by Banerji (1935) to show that the compressibility of the water would allow 
pressure variations of the same period as the surface waves to be transmitted to depths great compared with 
the wave-length. However, an error in his analysis was pointed out by Whipple Br Lee (1935, p. 295). 
In  the same paper (1935) Banerji describes experiments in which he set up waves of length 2 to G cm. in 
tanks of depth 84 to 108 cm. and observed the oscillations in a tube of diameter 1 cm. sunk to varying depths 
and open at  the lower end. Appreciable oscillations were observed at  all depths. Banerji's results are difficult 
to interpret, but it seems unlikely that the compressibility of the water can have affected experiments on 
this scale. J. Darbyshire has also pointed out that the period of the oscillations shown in plates XXVII and 
XXVIII of Banerji's paper lies between 0.6 and 0.75 sec.; these cannot have been of the same period as the 
surface waves unless the latter were of length 6ti to 88 cm., or comparable with the depth and width or the 
tank. 

1-2 
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light the physical reasons for the existence of this pressure oscillation, was given by Longuet- 
Higgins & Ursell (1948). A generalization of this proof led the present author to the con- 
clusion (see $3) that variations in the mean pressure over a wide area arise as a result of the 
interference of groups of waves of the same wave-length, but not necessarily of equal ampli- 
tude, travelling in opposite directions. 

For a few years previously Bernard (1941 a, b )  had held the view, unsupported at  that time 
by hydrodynamical theory, that standing waves (Fr. clapotis) were the cause of microseisms. 
He had suggested that favourable conditions for standing waves would arise at  the centre of 
a cyclonic depression or possibly off a steep coast where there was reflexion from the shore 
(this idea is to be distinguished from ?Viechert's surf theory, although similar conditions 
would favour the generation of microseisms on either hypothesis). Bernard does not appear 
to have foreseen the doubling of the frequency of the unattenuated pressure variations in 
a standing wave, for he is inclined to suggest other causes for the difference between the 
frequencies of the microseisms and those of the waves (Bernard 1941 a, p. 10). 

I n  the present paper we shall first investigate, in $$ 2 and 3, the physical reasons for the 
existence of unattenuated pressure variations of the type occurring in the standing wave and 
the general conditions under which they will occur; in $ 4 the effect of the compressibility of 
the water on the wave motion will be considered; and in $ 5 , using the results of $$3 and 4, 
it will be shown that the second-order pressure variations due to surface waves are of the 
right order ofmagnitude for producing microseismic oscillations of the sea bed. WTe shall also 
consider briefly under what meteorological circumstances waves suitable for generating 
microseisms may be expected to be produced. 

2.1. The attenuation of pressure variations and particle velocities with depth 

Although the second-order pressure variations in a standing wave in deep water are not 
attenuated exponentially with the depth, the unattenuated terms are not associated with 
any motion of the particles. That this is possible xnay be seen as follows. Let rectangular 
co-ordinates (x,y, z )  be taken with the origin in the undisturbed level of the free surface and 
the z-axis vertically downwards. For simplicity we shall consider motion in two dimensions 
(x,z )  only; similar arguments are, however, applicable to motion in three dimensions. We 
assume that the motion is irrotational, and that it is periodic in the x-direction with wave- 
length A. The components of velocity (u, w) are given by 

u 11 -- ,=-- a4 
dx' dz' 

where, since the fluid is inconipressible, we have 

The equations of motion may be integrated (see Lamb 1932, $ 20) to give the Bernoulli 
equation 
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where p denotes the pressure, p the density, g the acceleration of gravity, p, the pressure at 
the free surface (supposed constant) and B(t) is a function of the time t only. yl itself contains 
an arbitrary function oft;  but this may be made definite by specifying that the mean value 
of q5 with respect to x, taken over one wave-length, is zero. Similarly, by a suitable choice 
of axes the mean value of u may be made zero (both conditions may be satisfied for all values 
of z and t) .  Then, since q5 is a harmonic function periodic in x and bounded when z>  0, it 
may be shown that in water of infinite depth yl, u and w all diminish with z at least as rapidly 
as exp (-2nz,/A) (to all orders of approximation). Therefore when z exceeds about half 
a wave-length we have from equation (3) 

Thus, although the particle velocities in any irrotational periodic motion must decrease 
exponentially with the depth, the pressure may still be a function of the time t. The pressure 
variation (4),being simultaneous over the whole fluid, is the same as if a uniform pressure 
B(t) were applied to the free surface, the fluid being at rest. B(t), being the limit of (3) when 
z tends to infinity, may be called the pressure variation at infinite depth. O(t) does not in 
general vanish, though in one case, namely, that of the progressive wave, we may show that 
it is a constant; for in equation (3) every term except 0(t) is then a function of (x-ct) and z, 
where c is the wave velocity. Therefore 8 also is a function of (x-ct). Hence 0, being in- 
dependent of x, is independent of t  also. 

In  general, since B(t) is in phase at all points, there is a fluctuation in the mean pressure 
with respect to x on any plane z = constant. Thus ifp denote the mean pressure with respect 
to x in the interval 0 <x<A we have from (3) 

(since the mean value of q5 vanishes by hypothesis) ;and for large values of z we have 

The occurrence of an unattenuated pressure variation at infinite depth is therefore closely 
associated with a variation in the mean pressure on the plane z = constant. As we saw in $1, 
it is the variation in the mean pressure which is likely to be of physical importance in pro- 
ducing seismic oscillations of the sea bed. 

2.2. Evaluation of the mean pressure 

We shall now obtain a general expression for the mean pressure over a given area of the 
plane z = constant, from which the special cases of the standing and the progressive wave 
may be very simply derived. I t  will not be assumed, in the first place, either that the motion 
is irrotational or periodic. Some of the equations will therefore be applicable to the more 
general types of motion to be discussed in $ 3 .  

A very general relation between the vertical motion of a mass M of fluid consisting always 
of the same particles and the vertical forces acting upon it may be obtained as follows. 
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Suppose that (x, z) are rectangular co-ordinates referring always to the same particle of the 
fluid in the Lagrangian manner, so that x and z are functions of the time t and of the co- 
ordinates (x,, 2,) at some fixed instant, say t - 0. The equation of motion in the vertical 
direction is 

and the equation of continuity may be expressed in the form 

p dx dz -p, dx, dz,, 

where po is the density when t - 0. Now we have 

a2z d2 d2ship p,z dx, dz, = -- jfipzdxdz.i: dx dz = jllfpo37 d x ~dz at2 

Therefore on integrating equation (7) over the fluid M we find 

In evaluating the integrals in equation ( I  0) we may treat x, z and t as the independent vari- 
ables, though the boundaries of M are now functions oft. The right-hand side of (10) may 

1d2V
clearly be written -----;-where V is the potential energy of the fluid M. 

g dtL' 
Suppose now that, in any wave motion at the fice surface of an incolnpressible fluid, M 

denotes the body of fluid which at time t - O is contained between the free surface z = [, 
the horizontal plane z - z' and the two vertical planes x = xl and x x,. Ifp' denotes the 
pressure in the plane z - z', andp, the constant pressure at the free surface, we have, at the 
initial instant, 

(p' -ps) dx - (3'--p,) (xz-x,), (11) 

wherej5' denotes the mean value offif with respect to x. Similarly we have, since p is assumed 
to be constant, 

( z ' - [ ) I I * = p p z ' ( x , - x l ) - ~ p / ~ [ d x .  ( 12) 

To cval~xate the third term in equation (10) we need an expression for the integral at times 
otller than the initial instant. Suppose then that at time t the fluid i+Iis bounded by the 
surfaces 

= [(x, t), z=z1+['(x,t),  x= t I ( z , t )  and x=E2(z,t), 
where lf(x,0)= 0, 51(2,0) =XI, ! 5 ( ~ , 0 )= X 2 .  (13) 

The (x, z) co-ordinates of the intersections of the surfaces z = [', (z' + g') with the surfaces 
x - c,, 5, may be denoted by (a,, y,), (a;, 7;) ; (a,, y,), (a;, yi)  respectively, these bcillg func- 
tions oft. Then we have 

On differentiating twice with respect to t we find 
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where a dot denotes partial differentiation with respect to t. At the initial instant we have 

a1= a; = x,, a, = a; = x,, yi = y; = z'. (16) 

Therefore, if 5, and c2dcnote the values of [when x = x, and x,, equation (10) becomes 

The above equation may be put into a form which is independent of the initial instant chosen. 
For if (u', w ' )  denote the components of velocity in the plane z- z' we have, at the initial 
instant, 

--
d 2  

j,:C12) = ['C +( ' 2  = zA112. 
at2 (18) 

Also by considering D2([' -z)/Dt2, where DIDt denotes differentiation following the motion, 
we find 

[' =~'--8 ( z L f w f ) .  
ax (19) 

Similarly 

where (u,, wi) are the velocity corrrponents in the plane x = xi. Since (ki,yi) and (&I, 9;) are 
equal to the components of velocity at (xi, 5) and (xi, z'), we have finally, after integrating 
by parts and dropping the dashes, 

The above equation is now valid for all values of z and t. In equation (21) the first group of 
terms would give the mean pressure on the plane z = constant if the planes x - x,, x2 were 
assumed to be vertical barriers. The second group of terms gives the correction due to the 
motion across these planes. 

