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A stochastic model of sea-surface roughness. I1

By MicHAEL S. LoNgUET-HiGgGINS

Institute for Nonlinear Science, University of California San Diego, La Jolla,
California 92093-0402, U.S.A.

A two-scale model of a wind-ruffled surface is developed which includes (1)
modulation of the short waves by orbital straining in the long waves, (2) dissipation
of short-wave energy by breaking, and (3) regeneration of the short-wave energy by
the wind. For simplicity the long waves are at first assumed to be uniform. It is
shown that the character of the surface is governed by the parameter Q2 = £/(ocyKA4),
where f is the proportional rate of short-wave growth due to the wind, o, K and 4
are the long-wave frequency wavenumber and amplitude, and y = 2.08. When
Q2 < 1 the short waves break over only part of the long-wave surface. When @ > 1
they break everywhere.

The mean-square steepness s of the short waves is an increasing function of g/c,
but a decreasing function of the long-wave steepness AK. The phase angle between
s* and the long-wave elevation 7 is an increasing function of Q. The correlation
between s? and 7 is largest when 2 < 1, but tends to 0 as Q1.

The simple model is extended to the case when the long-wave amplitude 4 has a
Rayleigh probability density. To take account of the ‘sheltering’ effect of high waves
we compute the case when any two successive waves have a bivariate Rayleigh
density.

The application of the model to laboratory and field data is discussed.

1. Introduction

The hydrodynamical interaction of short waves with longer waves on the sea surface
has important consequences both for air-sea transfer processes and for the imaging
of the ocean surface by certain types of remote sensors which depend upon Bragg
scattering from the shorter waves. References are given in Longuet-Higgins (1987;
referred to as part I). In that paper, a model of the short-waves dynamics was
presented which included the following features: (@) modulation of the short-wave
steepness by orbital straining in the longer waves; (b) dissipation of short-wave
energy by breaking, particularly near crests of the longer waves; (c) regeneration of
the short-wave energy by the wind; (d) a random distribution of long-wave
amplitude.

Particular attention was paid to the behaviour of the short waves at the long-wave
crests, and it was shown how an integral equation could be formulated for the
probability density p(s]|4) of the short-wave steepness s at the crest of a longer wave
of given amplitude A. In part I the author looked forward to a study of the
characteristics of the short waves over the whole profile of the longer waves. From
these one could obtain several parameters of interest such as the mean-square short-
wave steepness s over the whole wave surface, and the phase and amplitude
modulation of s* relative to the long waves.
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406 M. 8. Longuet-Higgins

The present paper gives the results of this study. To present and interpret them
we first describe a simplified model which includes the elements (), (b) and (¢) above
but omits, for the time being, the random element (d). This simplified model is
described in §§2 and 3 below, and its consequences are discussed in §§4 and 5.

Randomness is then introduced in two stages. A partially random model, in which
the long-wave amplitude has a Rayleigh density but the wave height is locally
uniform (a narrow-band spectrum) is studied in §6. Then in §7 we re-introduce the
full bivariate Rayleigh distribution for the long wave amplitude, and present the
numerical results. In §§8 and 9 we make comparisons with laboratory and field data.
A discussion follows in §10.

2. Physical assumptions

We assume that the surface-slope spectrum may be effectively divided into two
parts as follows. First, a narrow, low-frequency part, to be called the ‘long waves’.
A representative amplitude and wavenumber for these being denoted by 4 and K,
the corresponding surface elevation is given by

n=Acost, 0=ot+Kx+e, (2.1)

where x is a horizontal coordinate, ¢ is the time. 4 and ¢ are functions of x and ¢ which
vary slowly compared with the phase 6. If o and K are both positive, the waves move
to the left, as in figure 1.

