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Ray paths and caustics on a slightly oblate ellipsoid
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We investigate the ray paths from a point-source S on a slightly oblate
ellipsoidal shell. The caustics are found to form a 4-star, i.e. a regular, 4-
cusped hypocycloid, centred on the point antipodal to S. The length-
scale of the 4-star varies as € cos® A, where ¢ is the eccentricity and A is the
latitude of the antipodal point.

1. INTRODUCTION °

On 20 January 1988 Walter Munk gave a seminar at The Institute of Geophysics
and Planetary Physics, UCSD, on the subject of long-range sound propagation in
the ocean. In the course of his seminar he posed the following problem.

Given a source of sound at some point S in a uniform, thin, perfectly spherical
shell of fluid. All the sound rays from this source will of course converge in a focus
at the opposite point S” on the sphere. But now suppose that the shell, instead of
being perfectly spherical, is a slightly oblate ellipsoid of revolution having a small
ellipticity w, say. What then is the pattern of rays in the neighbourhood of the
antipodal point on the ellipsoid ?

Munk’s problem is one in pure ray optics. Apart from the question of how far
the situation compares with the real ocean or ionosphere, or to the Earth’s crust,
the problem itself has a general interest. Although the ray paths are equivalent to
geodesics in the surface of an ellipsoid —a problem treated in classical works on
differential geometry (see, for example, Forsythe 1920) — what is sought here is the
envelope of the rays from a given point, a problem that does not appear to have
been studied in the literature. The application of conventional techniques such as
in Forsythe (1920), §§93-98, would lead to somewhat intractable expressions
for the ray caustics. On the other hand we shall show in the following that when
the ellipticity is small, quite elementary arguments lead us to a simple and striking
result.

2. LENGTH OF THE RAY PATHS

Let P be some point on the ellipsoid in the neighbourhood of the point §
antipodal to the source S (see figures 1 and 2). We assume there is a ray path (on
the ellipsoid) between S and P. If ST denotes the tangent to this ray at the source
S, there will be a plane p containing both ST and the centre O of the ellipsoid. The
plane p will intersect the ellipsoid in an ellipse e passing through both S and §’.
Now the ray path will lie nearly parallel to e, that is to say the directions of the
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Fiaure 2. Neighbourhood of the antipode S’.

two curves will differ by an angle of order ¢ at most, throughout their length. Their
separation also will be of order ¢. Therefore the length of the ray-path SP will differ
by O(e?) from the length of the arc SQ of the ellipse e, where Q is the foot of the
perpendicular drawn from P to e (see figure 2).

3. NEIGHBOURHOOD OF THE ANTIPODE

Consider points P on the ellipsoid within a distance of order € from the antipode
S’ (figure 2). To order € these points may be regarded as lying in a plane, the
tangent plane to the ellipsoid at S’. The trajectory SP will not generally pass
through §’. However, it will be parallel (to lowest order) to the ellipse e which
shares the same tangent as ST as S. Thus SP and SQS’ will make approximately
" equal angles a with the meridian S'M through §’.
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The line PQ normal to e will be tangent to the wave-front through P. At the
same time, the distances SP (along the ray trajectory) and SQ (along the ellipse)
are equal, to order . We call this distance s.

From figure 2 we see that the distance d from Q to 8’ satisfies

d+s=Cla), (3.1)

where C' denotes the half-circumference of the ellipse e. Clearly C is a function of
both a and of the latitude A of S’. This function we shall now calculate.

4. CaLcurLaTiON OF C(a)

In figure 1, NN’ is the axis of symmetry of the ellipsoid, and @ and ¢ denote the
lengths of the equatorial and polar semi-axes; A denotes the latitude of the
antipode §’. The ellipse e passes through S and S” and makes an angle a with the
meridian NS’. The major semi-axis of e is clearly the line OU in which the plane
of e intersects the equatorial plane; OU has length a. The minor axis of e is the line
OV in which the ellipse meets the plane through O perpendicular to OM. Let this
have length b, say.