By allowing x, to tend to x, in equation (21) an cxpression for the pressure at any given 
point can be obtained. Thus 

It  may easily be verified that in a periodic wave motion in deep water the first-order terms 
on the right-hand side of (22) decrease exponentially with the depth. 

Suppose now that the motion is periodic in x with wave-length A. If we write x, = 0, 
x, = h in equation (21) the second group of terms then vanishes identically. Further, if the 
origin is assumed to be in the mean surface level we have 
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and since the net flow of water across the plane z == constant is zero we have also 

Therefore the mean pressure over one wave-length is given by 

If, in addition, the motion is isrotational we find by comparison with (5) that the function 
B(t) is given by 

I t  may be verified that the second term is independent of z,for 

which vanishes by the periodicity of the motion. In  deep water, since u and w decrease 
exponentially with depth, the pressure variation at infinite depth is given by 

In water of constant finite depth fz the vertical velocity w vanishes when z - fi. From (25)  
we see that the mean pressure variation on the bottom is also given by the right-hand side 
of ( 2 8 ) . Thus both the pressure variation at infinite depth and the mean pressure on the 
bottom in the case of constant finite depth, depend on a second-order function of the wave 
amplitude, closely associated with changes in the potential energy of the wave train. 

It will be noticed that the equations so far obtained are exact, and that no assumptions 
depending on the s~nallness of the wave amplitude have been made. 

2-3. The stawding zuaue and p~ogressive wave 

We shall now use the forrnulae of the previous section to evaluate the mean pressure on 
the bottom in some special cases of wave motion. This may be done, as we shall see, by 
consideration of the first approximation only. 

Let the water be of constant depth ,$. Consider a motion which in the first approximation 
consists of two progressive waves of equal wave-length /I and period T travelling in opposite 
directions. The equation of the free surhce is given by - a,  cos ( k x-at)  +a, cos (kx+ at)-4-O(n2k) ,  ( 2 9 )  
where k - 2n,ih, a = 27r/T and a2= gk tanh kh (30) 

(Lamb 1932, p. 364). The last term in equation ( 2 9 )  represents a remainder of second or 
higher order in the wave amplitudes a,  and a, which it will not be necessary to evaluate. 
When z- h, zu vanishes, and so from equation ( 2 3 )  the mean pressure 3,on the bottom is 

given by PI,-(,, &[a,cos jkx -at)  +a, cos ( k x io t ) I2dxi- O[$g2k2)
P 

d2 
.-- - - f ( a 2 _ i a  , 2, .I- 2al a, cos 2at)+ O(a3a2k2)at2 

---2a,a, aZcos 20'1, 
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to the second order of approximation. Thus the mean pressure fluctuation on the bottom is 
of twice the frequency of the waves and proportional to the product of the wave amplitudes. 
For a given period T i t  is also independent of the depth h. 

Two special cases are of interest. First, when the amplitude of one of the opposing waves 
is zero, that is, in the case of a single progressive wave, the right-hand side of equation (31) 
vanishes. The mean pressure on the bottom is therefore constant. Secondly, when the 
amplitudes of the two waves are equal and 

al = a2= &a, (32) 
say, we have a standing wave given by 

5 - ncoskx cosgt+0(a2k). (33) 

From equation (31) we have then 

+aQ2 cos 2ct. 

Therefore in a standing wave the mean pressure on the bottom varies with twice the fre- 
quency of the original wave and with an amplitude proportional to the square of the wave 
amplitude. 

Equation (34) was obtained by Miche (1944, p. 73, equation (85)) after evaluating the 
second approximation to the wave motion in full. 

A physical explanation of these two results, and of the difference between them, may be 
given as follows. Consider first the standing wave given by equation (33). When t = (n 4-$) T, 
n being an integer, the wave surface is approximately flat. The centre of gravity of the whole 
wave train is therefore at its lowest point. On the other hand, when t = IZTthe wave crests 
are fully formed and the centre of gravity has risen, since water has been transferred from 
below to above the mean level (this is equivalent to saying that the potential energy is 
increased). This raising and lowering of the centre of gravity occurs twice in a complete 
cycle. But the vertical motion of the centre of gravitfof any mass of fluid is determined 
solely by the vertical external forces acting upon it. Of these, the force due to gravity is 
constant, and the pressure on the free surface supplies a constant additional downwards 
force. There remains the pressure on the bottom, which must therefore fluctuate in a similar 
manner, with twice the frequency of the waves. 

In a progressive wave, on the other hand, similar considerations show that the mean 
pressure on the bottom is constant. For the potential energy, and hence also the centre of 
mass, of the whole wave train remains at a constant level throughout. There can be therefore 
no fluctuation in the mean pressure on the bottom. 

It  should be possible to verify formulae (31) and (34) quite simply by experiment, since 
these terms represent the only pressure variations measurable at a depth of more than half 
a wave-length. The water should be almost still at this depth, so that the formation of eddies 
round the measuring apparatus would be avoided. A standing wave could be produced in 
a long wave tank by the reflexion of a wave train from a vertical barrier at one end of the 
tank. If the inclination of the barrier to the horizontal were varied, reflected waves of 
different amplitude would be obtained, since for small inclinations some energy would 
almost certainly be absorbed at the barrier itself. In the first-order theory of surface waves 
the absorption of energy at the barrier cannot be taken into account without assuming a 
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singularity at  the origin, and the amount of energy absorbed is indeterminate. However, 
by the present method the coefficient of reflexion could be determined experimentally, 
since the pressure variation on the bottom (at a few wave-lengths from the barrier) is directly 
proportional to the amplitude of tlle reflected wave. Hence also some indication could 
probably be obtained as to the amount of wave reflexion taking place at a steep coast and 
fioin beaches of different gradients. 

Perfectly periodic wave trains of standing or progressive type rarely occur in practice, 
a i d  in tlie present section we shall consider the pressure variation in wave motions of more 
general type. When the motion is not perfectly periodic in space the pressure variation at  
infinite depth, in the sense of 5 2.1, no longer exists, but expressions may still be found for 
the mean pressure or the total force over a given arca of the plane z= constant. These assume 
a simple forni provided that the area is large enough for the motion across the boundaries 
to become negligible. 

3-1. TheJoyce on a given area qf the plane z = constant 

Still considering motion in two dimensions only, let F denote the variable part of the total 
force, per unit distance in the y-direction, acting on the plane z = z' in the interval 

where 3 is the mean pressure on the plane z- z' in this interval. Then from equation (21) 
we have 

Jj' '" J2  

7 - J R [ J t ?  
(JC2)-zu2-zzii (ziz+~w)dz-(uwz)~~~ 

(3(i) 

Now sincc the flow of water across the horizontal plane z = z' ( -- 12 < x  -<R)is equal to thc 
net flow across tlle vertical planes x = ;iR (z>z'),we have 

R R 
i 2 i )  dx -= [ z  s: zi dz] , 

S-R - R  

where h denotes the depth of water (not necessarily constant); if the depth is supposed 
infinite, the upper l in~it  of the integral must be replaced by a.Similarly, if the mean 
level of the free surface z- 5 is zero at  time t = 0 we have 

