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A stochastic model of sea-surface roughness
I. Wave crests

By M.S. LongUuEeT-Hicains, F.R.S.

Department of Applied Mathematics and Theoretical Physics, Stlver Street,
Cambridge CB3 OEW, U.K., and Institute of Oceanographic Sciences,
Wormley, Surrey GU8 5UB, U.K.

(Recetved 26 June 1986)

In this paper we develop a two-scale model of sea-surface roughness, in
which for the first time the randomness of both long and short waves is
taken fully into account. The model includes long-wave—short-wave
interactions, dissipation of the short-wave energy by breaking, and
regeneration by the wind. This leads to an integral equation for the
short-wave steepness, which is solved by iteration.

The effects of wind speed and of long-wave steepness upon the
distribution of roughness at the long-wave crests are calculated and
discussed. Also the effect of a band-width parameter for the long-wave
spectrum. A random noise source can be included.

1. INTRODUCTION

In almost all sea states under the action of wind there is a rather broad spectrum
of wavelengths, ranging from long gravity waves of period several seconds down
to short gravity waves and capillary waves, which are highly responsive to the
local wind speed. The latter are known to be modulated by the longer gravity
waves on which they ride (Evans & Shemdin 1980) and it has been shown by
numerous laboratory and field studies (Keller & Wright 1975:; Wright ¢t al. 1980;
Plant & Keller 1983 ; Hoogeboom 1985) that these modulations are responsible for
backscattering of centimetric radar waves from the ocean surface, and hence are
the principal factor in imaging the surface by X-band and L-band radars.
Nevertheless, the problem of how to account for the observed distribution of
short-wave energy with regard to the phase of the longer waves has remained
unsolved.

It has long been known theoretically that straining of the short waves by the
orbital motion of the long waves, together with work done against the short-wave
radiation stresses, tends to produce shortening and steepening of the shorter waves
near the long-wave crests (Longuet-Higgins & Stewart 1960). Recently, some much
more accurate calculations of this effect according to the principle of action
conservation (Longuet-Higgins 1987) have shown the importance of including full
nonlinearity of the longer waves, in some circumstances. A linear model for
short-surface waves, which includes both growth and dissipation, has been
proposed by Smith (1986). Nevertheless, all models so far proposed are unrealistic,
in that it has been assumed, first, that the short-wave steepness is somehow rigidly
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20 M. S. Longuet-Higgins

determined, rather than having a distributed probability, and second, that the
height of the longer waves is uniform and given. The purpose of the present paper
is to replace these by more realistic assumptions, and indeed to show that the
randomness of the longer waves plays an essential role in distributing the short
wave steepness.

The basic idea, introduced in §3, is to suppose that the short-wave steepness s
at the crest of a long wave of amplitude 4 has some probability density depending
on 4, and then to relate the density on one wave crest to the density on the wave
crest immediately before. This procedure is made possible by the fact that we
already know, at least approximately, the joint probability density of the
amplitudes 4, and 4, of two successive waves. (The approximate joint distriBu-
tion, sometimes called the bivariate Rayleigh distribution, has been used with
success in predicting the properties of wave groups.) With suitable assumptions
regarding the history of the short waves over the intervening time, including
growth by wind action and possible dissipation by breaking, we are able to show
that the density p(s|4) of the short-wave slopes on a long wave of given amplitude
A satisfies a certain integral equation, which can be solved in a straightforward
manner by iteration (§4). In fact, the presence of both growth and dissipation are
essential to the convergence of the solution.

In the subsequent sections, we present some results for typical values of the
parameters. These show how the solutions depend upon the rRMs steepness of
the longer waves, and on the wind-induced growth rate. It is notable that the
short-wave density p(s|4) can be biomodal, with a peak both at the limiting
steepness s, and at some lower value of s. In §6 we investigate the effect of group
length of the longer waves. Somewhat different distributions are obtained for ocean
swell (long-wave groups) and wind waves (short groups), respectively. In §7, we
investigate the result of adding a certain amount of noise to the process of wave
growth.

Sections 8 and 9 contain a physical discussion and a statement of the conclusions.