To find b, note that in the spherical triangle NVS’, the angles NS’V and NV§’
are o and m respectively, while NS’ is 3m—A. So by the sine-rule the angle NOV
is § where sin f# = cos Asina. (4.1)
Now the plane ONV intersects the ellipsoid in an ellipse f whose semi-axis are a
and ¢ (see figure 3). Hence we have ‘

(b%/a?)sin® B+ (b%/c®) cos’ f =1 4.2)
Y N
"\
a 0 a
N/

Ficure 3. The plane ONV.

and so b = a(sin? B+ (a%/c?) cos? B)=. (4.3)
Since c=a(l—e¢), (4.4)
where € is the ellipticity of the spheroid this reduces to

b = a(l—ecos?p) (4.5)
correct to order e.
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Now consider any ellipse (such as e) whose semi-axis are @ and ¢ where

b=a—Aa. (4.6)

If r and 8 denote radial coordinates in the plane of e, the radial distance 7 is given
by 2 . -1
cos®0 sin®@\®

r = ( a2 +—"b—2‘-‘) (47)

and hence the half-circumference of the ellipse is

T T 2 _%
czj rdﬁzaj [1—(2’—2—1)sin20} do (4.8)
0 0

(a well-known result). When Aa/a is small this reduces to

C= fﬁ (a—Aasin®0)dl = n(a—1Aa). 4.9)

0

=
But from (4.5) and (4.6) Aa = eacos® f. (4.10)

Therefore from (4.1) we find altogether

C(o) = ma—3mea(l —cos? Asin® o). (4.11)

5. THE WAVE FRONTS

At any given instant, the path length s in equation (3.1) is a constant,
independent of a. So, on combining (3.1) and (4.11) we find

d =A—Bcos2a, (5.1)
where A and B are constants independent of « given by

4= na——%nea(l—%cos%\)—s,\

(5.2)
B = ineacos® A. J
From equation (5.1) we derive the whole solution.
In the special case A = 0, equation (5.1) reduces to
d = —Bcos 2a (5.3)

an equation which has a very simple interpretation, as follows.

Suppose that a circle X rolls, without slipping, inside another circle £’ having
four times its diameter B, as in figure 4. A point P on the circumference of the
rolling circle lies originally at D, say. The arc lengths EP and ED are equal, by
definition. So if x denotes the angle ES’D, the angle EFP is 44. Hence the angle
EGP is 24, and the perpendicular S’H from the centre S’ to the line PG is given
by

d = Bsin2pu. (5.4)
Now since E is the instantaneous centre of rotation of X, the tangent to the locus
of P is normal to EP, and is, therefore, the line PG, since EG is a diameter of X.
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Fi1cURrE 4. The critical wave-front (4 = 0).

So we see that the perpendicular from S’ to the tangent at P satisfies the same
equation as (5.3), provided we identify x4 with (a—32m). ‘

We find then that in the case A = 0, the wave-front is a four-cusped hypocycloid,
that is, the locus of a point on a circle which rolls inside another of four times it
diameter. We shall call this a 4-star.

The above result can also be derived analytically as follows.

The wave front is the envelope of the lines PQ as the angle a varies. To find this,
take rectangular coordinates (£,#) in the tangent plane (figure 2) with the origin
at S’ and the §-axis corresponding to a = 0. The equation of the line PQ is

Ecosa+nysinae =d = A—Bcos2a (5.5)

by (5.1). A point on the envelope, which is the intersection of two adjacent lines,
is found by differentiating (5.3) with respect to the parameter «. This gives

—§&sina+17cosa = 2Bsin 2a. (5.6)

Equations (5.3) and (5.4) may be solved for the coordinates (£, #) of P. Taking first
the case 4 = 0 we find

£ = — B(cos 2a cos e+ 2 sin 2a sin a),]\

7 = — B(cos 2a sin a — 2 sin 2« cos zx),J
or more simply

£ = 1B(cos 3a—300sa),1
7 = 1B(sin 3x + 3 sin a). J
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Taking now the general case when 4 # 0, we see from (5.3) and (5.4) that we
must add to £ and 5 the terms A cosa and 4 sin a respectively. The effect of this
is that the wave-front no longer has 4-fold symmetry. When |4| < 3B it has four
cusps; when [A| > 3B it has no cusps. Some examples of the wave fronts are shown
in figure 5.