Hence from equation (36), after integrating by parts, 
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Let us consider the relative magnitudes of the terms in equation (39). We suppose that 
the motion is wave-like, in the sense that the energy is nearly all confined to a narrow range 
of frequencies in the frequency spectrum (as defined in $3.2) ;and that the mean frequency 
a/2n corresponds to a wave-length A which is small compared with R. In general, the relative 
phase of the motion at two widely separated points of the x-axis will be random. We may, 
however, suppose that the motion is regular and periodic over any interval of the x-axis 
less than or equal to 2R,, say. We suppose also that the motion is initially confined to an 
interval -R2<x<R2 (where R, may be very great compared with R,), that is, that the 
elevation and vertical velocity of the free surcace at points outside this interval are initially 
zero. There will be three distinct cases: 

Case 1. R<R,, i.e. the motion is regular over the whole interval --- R <x <R. Then 

is of order a2a2R, where a is the maximum wave elevation. If we assume for the moment 
that u and w are of order a r  and that 

[SCZdzl
:R 


is of order aaA for all z, the remaining terms in (39) are of order aa2hz or an2A2 at the most 
(ifg is of order haZ) . Hence if Rlk and R/z were sufficiently large we should have 

approximately. I t  must, however, be verified that these second-order pressure variations, 
which are in phase over the whole interval, do not produce any significant motion across 
the planes x =iR. Now if we consider the displacement produced by the pressure dis- 
tribution 

acting on the upper surface of deep water we find that the velocities in the planes x =&R 
are of order a20-lh (we ignore a logarithmic singularity at z = 0, which is due to the local 
discontinuity in pressure), and that the total flow (41) is of order a20-log (R//l) .The assump- 
tion that (41) is of order independent of R therefore needs slight modification in this case, 
but since log (RIA) is small compared with RIA the validity of equation (42) is not affected. 

When z is small compared with h the approximation (42) is valid under the condition 
Ra/h2< 1. However, the first-order terms in (39), taken together, may be expected to 
decrease rapidly with the depth, and when z is greater than about &A the largest terms in the 
remainder will arise from the unattenuated pressure variations of second order. Hence 
(42) will be valid under the less restrictive conditions R/AB 1and Rlz+ 1 .  Since the second 
term in (42) will be small compared with the first we shall then have 

In particular (44) will be valid if z is of order h and RIA>) 1. 
Case 2. R,<R <R,. In this case suppose the interval -- R <x <K to be divided into smaller 

intervals of length less than or equal to 2R,. b7e  assume that the motion in each of the smaller 
2-2 



intervals is regular but that the phase differences between successive intervals are random. 
Since the sum of n vectors of con~parable lnagnitude in random-phase relationship with one 
another increases like P Z ~the integral (40)  will be of order (R/R1)j.If we assunie that 
the velocities are bounded and that the total flow across any plane x = constant is of order 
an1 or a%Iog ( K l l h ) at most, equations ( 4 2 )  and (44) will be valid under co n d' itions similar 
to case 1 ;in particular, (44)will holcl if z is of order A and (RR,)VA@ 1. 

Case 3. R>R2. By allowing R to tend to infinity an exact expression for the total force F 
over the whole plane z - constant may be obtained. The velocity potential of the motion 
due to an initial e1ev:ttion of the free surface concentrated in the line x = z = 0 is propor- 
tional to gtz(x2 +z2)-l, when gt"x2 1-z2)-!is small (see Lamb 1932, 5 238) .  A similar result 
will hold when the initial disturbance is distributed over a finite interval of the x-axis. 
Hence for very large I? the velocities across the plarlcs x - i R  will initially be proportional 
to and the total flow (41) will be proportional to R-l. The terms in ( 3 9 ) to be evaluated 
at  the planes x =& R therefore tend to zero. But since the total potential energy is finite, 
we may assume that the first integral in (39) converges. Hence the total force F over the 

When z is greater than about BA the second terrn in the integrand will be small compared 
with the first, so that 

approximately. 
The previous results may be extended without difficulty to inotion in three dimensions. 

Let 3 denote the mean pressure on the plane z - constant inside the square S given by 
-R<x<  R, -R<y <X, and let F denote the variable part of the total force acting on the 
plane inside S, i.e. 

If the inotion inside S is assumed to be wave-like with mean wave-length h then we may 
establish that F=1' 1'' [it:(:c2)--w2] dxdy (48)

P - K  - K  

under similar conditions; in particular, if z is comparable with A, and Rlh and (RR1)"Aare 
both large compared with unity, where 2R1in the side of the largest square over which the 
second-order pressure variations are effectively in phase. Since the motion diminishes 
rapidly with depth, we shall have in this case also 

If it is supposed that the motion is initially confined to a finite region of the (x, y )  plane we 
may show that the motion produces a force F over the whole plane given by 

Again, when z is greater than about +A we have approximately 
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3.2. The two-dimensional frequency sfiectrum 

In order to be able to describe the motion of the sea surface in terms of its frequency 
characteristics, we shall now introduce the two-dimensional frequency spectrum. The mean 
pressure, or total force, over a large area may be derived immediately from the frequency 
spectrum owing to the connexion of the mean pressure with the potential energy of the waves. 

Any continuous and absolutely integrable function f(x, y) of two variables may be expressed 
in the form 

F(u,v) ei(ukx+vli~)du dv 

or JIx,Y) -/_",I_",4[F(U, u, du dv, (53)V) +F* ( - -v)] ei(ukz+vAy) 

where 4 [F(u,  V) +F*( -U, -- v)] = ( k ( 2 ~ )  f(%, y) e-i(z~kx+ulc~)dXdy, (54) 

provided that the right-hand side of (54) is also absolutely integrable (Bochner 1932, 
$ 44). In the above equations '% denotes the real part and F* denotes the conjugate 
complex function of F. The value of 

1[F(u,v)-F*(-u,-v)l . (55)
is still indeterminate. 

Let z - < be the equation of the free surface in any wave motion in two horizontal dimen- 
sions. We shall assume the general conditions necessary for the validity of the following 
work, and in particular the possibility of differentiating under the integral sign. Suppose 
then that the values of < and dl,/& at the initial instant t - 0 are expanded in the forms 

A and B being functions of (u, v) .  We may impose the further condition 

where g is the positive function of u and v given by 

c2== (u2+v2)$gktanh (u2+v2)"k. (59) 
By equation (64) we have then, using equation (58), 

where A- denotes A(- u, -v). These last equations are equivalent to the single equation 

Consider now the expression 
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where A is determined by (62). The expression under the integral sign represents a wave 
whose crests are parallel to the line 

uxi-vy - 0, (64)
and whose wave-length h is given by 

By equation (59) this wave satisfies the period equation for waves in water of constant depth 
IL, and hence y is also a solution, to the first order of approximation. Rut from (6) and (57) 
we have 

Now an irrotational motion is uniquely determined by the initial values of the surface 
elevation and its rate of change with time (for the difference between two motions with the 
same initial conditions has initially no kinetic or potential energy). I t  follows that (= y, i.e. 

00

[ = % I m  1 Aei(~L~iukgkd)dudu (67) 
-00 - m  

for all times t. 
Any given free motion of the sea surface may therefore be analyzed (in the first approxi- 

mation) into the sum of a number of wave components of all possible wave-lengths and 
travelling in all possible directions. This analysis, by equation (621, is unique. Each wave 

component corresponds to a.vector OF in the (x, y) plane drawn from the origin to the point 

P(-ztk, --vk). The direction of OP gives the direction of propagation of the wave, and the 
length of is, from equation (65), equal to 27~divided by the wave-length. Wave com- 
ponents of the same length will correspond to points P lying on the same circle centre 0, 
and diametrically opposite points will correspond to wave components of the same wave- 
length but travelling in opposite directions. Such pairs of wave components play an jm- 
portant part in the following theory and will be called opposite wave components. 

Equation (67) may also be written in the form 

Hence by an extension of the Parseval-Plancherel theorem (Bochner 1932, $3 41.5 and 
44.8) we have 

since the integral on the left-hand side is convergent. After simplifying the right-hand side, 
we have 

&['dxdy -%(n/k)qS1Sm (AA*+AA- c2b') dudu. (70) 
- m  - m  

Thus the potential energy of the motion is given by 

%,ug(7r/k)2/* /* (AAr -tiid-e2Lut)dudu. 
- m  - m  

Similarly, we find for the kinetic energy 
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and so the total energy is given by 

(the above integral being real). The total energy therefore depends only upon the square of 
the modulus of the wave amplitude A(u, u). On the other hand, both the potential and the 
kinetic energies separately vary with the time and depend on the product AA-. 