Superposed on the long waves we assume a much shorter, wind-generated, ‘surface
roughness’ with local mean-square slope s*. Following Plant (1982) we assume that,
below saturation, s grows exponentially with time:

s oceft, (2.2)

say, where the growth-rate f depends upon both the wind-speed W and on the
frequency of the short waves. Here we shall take £ to correspond to the mean short-
wave frequency o', say. Note that the empirical law (2.2) already takes some account
of the nonlinear interactions among the short waves themselves. However, the short-
wave steepness is assumed to be limited by breaking at a critical steepness s,, say.
For the reasons given in part I we choose

s, =0.22, s2=0.0484, (2.3)

which is consistent with the limits on s found by Plant (1982).
In the absence of wind, the relative steepening of the short waves due to the orbital
motion in the long waves has been shown to be given by

s oc eYEn (2.4)

approximately, where y = 2.08 (see Longuet-Higgins 1986). Hence (when the short
waves are not limited by breaking) we combine (2.2) and (2.4) to give

s ~ efttvKy (2.5)
7 being given by (2.1). Thus

0s _ {(ﬂ+'yK677/at)s, s < so}

a0, s =8, (2.6)

The case s=s, corresponds to the parts of the surface where the short-wave
steepness is limited by breaking.
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Figure 1. Time-history of short waves on a uniform train of long waves. The broken line
indicates intervals where the short waves are breaking. (a) 2 <1, (b) 2 > 1.

Lastly, we assume that the short waves have a negligible short-term influence on
the long waves, and that the system is in a statistically steady state. Thus there is
an overall balance between the input of short-wave energy by the wind and the loss
of short-wave energy by breaking at the limiting root-mean square (r.m.s.) steepness
S-
We shall now explore the properties of this model.

3. A uniform train of long waves

Suppose first that the wave amplitude 4 is uniform and the phase ¢ is zero (figure
1). Since the waves are statistically steady, and short-wave energy is being supplied
by the wind, the short waves must be breaking somewhere. Therefore they are
certainly breaking at the long-wave crests, where the short-wave steepening due to
the long-wave orbital motion is at its greatest. Let us follow a group of short waves
as it is carried by the orbital motion of the long waves. We assume that its group-
velocity is small compared to 4o. As the long waves move forward beneath the short
waves there may come a point P, on the windward face of the long waves, where the
straining of the short waves overcomes the wind input, i.e. ds/0¢ falls below zero.
From equation (2.6) this point is given by 6 = ', where

p—vKAosint = 0. (3.1)
We have then sinf = Q, (3.2)
where we have written Q= (p/o)/yKA. (3.3)

For P to be real we must have Q < 1. When @ < 1, P lies above the mean level M,
at which the orbital straining is a maximum. Thus 0 < ¢’ < in.
Between P and ) the waves are not breaking, so by equation (2.5) we must have

s = syexp [t —t") +yK(n—7)], (3.4)

where ¢’ and ’ denote the values of ¢ and 4 when 6 = ¢’. In figure 1, 8” denotes the
point where s again equals s,. This will be when the exponent in (3.4) vanishes. For
fixed x we have o(t—t') =60—6". So

(B/o) (0" —0")+yKA(cos 0" —cos ') = 0. (3.5)
From (3.5) it follows that
(cos0”—cos0')/(0"—0") = —Q, (3.6)
where Q is the same combination of constants as in (3.3).

Proc. R. Soc. Lond. A (1991)
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Figure 2. The critical phase-angles 6" and 0" as a function of Q = f/ycAK.

Suppose £2 to be given. If 6 > 1 then equation (3.2) has no solution. Physically this
means that the wind is blowing so strongly that the short waves are everywhere
breaking. If on the other hand € < 1 then equation (3.3) may be solved for ¢, and
from (3.7) we can then find 6”.

The results are shown in figure 2, where §” and 6” are plotted against 2 throughout
the range 0 < 2 < 1. For example when € < 1 (a relatively light wind) then ¢ is
small and 6" approaches 2. Thus P and @ approach the crest from either side. This
means that short-wave breaking is confined to the neighbourhood of the long-wave
crests.