2. DESCRIPTION OF THE MODEL

Suppose that the longer waves consist of a fairly narrow-band, gaussian
disturbance, in which the time-interval 7 between successive crests is nearly
constant, as shown in figure 1. The amplitudes of two typical successive waves are
denoted by 4, and A,. Superposed on the longer waves is a group of shorter waves
whose rRMs surface slopes, at the crests of longer waves, are denoted by s, and s,
respectively. It is convenient at first to consider the time ¢ in figure 1 as the time
measured at the short-wave group. Thus, the elapsed time between the appearance
of the short-wave group at crests 1 and 2 is given by

T=1t,—t, =L/(C—c,), “(2.1)
where L and C are the wavelength and phase speed of the long waves, and Cg 18

the group velocity of the short waves. Assuming ¢, < C we have

. T~ L/)C=T, (2.2)
approximately.
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Figure 1. Time history of a short-wave group, with steepness s, s, at times t =1,, ¢,.

During this time the wind will generally act on the short waves so as to increase
their slope, and if there were no dissipation by wave breaking the short waves
would grow by a factor e/, where S is a time rate of growth, related to the wind
speed (see, for example, Plant 1982). That is to say

8,/8, =€B, B =pr. (2.3)

On the other hand, if there were no generation or dissipation of short-wave
action, the straining of the long waves would induce a change in the short-wave
steepness depending only on the vertical elevation 3 of the waves, for a given long
wavelength (Longuet-Higgins 1987, figure 9). Thus we should have

8o/81 = fIKA,)/f(KA,), (2.4)

where K = 2n/L is the wavenumber of the long waves. In fact, it is a good
approximation to take
f(Ky) = ©2-08(K) +2.94(Kn)?_ (2.5)

It will be sufficient initially to retain only the first term in this expression. Then
from (2.4) and (2.5) we have

5,/8, = e208K(4y=4y), (2.6)

Supposing now that in the absence of wave breaking the rate of growth due to
the wind is independent of the long waves, we shall have altogether

8, = 8, €BT7( A4 -y = 2 08K, 2.7

provided that neither s, or s, is limited by breaking. In such a case it is convenient
to write (2.7) reciprocally in the form

8, =8, F(4,, 4,), (2.8)
where F(4,, A,) = e Btr(4-42), (2.9)

However, the RMs steepness s of the short waves is necessarily limited by
breaking. Here we shall assume a sharp limit

8 K 8 8y < S, (2.10)
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an appropriate value of s, being given by (5.3). Hence s, is given by the smaller of
(2.8) and (2.10), and s, by the smaller of (2.7) and (2.10). The situation is shown
schematically in figure 2.
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Ficure 2. Schematic diagram of the relation between s; and s,.

Physically, the introduction of both wave generation by wind and energy
dissipation by breaking provides the means for attaining a statistically steady
state.

3. PROBABILITY DENSITIES

We propose now to treat both the slope s and the amplitude 4 as random
variables. The distribution of the long-wave heights will be regarded as given, and
independent of the short waves over a sufficiently long period of time. The problem
then is to determine the probability density of s at given wave amplitude A.

Now the density p(4,, 4,) of successive wave amplitudes A, and A4, for narrow
spectra has been derived and used in connection with the theory of group lengths
(Rice 1944-1945, 1958; Kimura 1980; Longuet-Higgins 1984). In fact it is the
‘two-dimensional Rayleigh’ density

4,4,

p(4,, 4,) = A=) 4

e (43+A49/20—«)A? I, ((ILAI.%) (3.1)
—K

in which 4 and « are constants and I,(z) is the modified Bessel function of order
zero. A is equal to the RMs value of the surface elevation 7 and « is a ‘ groupiness
parameter’ explicitly related to the spectral density of 5. It can be shown that for
narrow spectra x> &~ 1—4n??, where v is a dimensionless bandwidth (Longuet-
Higgins 1984). The density of 4, or 4, alone is the Rayleigh density

P(A) = (4/A2) e~ 4127 (3.2)
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Hence the probability density of A4, given A,, which is obtained by dividing
p(4;, 4,) by p(4,), is

1 1r2 —1,272
p(A1|A2) = (1—_;2)%—Z§1 e 2 [z~ & IO(Kgl 52)] 3.3)
where £, =A,/1—k2}4, &= A,/(1—k2} 4.