3.3. Pressure variations in terms of the frequency spectrum 

We are now in a position to determine the general conditions for a variation in the mean 
pressure or total force acting on a large area of the plane z = constant. We consider first 
the simpler case when the area includes the whole ( x ,y) plane. 

From equations (68) and (69) we have 
mF d 

-= %(n/k)2 - S m  S (AA*+AA- e2'") dudv 
P at2 - m- m  

Now A and A- are the complex amplitudes of opposite wave-conponents in the frequency- 
spectrum. It  follows from (74) tha,t 

(1) Variations in F arise only from opposite pairs of wave components in the frequency 
spectrum. 

(2) The contribution to F from any opposite pair of wave components is of twice their 
frequency and proportional to the product of their amplitudes. 

(3) The total force F is the integrated sum of the contributions from all opposite pairs of 
wave components separately. 

A wave group may be defined as a motion in which most of the energy is confined to a 
small region of the (u, v) plane, excluding the origin. Thus a single group of waves will not 
cause variations in the total force F.In order that F should be appreciable the motion must 
contain at least two wave groups which are opposite, in the sense that some wave components 
of the first group are opposite to some wave components of the second. 

In practice we must consider the force F over only a finite region of the (x, y) plane. Let 
this be the square S (-R <x<R, -R <y<R). We define a hypothetical motion 5' such that 
at any time ['and dgl/dt are equal to the corresponding values of g and d[/dt inside S and zero 
outside. This motion will not satisfy the equations of motion, especially near the boundaries 
of S, but we shall now have 

$c2dx dy = -2 S m S m +ct2dxdy.
dt - m  - m  

We also define A1(u, v ;  t) by the equations 

m 

dt . . -

iaA ei(ukx+ vky +rt)dU dv. 
. 

Then we have, as before, 
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If the actual motion is given by equation (67) we have on substitution in (77) 

where a is written for ~ ( u , ,v,).  Since k is still at our disposal we may put 

Then, after integration with respect to x and y, we find 

=Il-]-I,, (80) 

say. Now by hypothesis the frequency spectrum of g consists chiefly of waves whose wave- 
length, given by (@), is small compared with 2R. From (79)  it follows that d(ul,vl) is 
appreciably large only when (u:+vf)"s large. Rut the factors in the denominators of 
Il and I, make the integrands small except when (u,, v,) + (u, v) in the first case and 
(ul, vl)+ (-ul, -v l )  in the second. In either case ol + a, so that the contribution from I, is 
small, while that fro111 I,gives 

Af(u, v;  t) +f,jm~ ( u , ,  
sin (u-u,) 

- --
sin (' - ~ l )  

ei(u-ul)"ul duv,) --
-m ( U  - u l j  .n (v - v,) n 1-

Although A' is dependent upon t, the integrals for dA'ldt, d2A','dt2, ... contain kctors 
(o-al) ,  (a -- ul)2, .. . which are small over the critical range of integration near (u, v). These 
expressions are therefore small, and A' is only a slowly varying quantity. 

From equations (75) we have then 

F d2 
--%(n/k)2,Im I*(A'Af*+A'3L eZ") dudv 
P d t  -,, -, 

The expression for the force F over a finite area is therefore similar to that over the whole 
plane, except that the original spectrum A is replaced by the new spectrurn A'. Equation 
(81) shows that A' is the weighted mean of 'neighbouring' wave components in the original 
spectrum. Conversely each wave component in the original spectrum contributes to 
'neighbouring ' components of the new7 spectrum. From equations ( 8 5 )artd (79), the number 
of wave-lengths of any wave component intercepted on the x-axis inside Sis u, and the corre- 
sponding number on the y-axis is v. The width of thc spread pattern in ($1)is of order unity. 
Hence, for this purpose, 'neighbouring' wave components are those such that the number of 
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wave-lengths intercepted on any diameter of S does not differ by more than 2 or 3 from the 
corresponding number for the original wave component. 

The replacement of the 'sharp' spectrum A by the 'blurred' spectrum A' may be con- 
sidered as the result of our inability to define the spectrum exactly from a knowledge of the 
conditions over only a limited region. For practical purposes, however, the amount of 
blurring will not usually affect the frequency characteristics of F to a very great extent. 

In  the present investigation the water has so far been treated as incompressible. This 
assumption is only valid so long as the time taken for a disturbance to be propagated to the 
bottom is small compared with the period of the waves, that is, 

where c is the velocity of sound in water. For ocean waves h may be of the order of several 
kilometres, c is about 1.4km./sec. and Tlies between about 5 and 20 sec. The condition (83) 
is therefore no longer satisfied. I t  follows that in practice the compressibility of the water 
must be taken into account. 

Surface waves in a heavy compressible fluid were first considered by Pidduck (1910, 1912) 
in connexion with the propagation of an impulse applied to the surface of the water. His 
method involves the neglect of squares and products of the displacements and is thus only 
a first-order theory. The relation obtained by him between the period and wave-length of 
the waves was discussed by Whipple & Lee (193 5 ) ,who showed that for waves of a few seconds' 
period two possible types exist. On the one hand there is a motion approximating very nearly 
to an ordinary surface wave in incompressible fluid, in which the particle displacement 
decreases exponentially downwards (to the first order). This may be called a gravity-type 
wave. On the other hand, there are long waves controlled chiefly by the compressibility 
of the medium, and hardly attenuated at all with depth. These may be called compression- 
type waves. Stoneley (1926) and Scholte (1943) have in addition taken into account the 
elasticity of the sea bed. Here again the two types of wave may be distinguished. 

The pressure variations of particular interest to us are, however, of the second order, and 
to investigate these it will be necessary to work to the second approximation. In the following 
we shall consider a case of special interest, namely, the motion which in the first approxima- 
tion is a standing wave of gravity type. We shall find that in the second approximation long 
compression-type waves appear. One consequence of this is that in the second-order theory 
pure gravity-type or pure compression-type waves do not in general exist; the one type of 
wave cannot exist without the other. As a compensating advantage, however, our work 
leads us to the distinction of two definite regions of the fluid in one of which gravity, and in 
the other compressibility, is the controlling factor. 

4.1. General equations 

Take Cartesian axes ( x , y, z) with the origin in the undisturbed free surface, the y-axis 
parallel to the wave crests, and the z-axis vertically downwards. It is assumed that the 
motion is periodic in the x-direction with wave-length A. Let z = h be the equation of the 
rigid bottom and z = 5 the equation of the free surface. Also let u = velocity, p = pressure, 
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p = density, and let p, and p, denote the (constant) values ofp and p at the free surface. We 
shall assume that viscosity is negligible and that tlie velocity is irrotational, so that 

u - =  -- grad 6. ( 8 4 )  

JYe assume also that p is a function of$ only. Then the equations of motion may be integrated 
(Lamb 1932, 5 20) to give a# -4-u2 0, (85)27 +gz -P = 

where 4 contains an arbitrary function of the time t and where 

\Ye assume, lastly, as the relation connecting p and p, 

@ = c2 = constant,
dP 

that is, the velocity of sound c in thc medium is constant. Then from equation (86) 

'pd?P =; C2 J ps, = cZlog (p/pJ. 

Now the equation of continuity niay be written 

where DlDt denotes differentiation following the motion. Hence 

and so from (88) 

On eliminating P betwcen equations (85) ancl (91) we have 

d 2 4  3 34 Jgi--- ---at (Bu2) -1-u.grad -- -u.grad ($u2)-g-
atz dt dz' 

Rut 

Hence 

This is our differential equation for 4. We consider now the conditions to be satisfied at the 
boundaries. 

The boundary condition in the plane z = /z is simply 
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At the free surface z = y we have p I= p,, and therefore 

PZ=<= 0. 

Thus from equation (85) 

Since a particle in the free surface always remains in the free surface we have also 

and so from (91) (V2#)~=50.= (99) 

Equations (97) and (99) are to be satisfied at the surface z= c. I t  is more convenient, how- 
ever, to replace these by conditions to be satisfied in the plane z = 0. This may be done by 
expanding the equations in a Taylor series as follows : 

and 

In  order to define the solution completely it is necessary to add a further condition derived 
from the assumption that the origin is in the undisturbed free surface. Since the mass con- 
tained below the free surface is the same as in the undisturbed state we have 

where a suffix 0 denotes the value in the undisturbed state. Equation (102) may be written 

In  the second term let p be expanded in a Taylor series from z = 0. After integrating with 
respect to z we have 

From equations (88) and (88), p is given in terms of # by 

pip, = e 
PIC^ = e ( a ~ / a t - h ~ 2 + g z ) / ~ 2  

so that po/ps= egzIc2. 
We also have, from (87), 

P-Ps = c2(p-PS), 
Po-Ps = c2p egzlc2-l. 