On the other hand when @ approaches 1, then both ¢ and ¢ approach 90°, so P
and @ approach the point M (6 = jn). Physically, the short waves are breaking almost
everywhere, and only near the mean water level do we have s < s,. By expansion of
the left-hand sides of (3.2) and (3.7) in powers of the small angles

a/ — %n_el, d” — 0”"‘%“ (3'8)
we find o =(1—Q2, o =2(1—Q2):. (3.9)

In other words, ) is twice as far from M as is P.

4. Statistical properties

For comparison with observation, three numerical quantities are specially useful,
namely the mean-square slope

s2=—| s%6)do, 4.1)
the correlation function

0 = FOO=9) = 5| #0)10—p)ap (4.2

Proc. R. Soc. Lond. A (1991)
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and the correlation coefficient

C*(@) = C(4)/(s"n®), (4.3)

where a bar denotes an average with respect to x or ¢. Of particular interest are the
maximum value Cp,. of C(¢) and the phase-angle ¢,, at which the maximum is
attained.

Now in the simple model of §3 we have

= s[1+F(0)], (4.4)
where
F(O) = {— 1+exp[(28/0) (0 —6)+2yAK(cos—cos6)] when @ <6 <6,
0, otherwise.
(4.5)
- 1 (7
Hence st = 83[1 —+—-—J F(6) dﬁ] (4.6)
27 ),
— 1
and st = 33[1 +— j (2F+F2)dl9]. 4.7)
21 o
Further, in (4.2) we can substitute for % from equation (2.1) to obtain
C(p) = s2A(X cosp+ Ysing)/2m, (4.8)
1 (v (v
h =— =— i . .
where X 2% ), F(@)costdl, Y o L’ F(0)sin6do (4.9)

Equation (4.8) shows that C(0) takes its maximum value when ¢ = ¢, where

cosgp, = X/(X24Y2);, sing, = Y/(X2+ V2 (4.10)

and that Croax = S2AX2+ Y2)5, (4.11)

Hence also C% . = (X2 4+ Y2)1/21Z (4.12)

and C*(0) = X /22, (4.13)
"

where 7% = 1+%f (2F + F?)d6. (4.14)
”

We consider now some limiting values. When £ approaches 1 from below, then
(0"—=6")—~0 and from equation (4.6) we have
8%/s2>1. (4.15)

Also from (4.9) and (4.10), we see that X -0 and Y- —0 (since /' < 0) and Y/X >0,
hence

$o—>—90°, (4.16)
while from (4.14), R — (2n), hence

0*

max

-0, C*(0)-0. (4.17)

Note that in physical space (6 decreasing) s* leads 5 by 90°. This is because s* has a
small dip in the non-breaking region on the rear slope of the wave, which leads the
minimum of # (the wave trough) by 90°.

Proc. R. Soc. Lond. A (1991)
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Figure 3. The relative mean-square slope s*/s2 and correlation coefficient C*
as functions of 4K in the limiting case 2 —0.

On the other hand when 2 < 1 and so the wind-generation factor is relatively
small, breaking will occur only close to the wave crests. Hence 6’ — 0 and 6" — 2w and
from equation (3.5) we have in the limit

s?/st = exp[2y4K(cos—1)] (4.18)

throughout 0 < 6 < 2n. From (4.1) we find then
$%/s2 = e *1,(2), (4.19)
where z = 2yAK (4.20)

and I, denotes the modified Bessel function of order zero. Similarly from equations
(4.9) we have

X=e"1(z), Y=0 (4.21)
so that the phase ¢, vanishes. Also from (4.14)
7Z* = e #(2z). (4.22)
Hence by (4.12) and (4.13)
C% e = C*(0) = 2, (2) /[1,(22) 1. (4.23)

The above expressions for s*/s2 and C*

* ax are plotted as functions of 4K = 2z/2y in
figure 3.

5. Numerical results

For general values of AK and f/o the integrals in equation (4.6), (4.7) and (4.9) are
easy to compute, and in figure 4a-d we have plotted contours of s2/s2, @g, Cpnax and
C(0) respectively, as functions of AK and f/o. From (3.3) it is clear that the loci
Q = const. are straight lines at a 45° angle. In particular the locus 2 = 1 corresponds
to the straight line on the lower right-hand corner of each figure.