By using the model of §2 we shall now derive an equation for the probability
density p(s|4) of the short-wave slope on long waves of a given amplitude 4.

pls|4)

ﬂk

_- P 8(s—s,)

ls,4)

» S

0 S

Ficure 3. Sketch of the density p(s|4), showing the continuous part ¢(s, 4) and the singular
part P(A4) 8(s—s,).

First, the fact that the slope s is limited by breaking means that, for a typical
value of A, there must be an exceptionally large probability density in the
neighbourhood of s = s,, 4s shown in figure 3. In fact, the density p(s|4) has two
components, a continuous component, which we denote by ¢(s, 4) in 0 < s < s,
and a singular component P(A4) §(s—s,) in the neighbourhood of s = s,, d(x) being
the Dirac delta function. Normalization of p(s|4) clearly requires that

fs" é(s, A)ds+ P(4) = 1. (3.4)

We now need to relate p(s,|4,) to p(s,|4,). We shall regard p(s,|4,) as being
determined by the values of p(s,|4,) on the previous wave, over the whole possible
range of 4,. Thus, ’

D(s,l4,) As, = jp(31|A1)A81P(A1|A2) d4,, (3.5)

but this takes somewhat different forms according as the continuous or the singular
parts of p(s,|A,) or p(s,|4,) are considered. First, the contribution to ¢(s,, 4,) from
@(s;, A,) presents no difficulties. s, is related to s, by (2.8), so that we have

As,/As, = ds,/ds, = F(4,, 4,). (3.6)
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Moreover, the integral in (3.4) must be taken over the range of 4, for which s; < s,,
hence 0 <A, < Ay+y~[B+In(s,/s,)] = H(s,, 4,), (3.7)

say. The function H is shown schematically in figure 4.

b
H(Sgy Az)
H(sq,A,)

» Sy

0 So
F1cure 4. Sketch of the function H(s,, 4,) of equation (3.7).

The contribution to ¢(s,, 4,) from P(A4,) can be expressed as a double integral
jf[P(Al)a(Sl—80)3(82F—81)d81 F(A,, A,)p(4,|4,)d (3.8)

and from the formula 1

1 1
f O =) Ay = (P JAAT, cop 70, F

from (2.10). Therefore, on reversing the order of integration in (3.8) the double
integral becomes

we have

(3.10)

(1/7s,) P(4,) p(44l4,), A, = H(sy, 4,). (3.11)
Altogether, then, when 0 < s, < s, we have
H(sy,43) 1
P(sy, 4,) = f P(s1, 4,) F(A,, 4,) p(4,]4,) dA4,+— P(4,) p(4,4,),
0 VS2 (3.12)
A, = H(s,, 4,).

On the other hand, when s, = s, we may integrate each side of (3.5) to obtain
H(sy,4,)
P(4,) = Jo [ P(s1, 4,)ds; + P(4,) ]p(A1|A2) d4,. (3.13)
soF

Physically, this expresses the probability P(4,) as the sum of two parts. The first
comes from the lower long waves, as a result of steepening by straining and by
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the effect of the wind ; the second part comes from the slightly higher long waves,
as a result of regeneration by the wind only, and in spite of the straining.

Equations (3.12) and (3.13) are clearly a coupled pair of integral equations to
determine ¢(s, 4) and P(A4) simultaneously.

4. SOLUTION OF EQUATIONS (3.12) AND (3.13)

To find ¢(s, A) and P(A) we may proceed by successive approximation.
Arbitrary starting values ¢V(s, A) and P®(4) satisfying the condition (3.4) may
be substituted on the right of (3.12) and (3.13) and used to calculate ¢'*(s, A) and
P®(A4). Substituting these again on the right-hand sides of the equations, we may
calculate ¢®(s, 4) and P®(4), and so on, the process imitating the development
of the short wave probabilities from one wave to the next. If the functions ¢ (s, 4)
and P™(A) converge, we have a solution.

This was tried with two different sets of initial conditions, namely

pD(s, 4) = 53, PP(A) =0 (4.1)
and ¢pPV(s,4) =0, PYA)=1. (4.2)

With either set, the procedure was found to converge to the same solution,
although with (4.2) the convergence was somewhat faster; typically four decimal
places were obtained after only seven or eight iterations.