We seek solutions for 4 by a method of successive approximations. Let 
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where E is a sinall parameter. On  substituting in equations (94)' (95) and (101) and equating 
coefficients of the first power of e we liave 

(v2$1)z=0= 0, 

and froin equations (84), (100)' (105) and (107) 

where y - gi2cZ. Similarly for the second approximation we find 

44, dd "o ;2 .C2oZp  
dt2 g a z  L ( U ; j '  jnt 

and 

O n  substituting for p aiiclc in equation (104) and equating coeEcients of 6 and e2 we obtain 
the further conditions on 4, and 4, 

and 

Suppose that 4 and C: are any periodic ft~nctions satisfying equations (94), (95)) (100) and 
(101). If P and p are defined by (105) then these equations imply also (89)) (96) and (98). 
Provided grad P is not identically zero, (96) ancl (98) show that z = [ is a surface moving 
with the fluid. But since the equation of continuity (89) is satisfied, it follows that the left- 
hand side of (102), ( I03) or (1 04) is at most a constant. Hence any periodic solution $, = #: 
of equations (110) must make the left-hai~d side of equation (114) a constant, say C,*. Then 

a solution of (114) is given by 4 
I -

-- p*
I 
--.c* 

I 
e- 27h t+ 

(116) 
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But this also satisfies equations (110). Hence if 4; is any periodic solutioll of (1 10) a solution 
of all four equations (110) and (1 14) may be found by adding to $7 a constant multiple oft 
(that is, by increasing the pressure uniformly). Similarly if 4: is any periodic solution of 
(112) a solution of all four equations (112) and (115) may be found by adding to 4; a con- 
stant multiple oft. These results may be verified directly by differentiating equations (114) 
and (115) with respect to t and using equations (110) and (112). 

4.2. First a~@roxirnation and period equation 

Let us assume for 4, a simple progressive wave of the form 

4 
1 
-
-

Z(Z)ei(kxiot) , (117) 

where k = 271.11, CT -- 271.1T and Z is a function of zonly. Writing 

Z = e-rz Z1(2), (118) 

and substituting in the first of equations (110) we find 

where a2= k2-g2/c2-1y2. 

Assuming a + 0 we have 1 --Aeaz+Re-~z9 

where A and B are constants, and hence 

qjl == e - ( ~ + a ) ~[A e-(~-a)z+B I e"hr+rt). . .  

From the last two of equations (110) we have two simultaneous equations for A and B: 

Let A(g, k) denote the determinant of these equations, so that 

45k) =- (Y -4 ((Y - t a )  2 -k21 
J 

e- (~-a ) f2~-(y +a) ((y-a)2 -k2) e-(y+a)h 

= -2e-rh [y(y"a2-k2) sinhah-+a(y2--a2+k2) coshah]. (124) 
In  order that non-zero solutions of (123) may exist, A(r, k) must vanish, giving 

f(ah) i= ah coth ah -P(ah) -Q = 0, (125) 

where 

If o- and h are given, (125) is an equation for determining a and hence k and A. When ah tends 
to zero, f tends to the finite valuc (1-Q), which will be assumed to be positive. When ah 
is large and positivef(ah) is negative. But, writing g = a2h2, we may easily show that d2fldy2 
is always negative when a is real, so that f has only one positive zero, which corresponds 
to a wave of gravity type. There are an infinity of imaginary zeros, each corresponding to 
a wave of compression type (Whipple & Lee 1935). I t  may also be shown that f(ah) has no 
complex zeroes. 

We shall now assume that a is the positive real root of equation (125). Since f(yh) is positive 
it follows that 72<a2, k2 >g2/c2>0, (127) 
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so that the corresponding value of k is real. Then from equations (123) we have 

This solution also satisfies equation (114). Since the equations for the first approximation 
are all linear the sum of any number of solutions is also a solution. We may therefore take as 
our first approximation 

= [ ( y +a) e--"h-(~-~)~-  -E) eah-(y+a)z] (129)(y [bl sin (kx -at) +b2sin (kx +at)], 

representing two waves of the same wave-length travelling in opposite directions. 

4.3. Second a$$roximation 

After substituting in equations (112) and (116) and simplifying we find the following 
equations for 4, : 

- [bf sin 2(kx - -bg sin 2(kx + IT^) ]-- ~ ~ ( 2 1e-2(~-a)zi_ ~ ( 2 )e-2(~+a)z- 2c(3)e - 2 ~ ~ 1  IT^) 
+ [ ~ t 4 )e-2(~-a)z+ ~ ( 5 )e-2(~+a)z- 2C(6)e 2yz] 2bIb2sin 2at, (130) 

(V242)z=0=D[bf sin 2(kx -crt) -62,sin 2(kx +at) +2b1b, sin 2at], (132) 

where Ccl), C(2), . . ., C@),D and Ecl)are constants given by 

and 

(the value of E(2)will not be required). We first eliminate the right-hand sicle of equation 
(130) by the substitution 

$2 - [FP)e-2(~-a)z+F(2) e-Z(y+a)z- 2F(3) e - 2 ~ ~ 1  gt) -- 6; sin 2(kx +at)]- [bf sin 2(kx -
+[F(4)e-2(~-a)z+F(5) e - 2 ( ~  ka)z- 2F(G) e--2yz] 2bl b2sin 2at i_ &, (136) 

where 
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and 

J 

This  gives 

(8)= G(l)[b[sin2(kx-ot)-bi sin 2(kx +at)]+G(2)2b,b, sin 2at, 
z=h 

where G(1)= 2(y-a)  e-2(~-a)hF(l)+2(y+a) e-2(~+a)hF(2) -4ye-2YhF(3) ,1
G(2)= ~ ( y - 4  e-2(y-a)hF(4)+2(Y+a) e - 2 ( ~ + a ) h ~ ( 5 ) - 4 y e - 2 ~ ~ ~ ~ ( ~ ) , )  ( I 4 3 )  

and Hc l )= -4{(y-a) -k2) F(l )  -4{(y  +a)2 -k2) ~ ( 2 ) +$ j ( y 2  -k2) ~ ( 3 ) ,1H(2)= -4 ( y  -a)2 F(1)- 4 ( y  f a ) 2  F(5)+$jy2F(G). ( I 4 4 )  

W e  now write 

$; = [b[sin 2(kx -at)-bi sin 2(kx +at)][J ( l )  e-(y-a')z +J(2)  e - ( ~ + ~ ' ) ~ ]  
+[J ( 3 )  e - (~-a")z+ J(4)  e - ( ~ + a " ) z ]2b1 b2sin + $%, (145) 

where a12= 4k2-- 4a2/c2+y2, aN2= -402/c2+y2, (14'3) 

and Jcl), J(2),  J(3) and J(4)  are t o  be  chosen so as t o  reduce the right-hand sides o f  equations 
(140) and (141) t o  zero. W e  must have 

- ( y  -a') e-(y-a')h J ( 1 ) - (y+al)  e-(y+a')h J ( 2 )  = G(1), I 

{ ( y  -a1) 2 -4k2)J(I)+{(y +a') -4k2) J(2)  D +~ ( l ) ,  

(147)= j 

and - ( y-a") e-(y-a")h J (3 )  -- ( y  +a'') e - ( ~ + a " ) hJ ( 4 )  = G(2), 
(148)

(Y -a")"(3)  + (y +a") J (4)  = D +H(2),I 
{ ( y+a1)2-4k2) G(l)+ (y+al )  e-(y+a')h ( D  +Hcl))

giving J C ' )  = 
A(2ay  2k) 

and 
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where A(20,2k) = -2 e-yh [y(y2-a12-4k2)sinh a'h +a'(y2-af2)cosh a'h], 1 
A(20, 0) = -2 e-7" [y(y2- aU2)sinh u"h +a"(y2-d"')cosh a"h], 

(151) 

provided neither A(20, 2k) nor A(2a, 0) vanishes. Now if O is any real number we have 

A(Ou, Ok) = -2 e-yhsinhBh[y(1-2k2c2/a2)+/?coth@/z]02a2/c2, (152) 
where P2= 02(k2-a2/c2)ty2. (153) 

Since (k2-a2/c2)is positive (equation (127)),P2is a positive, increasing function of 02. But 
/Icothph is an increasing function ofB2when P2>0 and hence is an increasing function of e2. 
Equation (152) then shows that A(Oa, Ok) cannot vanish for more than one positive value of 8. 
But A(a, k) vanishes and therefore A(2a, 2k) cannot vanish. 