It will be seen that each of the quantities s?/s3, C*, ¢, and C*(0) varies
monotonically with AK or with #/o. In particular, as the long-wave steepness is held
constant but the wind generation factor 8/o is increased, so s*/si increases, as one

Proc. R. Soc. Lond. A (1991)
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might expect. More interestingly, for constant wind, s?/s2 is a decreasing function of
the long-wave steepness AK. This is due to the increased amount of short-wave
stretching, away from the long-wave crests.

As B/ 0, the limiting values of s?/s2 and C,,. are given by (4.19) and (4.23)
respectively. Since for small values of z

I(z) = 1+32  I,(2) =32(1+L22) (5.1)
we have $2/s2 = 1—2+3:2 (5.2)
and Chhax = (2/2%) (1 =322, (5.3)
where = 2yAK. (5.4)

In general, the phase ¢, appears from figure 4¢ to be a function of Q2 alone. At least
for small values of AK and /o this may be understood as follows. From (3.2) and
(3.7),

0 =Q, and 0 =2n—(4nQ): (5.5)
to lowest order in Q, and so from (4.5)
FO)=2(p/0)(0—0)+2yAK(cos0—cos ) (5.6)
On substituting for F(0) in (4.9) we find, to lowest order,
X =2nyAK, Y =—4np/o, (5.7)
hence tan g, = (20/0)/yAK = 2Q. (5.8)

In this limiting case, the mean-square steepness s? still leads the surface elevation #
in physical space, but this is due mainly to the exponential growth factor £ from the
wind input. Also since (2t —0") is greater than 6" (see figure 2) the region of breaking
extends further down the forward face of the wave than down the next rear face.

In each of figure 4a—d, the theoretical values to the right of the line £ =1 are
constant.

6. Random long waves: the Rayleigh distribution

So far we have assumed the height of the long waves to be uniform. In a real sea
state having a fairly narrow-band spectrum, the amplitude 4 of the dominant waves
has a probability density that is closely Rayleigh (see Longuet-Higgins 1980). Thus

plA) = (4/Af)e 74, (6.1)
where 4, is a constant related to the mean-square wave amplitude (4?) by
(4% = 243%. (6.2)

With the aid of (6.1) we may generate the results of §2 to the case when the amplitude
A is not quite uniform but instead varies slowly, the groups of waves being relatively
long.

Since o is assumed constant, the parameter /o will be fixed, for a given wind-
speed. The effect of distributing the amplitude 4 will be to average the values of s2
in figure 3, for example, by means of the probability density p(4). So we may extend
the definitions of §4 by calculating

(%) = <%fsz(0) d6> (6.3)

Proc. R. Soc. Lond. A (1991)
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in which { ) denotes the statistical average. Similarly we may define the average
quantities {(C*($))>, {s*> and {(#*> 0, and finally, as in equation (4.3),

O(p) = <C*(B) /1<5™ ' T (6.4)
The angle ¢, is defined as previously, as the angle for which C(¢) takes its maximum

value C ..
The results are shown in figure 5a—d as functions of 4*K and f/o, where

A* = {4y = (In)i 4, (6.5)

denotes the average long wave amplitude. Figure 5a showing {s®)/s?, may be
compared with figure 4a. The form of the contours is very similar, except that the
diagonal contour in figure 4a corresponding to £2 = 1 is now smoothed over.

Similarly figure 5b showing ¢ corresponds closely to figure 4b, and figure 5¢
showing C .. corresponds closely to figure 4¢. In both figures 4a and 5a, for example,
the contours of constant ¢, have a slope of nearly unity, indicating that ¢, is a
function of 4*K /(o /B) very nearly.

7. The bivariate Rayleigh distribution

Even in the randomized model of §6, the short waves always break at long-wave
crests. In actual sea states, however, a high wave may often be followed by a
significantly lower wave. Because of orbital stretching, the short waves may not
break at the crests of the second waves, even if they break on the first. Similarly a
non-breaking wave may be followed either by a breaking or by a non-breaking wave.

