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Previous calculations of the normal mode perturbations of steep gravity
waves have suggested that the lowest superharmonic mode n = 2 becomes
unstable at around ak = 0.436, where 2a is the crest-to-trough height of
the unperturbed wave and k is the wavenumber. This would correspond
to the wave steepness at which the phase speed ¢ is a maximum
(considered as a function of ak). However, numerical calculations at such
high wave steepnesses can become inaccurate. The present paper studies
analytically the conditions for the existence of a normal mode at zero
limiting frequency. It is proved that for superharmonic perturbations
such conditions will occur only for a pure phase-shift (corresponding to
n = 1) or when the speed c¢ is stationary with respect to the wave
steepness, that is when dc¢ = 0. Hence the limiting form of the instability
found by Tanaka (J. phys. Soc. Japan 52, 3047-3055 (1983)) near the
value ak = 0.429 must be a pure phase-shift.

1. INTRODUCTION

Since the pioneering work of Whitham (1967) and Benjamin & Feir (1967) it has
been known that gravity waves on water of infinite depth are unstable, at least
to certain subharmonic perturbations. Precise calculations of the normal modes
by the present author (1978a) and by McLean (1982) have shown also the existence
of some unstable perturbations with length scales shorter than the basic
wavelength.

While many of the instabilities are three-dimensional, some important and
interesting examples occur even in two dimensions (one horizontal and one
vertical). Thus it was shown in Longuet-Higgins (1978a; hereinafter referred to
as I) that some superharmonic disturbances, with a dominant wavelength one half
that of the original wave (i.e. having wavenumber n = 2) tend to become unstable
when the steepness ak of the unperturbed wave exceeds about 0.43. Although the
calculations could not be carried accurately beyond about ak = 0.42, nevertheless
they were consistent with the suggestion (made on physical grounds) that a
transition to instability occurs at the wave steepness ak for which the phase speed
¢ is a maximum. From independent calculations (Longuet-Higgins & Fox 1978)
this was known to be at about ak = 0.436 (less than the maximum steepness
ak = 0.4434).
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270 M. S. Longuet-Higgins

Recently, however, Tanaka (1983) has proposed a different method of calculation,
claiming to have overcome the difficulties inherent in using Fourier series
expansions at high values of ak. His numerical results agreed closely with those
of I up to ak = 0.41, but then tended to diverge, so that instability of the mode
n = 2 appeared to occur at around ak = 0.429. This corresponds closely to the
steepness for which the total energy density E is a maximum. However, no physical
reason for this coincidence could be found.

Since numerical calculations, however accurate, often lack the certainty of
mathematical analysis, the present author sought an analytical approach to the
problem. An opportunity came with the discovery that by making use of certain
identities between the coefficients a,, in the Stokes series for deep-water waves it
was possible to simplify considerably both the expression of some integral
quantities (Longuet-Higgins 1984a) and the numerical calculations of finite-
amplitude gravity waves and their points of bifurcation (Longuet-Higgins 19845).
In this paper we show that the analysis of the normal-mode perturbations can be
simplified also.

In brief, we shall show that if there exists a normal instability with radian
frequency o tending to zero at a certain wave steepness ak, then at the critical
point either (i) the phase speed is stationary: dc = 0, or (ii) the limiting form of
the perturbation is a pure phase-shift. The points at which d¢c = 0 and dE = 0 are
quite distinet (see Longuet-Higgins 19845). Therefore if a zero-frequency normal
mode occurs at d& = 0, its limiting form must be a pure phase-shift.

The present paper further illustrates the utility of a matrix analysis for gravity
waves on deep water, which in turn is based on the quadratic relations (3.12) for
the Fourier coefficients a,,. Although the analysis applies strictly only to waves
in two dimensions, it would seem worthwhile to investigate the possibility of a
three-dimensional analogue.

2. EQUATIONS FOR NORMAL MODES

In any two-dimensional, irrotational flow of an inviscid, incompressible fluid,
the rectangular coordinates (z,y) may be expressed as functions of the velocity
potential @, the streamfunction ¢ and the time ¢. In the interior of the fluid (x +iy)
is everywhere an analytic function of (¢ +iy), and at a free surface, where

¥=F@1), (2.1)

the two boundary conditions expressing that the pressure p is constant and that
a particle at the surface remains at the surface become respectively

—Yp YT Yy ) +oyyy+yy)+3=0 (2.2)

and
Wy Ye—Yp o) 1= Yty e ) Fy+ (Wi +yp) F, =0 (2.3)

(see I, §2). Here suffixes are used to denote partial derivation. In (2.2) g denotes
gravity, the y-axis being taken vertically upwards. We shall choose units so that
g=1.
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We seek solutions to these equations in the form
v =X(}, V) +ek(g,y) e,
y=Y(@.¥)+en(d.y) e, (2.4)
F = ef(¢) e7'",
in which (X, Y) represents a steady, progressive wave travelling with speed ¢ in

the positive x-direction, as seen in a frame of reference travelling with the waves.