I t  is quite possible, on the other hand, that A(Za, 0) may be zero. The physical significance 
of this case will be discussed later. For the present it will be assumed that A(20, 0) is different 
from zero. 

As a result of our choice of Jcl),etc., we have for 4;the following equations: 

if!) = 0 ,  
z=h 

'4; 272 +/oAdnjd$~) = E(J)(b:j-b;) -k (E12)+I+K)26, b2 cos 2at, (155)~ ~ / , ~ d x / , d z ~ e  Z = O  

where K is a constant. Now it was shown earlier that a solution of all four equations (112) 
and (114)could be obtained by adding a constant multiple oft to any given solution of (112). 
I t  follows, by subtraction, that a solution of all four equations (154) and (155) may be obtained 
by adding a constant multiple of t  to any solution of (154). But (154) are satisfied by 4; = 0. 
Hence we have 4;- Cut, (156) 

where on substitution in (155) we find 
+bg). (157)e 2 ~ f lcC"= ~ ( ~ ( b f  

We have incidentally shown that E(2)+I+K = 0. (15s) 

We therefore have finally 
q5 2 -- [F(l)e2""+F(2)e-2az-2F(3)]e-2./z[bf sin 2(kx- at) -bg sin 2(kx+ at)] 

+ [F(4)e2az+F(5)e-2nz-2F@)]e-2yz2b1b2sin 2at 

+ [J(l)ea'"+ J(2) at)-bg sin 2(kx tat)]e-a'z] e-yz [bf sin 2(kx-

+ [J(3)ea"z+J(4)e-a"z]e-yz 2bJb2sin 2at 


$-Ecl)k-leF2yh(6: f bg) t. 


4.4. Discussio~~ 
For ocean waves we may take 

g = 0.98 x 103cm./sec., c = 1.4x 105cm./sec. 

u = 0.5 set.-I, h < 106cm. 

This gives pyh = 1.0x lo-4, ~h< 2-5x lo-2, 
and so Q = yh(1--Pyh) < 2-5x 
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Since ah coth ah 21for all real values of a, equation (126) shows that Pah is of the same order 
as coth ah. Hence y/a = Pyh/Pah * low4. (163) 
Our method will be to evaluate the constants in equation (159) by expanding in powers 
of yla' From 26) we have coth 

= pah[l - (  0(y/a)], (164) 
so that r2/c2= 2yalPah = 2ya tanh ah[l + O(y/a)] (165) 
and k2 = G[1+ 2(y/a)tanh ah+ O ( ~ / U ) ~ ] .  (166) 

Hence, retaining only the terms of highest order in y/a, we find 

ya3 eWahsinhah F(4) -
3

F(1)= --
a cosh2ah ' a 

tanh all, 

ya3eRhsinh ah wyF(2), - - - _ F(" = =Y eZahtanh d,I 
a cosh2ah ' a 

3a4 	 e - a l ~  a4 e-a"h cosli 3ah 
1 ) - - J(3) 

4a sinh2 ah' a cosh a"h cosh ah ' 
3a4 e ~ ' h  a4 ear'" cosh 3ah 

J(2) J(4) = _ _ - 140- sinh2ah' a cosh a"h cosh ah ' 

When b l b 2  f 0 the first two terrns in equation (159) are negligible compared with the 
fourth. If we also neglect quantities of order yh (though not those of order (ya)ih), ah, a'h, a"h 
and erhmay be replaced by kh, 2kh, 2iahlc and 1respectively, and we have 

a2= 	gk tanh kh, (170) 
a cosh k(z-/z)4 ----,--- [a, sin (kx-at) -a, sin (kx+ at)], 

- k s~nhkh (171) 

3acosh 2k(z- h)42 = --%-Tin%2Th-- [a: sin 2(kx-at) -a$sin 2(kx+ gt)] 

a cosh 3kh cos 2g(z-h) /c--. 

8 sinh2kh cosh kh cos 2ahlc 
2a, a, sin 20-t 

(172) 

+ a af+a$ 

4 sinh2kh "" 


where 	 a - 0-
b l ,  a2= -

a 
- 2k2sinh kh 2k2sinh kh b2' 

Let A, and A, denote the wave-lengths of a gravity wave and a compression wave respec-
tively. Thus 

When z is less than say $A,, equations (170), (171) and (172) show that the motion is in-
dependent of c and therefore unaffected by the compressibility of the water. When z is 
comparable with A,, both e-kzand e-kh are small, and so from equation (172) the pressure 
p,  is given by 

----2a, a2a2cos gat. 
P s  
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Finally, when z is of the same order as A,, the motion reduces to the compression wave 

ucos 2n(z-h)/c -- sin 2ut. 
#2 = - cos 2rh/c 

This wave may be regarded as being generated by the unattenuated pressure variation 
(175). When cos 2rh/c (or more exactly A(2r,0)) is zero, 4, becomes infinite, a situation 
corresponding to resonance. The necessary condition for resonance is that 

2uh/c+ (n+&)n (n==O,1,2,...), (177) 

that is, that the depth should be about (&n+ i)times the length ofthe compression wave (176). 
The ocean may therefore be divided into two regions, namely, (1) a surface layer where 

thickness is of order A,, where the motion is controlled by gravity alone and is the same as 
if the water as a whole were incompressible, and (2) the main part of the ocean where the 
motion is small and controlled only by compressibility. The distinction of two such regions 
is probably valid in more general types of wave motion. In equation (94) the gravity term 
gdq5ldz is in general small compared with the compressibility term c2V2#. I t  is only near the 
free surface, where V2# vanishes (equation (99)),  that gravity predominates. The pressure 
variations at a depth A,, that is, in the lower part of the surface layer, are of order pu2a2, 
where a is the mean amplitude at the free surface. These will produce compression waves in 
which the displacements are of order a2/h,. But the latter will be small compared with the 
vertical displacement of the centre of gravity of the surface layer, which is of order a2/A,, 
and hence will not affect the motion in the surface layer. 

In the present section we shall estimate the displacement of the ground due to a given storm 
at sea. Since observations are not made in the storm area itself, it is not appropriate to con- 
sider the displacement of the sea bed due to an infinite train of waves passing overhead. The 
storm is more correctly considered as a disturbance of finite area from which energy is 
propagated outwards in all directions. 

The velocities of seismic waves in the sea bed being comparable with the velocity of 
sound in water, the general results suggested in $4.4 are likely to remain true when the 
elasticity of the sea bed is also taken into account. Thus the mean pressure at a depth of say 
&A, over any given area of the sea surface may be derived as in 5 3, and the amplitude of the 
elastic waves may be calculated as though this pressure distribution were applied to the 
upper surface of the ocean. Since A,/A, is of the order of the storm area may be divided 
into a number of squares Swhose side 2R is large compared with A, but only a fraction, say 
less than one-half, of the length of an elastic wave in the sea bed. Thus the amplitude of the 
compression waves from any given square S will be of the same order of magnitude as if 
the whole force were concentrated to a point at the centre of the square. The displacement 
from the whole storm may then be found by summing the energies from all the different 
squares. 

5.1. The displacement due to a concentrated force 

We take as our model an ocean of constant depth h overlying a sea bed of uniform density 
and elasticity. For the reasons given above, we shall be able to make use of the first-order 
theory of elastic waves in such a model, which was first investigated by Stoneley (1926). 



27 THEORY OF THE ORIGIN OF MICROSEISMS 

The motion due to a concentrated force applied to the upper surface of the water was stated 
by Scholte (1943). We shall evaluate the solution rather more completely, using the method 
of contour integration due to Sommerfeld (1909) and Jeffreys (1926). 