A general stochastic model which takes into account all such possibilities was
developed in part I. There, the joint probability density of two successive wave
amplitudes 4, and 4, was assumed to be given by the bivariate Rayleigh density:

A, 4 A4, 4

Py ) = P exp [— 1+ 4D/20 kAP ({E05es) )
Here A} denotes half the mean-square amplitude as before, /; is the modified Bessel
function of order zero and « is a ‘groupiness’ parameter, related explicitly to the
spectral density of . For narrow spectra it can be shown that «* = 1 —(2nv)?, where
v is the spectral band-width. For very narrow spectra we have « =~ 1. This is the
limiting case corresponding to the model of §6. On the other hand for very broad
spectra k-0 and then 4, and A4, are statistically independent :

p(A,,4,) = p(d,)p(d,), (7.2)

where p(4,) and p(4,) are each Rayleigh densities, as in (6.1).

In part I, it was shown how the assumptions of §2 above enable one to determine
the probability density p(S/4) for the steepness s of the short waves at the crest of
a long wave of given amplitude 4,. Given s on 4,, and given the amplitude 4, of the
next wave, we can now integrate forwards using equation (2.6) to find the value of
s(0) at all points between the two wave crests. In this way we can determine the
statistics of s(6) over the complete surface profile.

As a check, this numerical procedures was first carried out in the limiting case
k = 1, corresponding to 4, = 4,, and it was verified that the calculated values of s?,
?o, O nax and C(0) agreed with those found by the uniform (i.e. slowly varying) model
in §6.

Proc. R. Soc. Lond. A (1991)
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For general values of x, when the amplitudes 4, and 4, are unequal, the
calculation of C(s% %) requires that we define the elevation # over the interval
0 < 0 < 4mn. We assumed that the amplitude varied ‘piecewise linearly’, that is

[4,+(A,—A4,) 0] cos b, 0<0<2m,
1=V [4,+(d,—A4,) (0—2m)]cos, 2m < 0 < 4,

where 4, denotes the wave amplitude following 4,. To take full account of the
variability of 4, would be impractical computationally, but in the case k = 0 we can
reasonably replace 4, by its constant mean value <4) = 4*.

The results when « = 0 are shown in figure 6a—d. Again it will be seen that the
contours of §2/s2, ¢, Cpar and C, are qualitatively similar to those in figure 4.

8. Comparison with observation

The strong effect of long-period waves in reducing the amplitude of short surface
waves seems to have been first measured in the laboratory by Mitsuyasu (1966); see
Phillips & Banner (1974). These authors generated long waves mechanically with a
paddle wave maker, in a wind-wave flume. The quantity measured and tabulated by
Phillips & Banner was the proportional reduction (%) in the mean-square elevation
of the short wind-waves, as a function of the long-wave steepness AK. On the other
hand the ratio s?/s2 in the present theory refers to the relative mean-square steepness
of the short waves. The slope spectrum of wind-waves being rather broad, these two
quantities are not identical. Nevertheless one would expect them to behave in a
qualitatively similar way. In fact, figures 7 and 8 of Phillips & Banner (1974) shows
r?* decreasing monotonically with 4K from 1 at AK = 0 to about 0.35 at AK = 0.1.
This is similar to the proportional reduction in s2/s2 in figure 4 above, but about twice
as great. Phillips & Banner (1974) attribute their observations and those of
Mitsuyasu (1966) to the presence of a surface ‘wind-drift’ current, which we have
neglected. The effectiveness of the wind-drift current in this respect has been
questioned by Plant & Wright (1977).

Similar reductions in the spectral density of the surface elevation have also been
measured in the laboratory by Donelan (1987). He finds that the reduction is greatest
near the peak of the wind-wave spectrum, and becomes relatively small at higher
frequencies, for a given value of AK. This again is in qualitative agreement with
figure 4. In his figure 6, for example, where 4K = 0.105, the peak frequency at a
distance £ = 55 m from the wave maker is 1.4 Hz. The corresponding growth rate,
according to his observations, was £ =1 = 0.0012 s7!. Hence f/o, in figure 3a
above, would be 0.00037. According to figure 3 above the value of s?/s at
AK = 0.105is 0.72. In figure 6 of Donelan (1987) the reduction lies between 0.20 at the
peak frequency f= f,, and 1 at f = f +0.5 Hz.