Ficure 5. The pattern of ray-fronts when 4 # 0.
e

6. THE RAY CAUSTICS

The caustics are the envelope of the ray paths, i.e. the envelope of the lines SP
in figure 2. These lines are normals to all the wave fronts. So to calculate the
envelope we may choose any particular wave-front. Let us choose the critical front
corresponding to 4 = 0.

Now the ray paths correspond to the lines EP in figure 4, which are normals to
the wave-front at the point P. We note that the angle which the tangent PG makes
with the fixed direction S’D is —u. Thus, as the point E travels around the circle
Y’ with angular velocity i, say, the tangent PG, and hence the normal PE rotate
in the opposite direction, with angular velocity —z. Our problem, then is to find
the envelope of a line (such as EP) which passes through a point rotating around
a circle with constant angular velocity while itself rotating about this point with
the opposite angular velocity.

In fact, our problem is already solved. For the point G also rotates around the
circle £” centre S” and radius B with constant angular velocity 4, while the line GP
rotates in the opposite direction with angular velocity —z. We know the envelope
of GP: the 4-star shown in figure 4. By similarity, it follows that the envelope of
the ray paths PE is also a 4-star, but of twice the size, that is to say of outer radius
4B. As the point E approaches D the normals become transverse to the radius
vector 8'D. Hence the orientation of the new 4-star is rotated }n relative to the
first one.
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Ficure 6. The form of the caustics near S'.

We have then the following result: the ray caustics form an asteroid or 4-star,
with centre at S” and outer radius

4B = mea cos® A (6.1)

the four cusps being oriented due north, south, east and west of S’. The inner
radius is 2B. The total length of the curve is 6 x 2inB and it encloses an area
| 12nB?|.

7. THE NUMBER OF RAY PATHS

A 4-star is a curve of the fourth class, that is to say from a general point P inside
the curve, 4 tangents to the curve may be drawn. Each of these corresponds to a
possible ray path from S to P. If P lies on the curve, two of these rays coincide,
except that if P is at one of the cusps all four rays are coincident. If P lies outside
the curve, there are only two rays from S to P.

When P lies close to S on the ellipsoid there are of course two rays SP, one
relatively short and the other encircling the ellipsoid almost once.

In this discussion we have included only those rays whose path length is less
than the circumference of the ellipsoid. If longer rays are considered it is clear that
near the source S there is another caustic, in the form of a 4-star having twice the
size of the first caustic 4-star at S’. Again, from rays circling the ellipsoid one-and-
a-half times, we find another caustic near S” with three times the original size, i.e.
having outer radius 128; and so on.
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8. APPLICATIONS

Some caution should be exercised in applying the above results to any situation
where the medium of the shell is not strictly uniform. Nevertheless it may be
worth noting that on the surface of the Earth, a quadrant NM is about 10* km,
and the ellipticity is about 1:300. Hence in equation (5.2) we have

B =17cos?A km, (8.1)

where A is the latitude. At latitude 45°, for instance, B = 8.3 km, and the outer
radius of the caustic is 33 km.

Equation (8.1) shows that the size of the caustic is greatest at the Equator, and
that it tends to zero strongly at the north and south poles, where the length scale
varies as the square of the polar distance.

It would make an attractive experiment if an ellipsoidal shell could be
constructed out of glass, or some other translucent material. A light source
introduced into the shell might then produce a visible 4-star caustic near the
antipole, surrounded by fainter 4-stars of size 3, 5, 7, etc., times the first. If the
light source were moved around, the dimensions of the pattern would vary
accordingly to the square of the cosine of the latitude.
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