Let p, and p2 be the densities of the water and of the sea bed, let c - a, be the velocity of 
sound in water and a, and ,8, the velocities of compressional and distortional waves in the 
sea bed. Then if an oscillatory force eiut is applied to the surface of the water at the origin, the 
vertical displacement of the sea bed measured downwards is given by (Scholte 1943) 

where r is the horizontal distance from the origin, J,  is Bessel's function of the first kind of 
zero order and G([) is given by 

In order to ensure that the displacements at infinite depth are bounded, the signs of the 
radicals in equation (179) must be chosen so that the real parts of (t2-a2/a;)bnd(t2-a2/P,2)1 
are positive or zero. 5 being consitlered as a complex variable, this restricts us initially to 
one sheet of the Riemann surface bounded by the cuts 

I t  will be seen that the choice of sign for (L2 -a2/ay)t is immaterial, since cosh (t2-a2/a?)*h 
and (E2-a2/at)-* sinh (E2 -a2/a;)+h are both single-valued functions of E, analytic at all 
points. 

When a is real the integral in equation (178) is indeterminate owing to the vanishing of 
G([ )at certain points of the real axis. To  obtain a correct interpretation we suppose a to be 
complex, and take the limit as arg a tends to zero. The final solution then contains converging 
or diverging waves according as arga tends to zero through positive or negative values. 
Since we require the waves to diverge we choose the latter case. Now it can be shown that, 
when -&r <arg a <0, G(5) has no zeroes in the sector 0 <arg [,< $IT-a. There are therefore 
no zeroes on the real axis, and, in the limit when arg a tends to 0, the zeroes of G approach the 
real axis from below. Hence the path of integration in equation (178) should be indented 
above the real axis near the zeroes of G (see figure 1b). Further, the cuts in the [-plane given 
by (180) are arcs of rectangular hyperbolas which, as arga tends to zero, approach the 
positive axis from below (see figure 1a). Hence the path of integration should be taken along 
the upper side of the cuts. 

To evaluate the right-hand side of equation (178) we write 

(for the notation see Jeffreys & Jeeeys 1946, p. 544) and consider the integral in two parts. 
When a is real it may be shown that G has no complex zeroes. Hence for the part involving 
Hs, the contour of integration may be deformed into the imaginary axis from 0 to ico to-
gether with an arc of infinite radius in the first quadrant. For the part involving Hi, the 
path of integration may be deformed into (a) the imaginary axis from 0 to -im, (b) a 

4-2 



28 M. S. LONGUET-HIGGINS ON A 

contour I' enclosing the cuts in the (-plane (see figure 1 c), (c) small circles enclosing the 
zeroes of G(E) in the clockwise sense and (d) an arc of infinite radius in the fourth quadrant. 
The contribution from the integrals along the imaginary axis are equal and opposite, while, 
since (Jeffreys & Jeffreys 1946) 

FIGURE1. Contours of integration in the 6-plane. 

for large / z ( and -.rr + e < argz < -e, the integrals along the two infillj te arcs tend to zero. 
By slightly deforming the contour I' as in figure 1d, it is easily shown that the contribution 
from this part of the integral diminishes at least as rapidly as r-5 when r is large. Hence the 
main contribution comes from the neighbourhood of the zeroes, being -2ni times the sum 
of the residues of the integrand there. O n  replacing Hi, by its asymptotic formula (182) 
we find 

where 

and El, E2, . . ., &,, denote the positive zeroes of G(5) in descending order of magnitude. I t  can 
be shown that when a, <p2all the zeroes are greater than rip2.The zeroes of G(6) separate 
alternately the zeroes of cosh ([2-02/aH)h h, and if the latter function has n zeroes in the 
interval a//I,<~<co, then N equals either n or ( n + l ) .  When r/2/P2is small there is just 
one zero 5, .  
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Each term in equation ( 1  83) represents a diverging wave of length 2n/[,, and of amplitude 
proportional to c,,. In figure 2 c,, c,, c, and c, are plotted against rrh,',8, fcr the following 
constants : 

and with Poisson's hypothesis a, = ,/3P2. The corresponding values of [,, t,, <,and <,are 
given in table 1. I t  will be seen thal c, increases rapidly to a maximum at  about crhlp, =- 0.85 
before falling away finally to zero. This maximum value occurs when the depth is about 
0.27 times the wave-length of a compression wave in water, and may be interpreted as the 

d l P 2  
FIGURE2. ?'he amplitude of'the vertical displacement of the sea bed as a function of the depth h. 

effect of resonance. The amplitude does not, however, become infinite owing to the pro- 
pagation of energy away from the source of the disturbance. c,, c, and c, show similar 
resonance peaks when crh,i,8, = 2 .7 ,  4.1 and 6.3 respectively. There are also maxima in the 
earlier parts of each curve. This might be expected from the fact that the group-velocity 
curve has two stationary values (Press & Ewing 1945). These do not, however, coincide 
exactly with the maxima in figure 2. 

We define -m2to be the sum of the squared moduli of the terms in equation (183). Thus 

5.2. The displacement of the ground in te~rns of the frequefzcy spectrum ofthe waves 

Fronl equation (82)we see that the wave motion in any given square Swill cause a vertical 
displacement 6'of the ground given by 

r m  rcn 

where r is the distance from the centre of the square and T/V(n, r )  is given by ( I  83). TYe shall 
now find an expression for the order of magnitude of the right-hand side of equation (187). 
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From the definition given in § 3.3, A1(a, u ;  t,) is the frequency spectrum of the hypothetical 
free motion in which, at time t = t,, 5 and d[/dt take their actual values within S but are 
zero outside. When t = t ,  all the potential energy and nearly all the kinetic energy are 
contained inside S. Hence the total energy in the square is given by 

where E denotes the mean energy per unit area of S. We define the mean amplitude a of 
the motion within S as half the height, from peak to trough, of the siinple progressive wave 
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train having the same mean energy per unit area. The mean energy of a wave train of 
amplitude a being Qpga2, we have &om (188) 

When considering a group of waves (see fj3.3) we suppose that all the energy is confined 
to a certain range of frequencies and directions characteristic of the group. This range will 
be very nearly the same for the 'blurred' spectrum A' as for the original spectrum A. Let 
Q be the region in which the point P(- uk, -vk), defining the length and direction of the 
wave components of the group, must lie. We also use Q to denote the area of this region. 
Then the area of the corresponding region in the (u, v)-plane is Q/k2. Hence the root-mean- 

square value A of the modulus of A' is given by 

or from equation (188) -
A = ak/Q*. 

The case of most practical importance is when the motion consists of two distinct wave 
groups, say A', and A',. We denote the mean amplitudes of these groups by a, and a, respec- 
tively and the corresponding areas in their frequency spectra by Q, and Q2. The root-mean- 
square values of A; and A; are given by 

A, = a,k/Q;, & = a,k/Qi. 
On writing A' = A; $A', in equation (187) we have 

8' = -W4p(~ /k )~Sf (A; +A;) (A;.-+A;-) cr2W(2cr, r )  eZiutdudv, 

where A;-, etc., is written briefly for A;(-u, -v). Since Q, defines a progressive wave 
group, it will contain no opposite pair of wave components, nor, similarly, will 0,. Thus 
equation (193) reduces to 

8'e - ~ i ~ ~ z t= -Wsp(n/k)~!/ A;A;- 0 2 ~ ( 2 6 ,r) eZi(q-qlz)t du dv, 

6612 

where a,,denotes the region common to Q, and -Q,, and we have introduced cr,,, the mean 
value of cr over Q,,. 

Now it may be assumed that there is no correlation between the phases of wave com- 
ponents at different points in the original spectrum A. The same will in general be true for 
the modified spectrum A', but because of the 'blurring' function (equation (81)) there may 
be some correlation for points that are close together in the (u,v)-plane. The degree of 
correlation will depend on the separation of the points concerned relative to the width of 
the blurring function, which we have seen is of order unity. Values of A(u, v) much closer 
than this will be highly correlated, while those much more widely separated will be hardly 
correlated at all. Suppose then that the range of integration in (194) is divided into unit 
squares and the integration carried out over each square separately. The final result will be 
the sum of Ql,/k2 vectors of random phase and each of the order of magnitude of 



Hence the order of magnitude of 6' is given by 

Similarly, if the total storm area is A there will he Ak2/4n2 separate squares Sinto which the 
storm area is divided. Hence the amplitude S of the displacement froin the whole storm is 
of the order - -

$28 p ( ~ / k ) ~  92:,/an) W(2u12, Y) e2ialzt. (197)A, A, O-?~(A: 

To  the same order of approximation W,which may be the sum of two or more terms, may 

be rcplaced by w (equation (186)). 011substituting from equations (192) we have finally 

As we should expect, this formula for Sis independent of the size of the squares chosen for 
the subdivision of the generating area A. It depends only on the total generating area, on the 
mean wave height of each group and on the areas of the corresponding two-dimensional 
frequency spectra, defined by l2, and 62,. All these are quantities of which rough estimates 
can in practice be made. I t  is interesti~~g to remark that altliough Sincreases as the square 
root of the area common to 8,and -Q,, it also dilrlinishes with the square root of LI, and 0,. 
Hence, in general, the more widely the energy is distributed in the spectrunl the smaller is 
the resulting disturbance. 