At each step, the accuracy of the integrations was checked by evaluating the
left-hand side of (3.4) for ¢ = ¢™* and P = P™*V; for it may be shown that if
any pair ¢, P‘™ satisfy (3.4) then ¢™*D, P{"+D_if calculated by the iteration
procedure, should also satisfy (3.4). For graphical accuracy (0.1 %) it was found
sufficient to take 101 integration points in the range 0 <s/s,<1 and 51
integration points in the range 0 < 4/4 < 5.

5. THE RANGES oF AK, s AND B

The steepness AK of the longer waves will generally be limited by the fact that
the ‘significant waves’, i.e. those with amplitude 24, cannot have a steepness much
exceeding the limiting steepness AK = 0.443 for steady progressive waves. Thus
we would expect 24K <0.44, AK <0.22 (5.1)
approximately. The above estimate is consistent with the laboratory wind-wave
data of Lake & Yuen (1978), who found a mean value of AK for the dominant
waves not exceeding 0.28. For a Rayleigh distribution this would correspond to
An):AK; hence AK < 0.224.

We note that in experiments with unsteady, plunger-generated waves, Ochi &
Tsai (1983) found signs of breaking in individual waves for which AK = 0.35, less
than the limiting value 0.443, but this is not inconsistent with (5.1).

In a similar way, if we consider the short waves as a narrow-band process in
which the local wave steepness a = ak has a Rayleigh distribution,

pla) = (a/s?) e/ (5.2)
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it is reasonable to suppose that local breaking of the short waves imposes a limit

§ < 8, = 0.22. (5.3)
We note that according to (5.2) and (5.3) the local mean-square slope surface slope
s? satisfies s2 < 0.05, (5.4)

which is not far from the limiting value 0.04+0.02 found by Plant (1982).
For the rate of growth of surface slopes under the action of the wind, Plant
(1982) has shown that the formula

£ =0.02(u,/c)? o cosl (5.5)

fits many different observations. Here u, denotes the friction velocity, taken'to
equal 0.04 times the wind speed U at a standard elevation. ¢ and o are the phase
speed and the radian frequency of the short waves, and 6 is the angle between
the directions of the short waves and the wind. Because our analysis refers to the
short-wave slopes rather than to their spectral density, we have here divided the
right-hand side of Plant’s equation (1) by a factor 2. In the special case § = 0, when
wind and waves are in the same direction, (5.5) reduces to
£=32x10"%U/c)?o. (5.6)

For example, if we consider short-gravity waves of length I = 20 cm, we have
o= (2ng/lt = 17.6 rad s™! and ¢ = g/o = 0.56 m s!. Hence with U = 6.0 m s™!
we find £ = 0.065 s™!. With the period of the long waves about 7.5s (Evans &
Shemdin 1980, table 2), we have B = 0.49 and e® = 1.63. With the long waves
‘having period 2s, we have B=0.129 and e5=1.13 only. Thus swell and
wind-waves may correspond to rather different values of the wind amplification,
even for the same wind-speed.

With shorter (X-band) short waves, B is generally much greater, but the
amplification of the short waves is then more limited by breaking.

6. REsvLTs

To explore the behaviour of the solutions, calculations were at first carried out
with representative values of AK and B, and with x = 0. The latter condition
implies zero correlation between successive waves, so that p(4,|4,) is independent
of 4, and is, in fact, given by the Rayleigh density p(A4) of equation (3.2), with
A=A,

Figure 5 shows the solution when AK = 0.1 and B = 0.1. It will be seen that
as the height 4 of the waves increases, so the curves of ¢(s, 4) tend to move to
the right, that is to say the short waves on the whole become steeper. The
probability P(A) of the short waves attaining their limiting steepness also increases
monotonically with 4. For the lowest values of 4/A4 the probability of finding
breaking waves at the crests of the longer waves is quite low; when A/4 = 0.5 the
probability is less than 20%,. When 4/A4 = 2, P(A) is more than 909,.

The probability density ¢(s, A) does not always increase monotonically with s.
In fact, when 4/A4 = 0 and 0.5, the density has maxima near s/s, = 0.83 and 0.92
respectively, as well as the delta-function peak at s/s, = 1. The distribution of
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F1cURE 5. (a) The calculated probability density ¢(s, 4). (b) The probability of breaking P(4)
when 4K = 0.1, B=0.1 and « = 0.

slopes is thus bimodal in these cases. When s/s, < 0.5 we see that ¢(s, 4) is
generally quite negligible.