Direct measurements of the slope spectrum have been made recently by Miller &
Shemdin (1991; see also Miller et al. 1991). In these data the basic long-wave
steepness was fixed at 4K = 0.041 and the wind-speed varied from 4.0 to 10.0 m s!
(one measurement at 1.5 m s™! was rejected). The relevant parameters are given in
table 1. Here s? is the measured mean-square surface slope in the absence of a
mechanically generated long wave (4K = 0) and s? is the same quantity with the long
wave added. The next column shows the ratio of these two; it is always less than 1.

Proc. R. Soc. Lond. A (1991)
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Table 1. Parameters for the experiments of Miller et al. (1991)

_ _ s/sj

W/(m s™) s2 s2 §?/s? fo/Hz £/st plo (theory)
4.0 0.038 0.022 0.68 3.0 0.039 0.012 0.90
6.5 0.056 0.045 0.80 2.5 0.075 0.024 0.92
9.0 0.063 0.055 0.87 2.0 0.079 0.025 0.93
10.0 0.063 0.059 0.94 2.0 0.079 0.025 0.93

Table 2. Amplitude and slope of the Fourier harmonics of the mechanically generated wave

n A, A,K,
1 4.11 0.043
2 0.40 0.015
3 0.46 0.038
4 0.04 0.013
5 0.01 0.008
6 0.02 0.003

The next columns of table 1 show f, the peak frequency of the slope spectrum and
f, the growth-rate of the wind-generated waves, as calculated from Donelan’s (1987)
formula

£ =205x10"2(U,,/c—1)*Bw. (8.1)

Here Uy, denotes the wind-speed at a height of half a wavelength above the waves.
We equate this to W. We also set w = 2nf,, and ¢ = g/w. If we equate s; to s,, then
we may compare the fourth and the last columns of table 1. The agreement is closer
at the higher wind-speeds, presumably because the short waves are closer to
equilibrium with the wind and the underlying long waves, as assumed in the theory.

It has, however, been noted by Miller et al. (1991) that the mechanically
generalized waves contained higher harmonics which, while contributing negligibly
to the surface elevation, nevertheless produced significant components of the surface
slope. This is shown in table 2, where the amplitudes 4, of the various harmonics are
given. The harmonic n = 3, for example has an amplitude 4, which is only one-tenth
of the fundamental A,. But because the frequency o, is proportional to =, the
wavenumber K, is proportional to n®. Hence 4, K, is comparable in magnitude to 4,
K,. The ratio p/o,, however, is proportional only to =, and so varies less
dramatically.

In this paper the wavenumber K of the long waves has been assumed to be
constant, or nearly so. To take full account of the higher harmonics would require
development of the theory beyond our present limits. However figure 3 suggests that
if the values of AK and f/o for the third harmonic were used instead of those for the
first harmonic, then s2/s2 would be somewhat less than the values given in table 1.
Presumably the effect of both the first and third harmonics acting together is to
reduce s?/s? still further, bringing it closer to the observed value of s?/s?.

It should be emphasized that in these experiments the higher harmonics in the
waveform were practically invisible to the naked eye, yet their effects on the mean-
square slope s%(f) were quite marked (see Miller et al. 1991). Similar effects may have
been present in the previous experiments mentioned above.
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Table 3. Comparison of theoretical and observed values of s*/s2 for the Pierson-Moskowitz spectrum

W/(ms™) plo, s2/s2 =% +s2 s* (obs)
6 0.100 0.906 0.051 0.030
8 0.154 0.949 0.053 0.041
10 0.215 0.976 0.054 0.051
12 0.282 0.993 0.055 0.061
14 0.356 0.998 0.056 0.071

9. Field observations

We have seen that the orbital contraction of the long waves is measured not by the
long-wave amplitude A alone, but by the long-wave steepness AK. Thus the
requisite information for the long waves is not the surface elevation spectrum E(o)
which is usually measured, but the slope spectrum

S(o) = k*E(o), k*= o?/yg. (9.1)

Often a low-frequency, or swell, component which is visible in the elevation spectrum
E(o) may not be significantly present in the slope spectrum S(o).