5-3. Discussion 

We proceed now to consider the application of ecluatioil (198) in somc practical cases. 
As was first intuitively suggested by Bernard (1941a) ,  the necessary corldition for the 
gcneration of microseisms on the present hypothesis is the interference of groups of waves of 
the same wave-length travelling in opposite directions. Although not much is at present known 
about the gcneration of waves by surface winds, observation certainly suggests that a wind 
blowing steadily in one direction will in the course of time generate waves or swell travelling 
mainly in that direction, or in a direction not differing by more than 45" from it. We must 
therefore either look for. cases in which two winid systems are in some way opposed, or else 
assume the possible reflexion of wave energy from a steep coast. 

Bernard suggested that favourable conditions for wave interference would be found at the 
centre of a cyclonic depression, where waves originating on all sides of the depression might 
be received. I t  is known that in a circular depression the winds, though mainly along the 
isobars, have also a component inwards towards the centre, and in fact observation of sea 
conditions in the 'eye' of a cyclone tend to confirm this expectation. I t  is well known that in 
such regions relatively low wind velocities may be combined with high and chaotic seas such 
as would be characteristic of wave interference. 

Suppose then that in the centre of a circular depression in the Atlantic wave energy is 
being received equally from all directions with a range of periods between 10 and 16 sec. 
The wave-length A in deep water being given approximately by h = gT2/2n, where T is the 
period, we have h, < h <A2,  where 

h, = 1-54x lo4cm., h, = 4.00 x lo4cm. 
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The energy in the frequency spectrum is contained in an annular region lying between the 
two circles having their centres at the origin and radii 2n/hl and 2n/A2 respectively. This 
region may be divided by any diameter of the circles into two equal regions 0,and Q,, where 

a,= a,= a,,= 2.15 x 10 - '~m. -~ .  

Assuming A = 1000 krn.,, a12= 2n/13set.-l, al = a, = 3 m., 

we find that the coefficient of ~ e ~ ~ ~ l 2 ~  in equation (198) is 1.8 x 1015 dynes. If also 
# 

h == 3 km., r = 2000 km., 

we find W(2a12, r )  = 1.8 x 10-lgcrn./dynes, giving as the amplitude of the displacement, 
from peak to trough, 2 1 8 / = 6.5 x cm. = 6.5,~. 

The above estimate shows that the theory is in agreement with observation as regards 
the order of magnitude of the expected ground movement. I t  has been assumed that the 
energy is uniformly distributed within the given range of frequencies. Any concentration 
of energy within a narrower band in the frequency range would tend in general to increase 

the amplitude of the microseisms. I t  has also been assumed that Wis constant over the whole 
frequency range. From the chosen value of a,, we have 2a12h/P2 = 1.03, so that, from figure 1, 
[Zc:,,]+is 0.69 or about three-quarters of its maximum value. However, since [2c,,,I2 is never 
less that its value of 0.191 for shallow water, and increases to 0.91 within the frequency range, 
the mean value chosen is certainly not a serious over-estimate. 

Most cyclonic depressions are themselves in movement over the ocean with a speed com- 
parable to that of the waves. This movement may considerably increase the effective area 
of wave interference. For, if the velocity of the depression as a whole exceeds the group 
velocity of the waves, the waves generated by winds on one side of the depression and travel- 
ling in the same general direction will interfere with those generated at a later time on the 
other side of the depression and travelling in the opposite direction. Thus, even if the winds 
blew directly along the isobars and only generated waves running strictly in that direction, 
there would still be a 'trail' of wave interference in the wake of the depression. In general, 
therefore, the motion of a depression may be expected to increase the amplitude of the 
microseisms generated. 

The amplitude ofthe microseisms due to coastal wave reflexion is more difficult to estimate, 
since less is known about the amount of energy reflected from a sloping beach. The reflected 
wave is usually hidden from observation by the much larger amplitude of the incoming wave, 
although if the crests of the reflected wave are not parallel to those of the incoming wave the 
former can sometimes be clearly seen. Effective interference will take place only at those parts 
of the coast where the shore-line is perpendicular to the direction of propagation of some 
components of the wave group, and the narrower the range of directions of the incoming 
waves, the more critically will the amount of reflexion depend upon the direction of the 
shore-line. The refraction of the wave crests parallel to the shore-line in shallowing water 
will operate in favour of effective wave interference, although the amount of refraction is 
small until the depth is less than about half a wave-length. 

As an example consider a swell of mean amplitude al = 2m. and period 12 to 16sec., 
whose direction of propagation lies within an angle of 30". This gives a,= 1.4 x lov8cm.-2. 



The direction of the reflected wave energy is then also spread over an angle of 30". Sup- 
posing, however, the shore-line to make a mean angle of 10" with the mean direction of 
the incoming waves, only one-third of the angle of the reflected waves overlaps that of 
the incoming waves. Thus Q, - 1.4x ~ m . - ~ ,  = 0.47 x If we assume ~ m . - ~ .  
that the reflected wave extends a distance of 3 0 km. from the shore with a mean amplitude 
equal to 6 of that of the incoming wave, and if the effective shore-line is 600 km. in length, 
we have A = 6080sq,krn., a, = 0.1 m. Taking h = 0, r = 1000 km., we find from (198) that 
2 / 6 / = 0.3,~. This amplitude is rather smaller than that in the case considered previously. 
We conclude that the largest microseisms are probably due to wave interference in mid- 
ocean, although coastal reflexion may be a more common cause of microseisms of smaller 
amplitude. Exceptions may occur for stations near to the coast. 

I t  has been seen that the microseism amplitudes may be increased by a factor of the order 
of 5 owing to the greater response of the physical system for certain depths of water. In 
practice, with an ocean of non-uniform depth, the amplitude will be affected by the depth 
of water at all points between the generating area and the observing station. Since, however, 
the energy density is greatest near the source of the disturbance, the depth of water in the 
generating area itself may be expected to be or"most importance. 

In so far as the sea waves must be considered to possess not a single frequency but a spec- 
trum of finite width, we may expect that the unequal response of the ocean will cause an 
apparent shift of the spectrum towards those frequencies for which the response is a maxi- 
mum. In  the case of disturbances due to coastal reflexion, which in most instances would 
take place in shallotv water, less frequency shift is to be expected. On the other hand, the 
coe6ficient of reflexion will very probably depencl both upon the height and wave-length of 
the waves. There will probably also be a lengthening of the average wave period with 
increasing distance from the storm area, owing to the more rapid viscous damping of the 
higher frequencies in the spectrum. Evidence of this effect has been given by Gutenberg 

(1932). 

Unattenuated pressure variations of the type discovered by Miche in the standing wave 
are a phenomenon of more general occxrrence. They are due essentially to changes in the 
potential energy of the whole wave train. The general condition for fluctuations in the 
mean pressure over a wide area of the sea surface is that the frequency spectrum should 
contain groups of waves of the same wave-leng-tl.1 travelling in opposite directions. Thc 
pressure fluctuations are then of twice the frequency of the corresponding waves and are 
proportional to the product of the wave amplitudes. Waves of compression in the ocean and 
sea bed should be set up, which may be ofsufficient amplitude to be recorded as microseisms. 
For certain depths of the ocean the displacements will be increased by a factor of the order 
of 5 owing to resonance. 

On  the present theory suitable conditions of wave interference would arise near the centre 
of a cyclonic depression, as suggested by Bernard, but more particularly if the depression is 
moving rapidly. The effect of wave interference over deep water would be probably greater, 
under favourable conditions, than the effect of coastal wave reflexion, though the latter 
may be the determining factor for stations near to the coast. The periods of the microseisms 
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should be half those of the corresponding waves, though an apparent shift in the frequency 
spectrum may be expected owing to the variation of the frequency response with the depth 
of the ocean and to the more rapid damping of the higher frequencies. 

I should like to express my thanks to Dr G. E. R. Deacon of the Admiralty Research 
Laboratory for suggesting the subject of the present investigation and for his encouragement 
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