In figure 6 we see the result of increasing the wave-generation parameter B to
0.2, while keeping AK = 0.1. This clearly shifts the curves ¢(s, 4) to the right,
increasing the short-wave steepnesses in general. The probability P of breaking
is now never less than 0.3.

In figures 7 and 8 we see similar results, but for steeper long waves: AK = 0.2.
When B = 0.1 most of the densities p(s|4) are now bimodal. Physically, this is
because the distributions of short-wave steepness on the crests of the lower long

1.0
(@) ‘ (%)

4 —
< P o5}
L 2,_

1 | | 1
0 05 10 0 2 4
8/8 A/4

F16URE 6. As figure 5, when 4K = 0.1, B=0.2, k = 0.
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F1cURE 7. As figure 5, when AK = 0.2, B=0.1, k= 0.
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F1cURE 8. As figure 5, when AK = 0.2, B=0.2, k= 0.

waves, say A/A4 < 1, are determined by the fact that the short-wave steepness is
limiting on the higher long waves and is then reduced by the subsequent fall in
long-wave height. The regeneration of short-wave steepness by the wind is
insufficient to overcome this effect.

In figure 8, however, when B is increased to 0.2, the curves for ¢(s, 4) are shifted
back again toward the right.

Variation of k

In the results so far, the correlation parameter « has been set equal to zero.
Figures 9, 10 and 11 show the effect of increasing « by stages, while keeping A K
and B constant at 0.2 as in figure 8.
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FiGure 9. As figure 8, when x = 0.5.
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F1GURE 10. As figure 8, when « = 0.75.

When « = 0.5 (figure 9) there is little effect on either ¢(s, 4) or P(4), though the
curves for ¢(s, A) will be seen to have shifted slightly to the right. This value of .
k, corresponding to x> = 0.25 or v & 0.2 is typical of local wind-waves (Longuet-
Higgins 1984, figure 14).

However, when « = 0.75 (figure 10) the shift to the right is very distinct, and
even more so when « = 0.85 (figure 11). The corresponding values of % and v are
typical of ocean swell (Longuet-Higgins 1984, figure 13).

Physically, the effect of increasing « toward unity is to increase indefinitely the
mean length of the wave groups, and so to make the long waves appear locally
of uniform height. In the limit « -1 it is clear that the regeneration of short-wave
steepness by the wind will prevail over the redistribution of short waves by
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FieUure 11. As figure 8, when « = 0.85.

variability of the long waves, and so will force the short waves up to the breaking
steepness at every long-wave crest. Thus, we shall have

P(s, 4) >0, P(A4) 1. (6.1)

This is the situation that has been assumed, in effect, by previous authors (Phillips
& Banner 1974).

Generally, however, we see that this condition is by no means attained, and that
the variation of long-wave heights is an important factor in reducing the probable
short-wave steepness, even at the long-wave crests.

7. EFFECT OF BACKGROUND ‘NOISE’

So far we have assumed that the short waves are present initially and, in spite
of some dissipation through breaking, are always regenerated by the wind. In other
words, we have a ‘boot-strap’ situation, the regeneration of the waves depending
on their initial presence. However, apart from the exponential growth rate of the
waves, as expressed through the factor in (2.8), there may in fact be other sources
of short-wave energy, arising from splashing, nonlinear wave interactions, etc.
Without specifying the exact mechanism, we may represent such a noisy source.
by a constant input of probability density to the small slopes, a sort of ‘ probability
rain’. For such an input, A¢, a plausible form is

Ag = N(s/5%) e™/25", (7.1)

in other words a Rayleigh distribution of the rMs slope s and total amplitude N
per wave period 7.

Accordingly, we tried the effect of adding on a small extra probability, Ag,
having the above form, at each iteration and at the same time normalizing by
dividing the probabilities by (1 +fA¢ ds). For numerical values we chose s = 0.1s,
(so that IA¢ ds~ N), and N = 0.05 or 0.1. Also AK = 0.2 = B, as in figure 8.
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The iteration was found to converge just as before (although at a slower rate,
comparable to the initial conditions (4.1)). The resulting steady solution in the case
N = 0.05 is shown in figure 12. This may be compared with figure 8. Instead of
the almost vanishing values of ¢ found previously for low slopes (s/s, < 0.25, say)
we now see a substantial ‘ background probability ’ extending over the whole range
of low slopes, well beyond the original RMs value § of the noise input (7.1). This,
of course, is caused by amplification of the noise by the wind stress.