Commonly used expressions for E(c) such as proposed by Pierson & Moskowitz
(1964) are valid only at frequencies below about 0.5 Hz, and tend to underestimate
the spectral density at higher frequencies. Direct measaurements of the slope
spectrum are rare. Those by Shemdin & Hwang (1988) show a single broad peak, with
a high-frequency behaviour like f~'* approximately.

Field observations of sea surface slopes are known to be strongly influenced by
other parameters such as atmospheric instability, as measured by the air—sea
temperature difference (Hwang & Shemdin 1988). In fact, after removal of the
temperature instability effect from the available data the residuals show a large
scatter and no obvious dependence on the steepness of the dominant waves. (The
value of 4 used seems to have been calculated from the significant wave height, not
the mean wave height.) It is also unclear whether the ‘significant waves’ tabulated
for example by Cox & Munk (1954) and used in this dataset were sufficiently
separated from the short, steep waves to be counted as swell in the sense of the
present paper.

10. Discussion

The present simplified model of long-wave/short-wave interaction, while including
the features listed in §1, has neglected others that may be significant in some
circumstances; particularly the wind-drift surface current discussed by Phillips &
Banner (1974) and the weak nonlinear interactions between the short waves
(Valenzuela & Laing 1972). The importance of the latter relative to the wind-
generated growth rate has been discussed by Miller et al. (1991), in relation to the
laboratory experiments described there. The two growth rates were shown to be of
comparable magnitude. It is, however, arguable that the empirical formulae for the
growth-rate derived by Plant (1982) or Donelan (1987), which we have used, do in
fact include the short-wave interactions, so that these are already accounted for,
though roughly.

A further deficiency of the model is the use of a single frequency to characterize the
short-wave spectrum; especially since the growth-rate due to the wind depends
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strongly on the short-wave frequency. However, it does appear from figures 3-5
that provided £/o is less than 1072, both s?/s? and C%, and C¥ depend much more
strongly on the long-wave steepness 4K than on f/c. Hence the dependence on
short-wave frequency is not as critical as first appears.

Perhaps the most serious limitation of the model is that it applies strictly only in
cases when there is a clear separation between the long waves (swell) and the shorter
wind-waves in the slope spectrum. Such a separation can certainly be achieved in the
laboratory. In the ocean, well-documented cases of such spectra in neutrally stable
temperature conditions are still rare.

An alternative way to apply the theory, which suppresses the assumption of
separation, is given in the Appendix. In this we consider simply an equilibrium wind-
wave spectrum with a single peak frequency o,. The low-frequency part of the
spectrum is assumed to be given by the Pierson & Moskowitz (1964) formula. The
high-frequency part follows the laser observations of Shemdin & Hwang (1988). The
latter is approximated by a single band of frequencies at the mean frequency of the
higher band. The low-frequency part of the spectrum makes a small but constant
contribution s2 to the mean-square slope. The high-frequency contribution s% is
obtained from figure 6a above, with the assumption that s = 0.0484. Whereas s} is
found to be a constant independent of the wind-speed, s increases with W on account
of the increase in s2/s2 with 8/o in figure 6a. The sum (s? +s%) is compared with Cox
& Munk’s empirical formula for the total mean squared slope in table 3. It will be
seen that there is agreement between theory and observation at about W = 10 m s7*.
Also, the rate of increase in (s? +s%) with W is of the correct sign but too low in
absolute value. No doubt the reason is that much of the observed increase in mean-
square slopes with increasing wind-speed is due to the broadening of the slope
spectrum due to the progressive lowering of the low-frequency cut-off. The highest
frequencies in the spectrum are affected less by the ‘swell” than by the short waves
of intermediate frequency on which they ride; it is only the intermediate waves
which are reduced by the ‘swell .