Figure 13 shows the result when N is increased from 0.05 to 0.1. Now the two
maxima in ¢ are of comparable magnitude, when 4/4 < 2. At the larger values
of A/A the short waves are almost uniformly distributed over 0 < s < s,. The
probability P of breaking is correspondingly reduced.

@ T 1.0 ®)
4l
< Post
® 2k
A/A=00
0.5
- 1.0
15
20
| 2.5 | | .
0 05 10 0 2 4
/8o A/4
Fiaure 12. As figure 8, but showing the effect of added ‘noise’; N = 0.05.
(a) T 10 (b) T
4}
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5 ol Pos |
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r 10
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25
1 | 1 1 -
0 0.5 1.0 0 2 4
8/8, A/A

Ficure 13. As figure 12; N = 0.10.
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8. DISCUSSION

One of the simplifying assumptions of the model is the existence of a sharp
critical steepness for wave breaking. In reality, there may be a range of possible
short-wave steepnesses, rather than a single value, leading to a smoother distri-
bution for p(s, 4) at high values of s. A modified assumption might be made that
at high steepnesses a high degree of damping occurs, to represent the wave
breaking. In that case, a similar type of integral equation for p(s, 4) could still be
formulated.

A second limitation of the model is the simplified relation (2.7) between s, and
8,. This includes only the linear part of the expression (2.5), and the nonlinear term
becomes significant when AK exceeds 2, say. Inclusion of this term leads to a
modification of (3.6), but no essential difficulty.

A more subtle deficiency of (2.7) is that it implies a possibly steady rate of growth
due to the wind, even though the slope s, may already be limiting. Thus (2.7)
strictly would imply that near the long-wave crest, where the rate of straining is
small, s would have to grow beyond s,, at least initially. This difficulty may be
overcome by determining s through a step-by-step integration throughout the
interval t, <t < t,. If this is done, then (2.7) is replaced by a more consistent, but
at the same time less simple, relation.

A fourth limitation of our model is that we have used the joint density p(4,, 4,)
for consecutive long waves as given by (3.1). Strictly, this is justified only for
narrow wave spectra, associated with fairly long groups of (long) waves, but, like
the Rayleigh distribution for single waves, it may well have an unexpectedly wide
range of validity. Again, it might theoretically be replaced by a more general
expression, but only with a consequent loss of simplicity in the calculations.

9. CONCLUSIONS

We have developed a simplified model of sea-surface roughness that takes into
account the randomness of both the longer waves and of the short-scale waves
superposed on them. Essentially the model depends upon three parameters: (1)
the RMs steepness AK of the longer waves; (2) the natural rate of growth B due
to the wind; and (3) a correlation parameter « for the long wave amplitudes. The
model demonstrates that:

(1) the density p(s|4) of the short-wave slopes s is not necessarily unimodal,
especially at low wave amplitudes 4;

(2) as A/A increases, so the density p(s|4) tends to become monotonic, and the
probability P(A4) of breaking at the crest increases;

(3) the effect of increasing B is to move the curves for ¢(s, A) (the continuous
part of p(s|4)) to the right and to increase the probability of breaking at the crest;

(4) the effect of decreasing the long-wave band width v, or letting x approach
closer to 1, is again to increase the probability of breaking at the crests of both
higher and lower long waves;

(5) the effect of adding a small amount of noise to the short waves is to increase
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the probabilities of low short-wave slopes. Paradoxically, the probability P(A4) of
breaking is reduced.

In a further paper (in preparation) we shall show how the analysis can be
extended so as to calculate the probable distribution of surface slope, s, over the
complete profile of the long waves. This leads to expressions for the mean-square
short-wave slope, the average phase lag between the surface slope and the long
waves, and other observed quantities.

The calculations presented in this paper were begun in Cambridge, England
during November 1985, and were continued during a visit by the author to the
University of Florida, Gainesville, in February and March 1986. To Dr K. Millsaps,
Head of the Department of Aerospace Sciences at the University of Florida, and
to members of his staff, the author expresses his appreciation of their hospitality
and assistance.
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