Indeed, in a broad spectrum of wind-waves we may expect that reduction of the
energy in the peak frequencies by interaction which swell waves will lead to an
increase of energy in the highest frequencies. Evidence of this effect can be clearly
seen in the spectra recorded by Donelan (1974). To represent the phenomenon
satisfactorily an n-scale model is required, with n > 2.

The calculations in §5 were begun while the author was visiting the California Institute of
Technology Jet Propulsion Laboratory in 1987. The author thanks particularly Victor Zlotnicki for
technical assistance and Omar Shemdin for general discussions. The completion of the work was
made possible by the Office of Naval Research under Contract N00014-86-C-0303 to Ocean
Research and Engineering, Pasadena, California, U.S.A.

Appendix. Application to an equilibrium wind-wave spectrum

Consider the surface-elevation spectrum E(o) proposed by Pierson & Moskowitz
(1964) for winds between 0 and 10 m s™!, namely

E(c) = ag? o8 e P’ (A1)

where o = 0.0081, = 0.74 and
go=g/W, (A 2)
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W being the wind-speed. This has a maximum when

o/o, = [4f/5]: = 0.8717. (A 3)
The slope spectrum corresponding to (A 1) is
S, (0) = ag e o), (A 4)

which has a maximum when
o/o, = (4p)i = 1.312, (A 5)

differing from (A 3) by a factor 1.5, approximately. We shall denote the frequency
corresponding to (A 5) by o, so

o, = 13129/ W. (A 6)

Suppose that equation (A 4) adequately represent the low-frequency part of the
spectrum, that is in the range

0<o<oy, o0,=n0, (A7)

where n is a factor of order 2. Then in the two-scale model it is reasonable to assume
that the long wave has a mean steepness 4*K given by

(A*K)? = In ((AK)*) = in 52, (A 8)

where

s = fn sp(o)do. (A9)

On substituting from (A 4) and changing the variable of integration to x = B(v,/0,)*
we obtain

=1y f ° da. (A 10)
When n = 2, for example, this gives
82 =0.00728, (A 11)
hence
A*K = 0.107 (A 12)

by (A 8). We assign to the long waves the peak spectral frequency o, given by
equation (A 6).

Consider now the high-frequency part of the spectrum. The laser observations by
Shemdin & Hwang (1988) at wind-speeds between 2.8 and 6.2 m s~! show that over
the range 1 Hz < f < 16 Hz the slope spectrum falls off roughly like f~*%, that is
slightly more steeply than in (A 4). Above 16 kHz the fall-off is again steeper. Notice
that any spectrum of the form Soc o' over a range o, < 0 < o, has a mean

frequency - o
f ana/f Sdo = (o, 7,):. (A 13)
Thus we shall assign to the short waves in the model a mean frequency
0= (no, oq)%, (A 14)

where o is the peak frequency (A 6) and o is a cut-off frequency: 2m x 16 rad s™*.
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For the rate of growth f# of the short waves we adopt Plant’s (1982) formula
L =0.04 (uy/c)*wcos b, (A 15)

where u, is the wind friction velocity, ¢ the phase speed and 6 the angle between the
wind and the wave velocity. Taking u, = 0.04W, ¢ = g/w and 6 = 0 this yields

B =0.64x 1074 (W/g)2®. (A 16)
From this and (A 12) we have
Bloy =0.73x 1074 (noy W/g)}
= 0.0024(n W) (A 17)

if W is measured in m s}

Suppose first that » = 2. Then knowing the two parameters 4*K and #/w, given
by (A 12) and (A 16) we may enter figure 6a, for example, to find s%,, the mean-square
slope of the short waves. To this we must add s% given by (A 11) to obtain the total
mean-square slope o

2 =% +5%. (A 18)

In table 3 the results are evaluated at various wind-speeds W and are compared with
the empirical formula
s2=512x10° W (A 19)

given by Cox & Munk (1954), from sun glitter measurements.
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