The flow then appears steady. The terms €(§, 9, f) represent a small perturbation
of the steady wave, varying harmonically with the time ¢.

We now substitute (2.4) into (2.2) and (2.3) and expand each of the left-hand

sides in a Taylor series in ¢ about ¥ = 0 (the unperturbed surface). From the terms
independent of € we obtain

2Y(Y3+Y5)+1=0 (2.5)

and F,=0 (2.6)
to be satisfied when 3 = 0. For waves in deep water we must also have

Y~—cy (2.7)

as ¢ —> oo.

Assuming these satisfied, the terms in € then give us the following equations for
the perturbations:

—io (Y, E+ Yyn) = Pn+@Qny+ By, +Sf, (2.8)
~io(Y,E= Y, ) = f;, (2.9)
where we have written
P=Yi+Y},
Q=7 =2YY, (2.10)
R=(Y?,=2YY,
S=[Y(Y3+Y})l, =Y, P+ Y(Y;+ Y},
all to be evaluated on iy = 0. In addition
E+ip—>0 as Y—>o0 (2.11)

(see I, §3).

3. THE BASIC WAVE

In the unperturbed flow, F = 0 by (2.4) so that (2.6) is already satisfied. To

satisfy (2.5) and (2.7) we assume a steady, symmetric wave given by the Stokes
expansion

(Y —iX)+ (—ig)/c = lag+ 3 a, ein@+ib/e (3.1)

in which the coefficients a,, are all real, and units have been chosen so that the
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wavelength A equals 2n. As ¥y — oo so the right side of (3.1) tends to a constant
1a,. On the unperturbed surface (¢ = 0) we have, from the real part of (3.1),

0

Y= X *a,, cosmb (3.2)
m=0
where 0=d¢/c (3.3)

and an asterisk means that whenever a, occurs in the sum it is to be replaced by

1a,. Further ©
—cY, = 2 b, cosnb,

n=0
o (3.4)
—cYy,= 2 b, sinnd,
n=0
where bp=1, b,=na, n=1,23, ... (3.5)
Hence, when y = 0,
0 0
A(Y3+ Y3 = n{;o m%ﬁ b, b, cos(m—n)b, (3.6)
that is 2P = X * 2P, coslb, (3.7)
1=0
where B=2 by,b, [=012 .. (3.8)
m=0
The boundary condition (2.5) can be written
2¢?YP = —c*. (3.9)
On substituting for Y and ¢2P from (3.2) and (3.7) we have
[ee] o0
2 X * X *a,, Plcos(m+1)0+cos(m—1)0] = —c? (3.10)
m=0 =0
and on equating the coefficients of cosnf, n = 0,1,2, ..., on each side we obtain
the infinite set of equations
ay Py+ (a,+a,) P+ (ay,+a,) P+ (as+a,) P+... = —c?,
a, B+ (ay+a,) P+ (a,+a;) B+ (a,+a,) B+... = 0, (3.11)

a, By+(a, +ay) P+ (ay+a,) B+ (a, +a5) B+ ... =0,

between ¢, and the original coefficients a,,.
Formally, equations (3.11) are cubic in the a,,. It is a remarkable fact, first noted

explicitly in Longuet-Higgins (1978b), that these equations are equivalent to a
simpler, quadratic set of equations, namely

ayby+a, by +a,b,+ab,+... = —c?,
a,by+a,b,+a,by+a,b,+ ... =0,

(3.12)
ay,by+a, b, +ayb,+a, b+ ... =0,
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For, if we denote the left-hand sides of equations (3.12) by F,, » =0,1,2, ..., and
the corresponding expressions in (3.11) by G, then we have identically

boE)+b1Fl+b2Fz+b3F3+'“ = G,,
byt by By b, Byt .. = G,

(3.13)
by Fb+b, F,+... = G,,
that is to say BxF =G, (3.14)
by, b, b, by...
0 b, b, b,...
h — o 01 0
where B 0 0 b b... (3.15)
and F=(F,F,F,..)",
(Fo, By, B, ) (3.16)
G = (G,,G,,G,,...)~.
Since b, = 1 we have |B|=1 (3.17)

and the matrix B is non-singular. Hence any non-vanishing solution to (3.11) is
equivalent to a non-vanishing solution to (3.12) and vice versa.

The above proof, which was given in Longuet-Higgins (1978b), relies on the
convergence of all the series involved, which is, however, assured at all interior
points of the fluid domain. An alternative proof due essentially to J. G. B. Byatt-
Smith, is given in the same paper (see also Longuet-Higgins 1984a,b).

4. THE NORMAL MODES ; LIMIT AS ¢ -0

To solve the perturbation equations (2.8) and (2.9) it was noted in I that (£, )

being conjugate functions, tending to 0 as ¢/c— o0, may be expanded in the form
0

(n—if) = A (o, +ip,,) etn@+1/e (4.1)
n—
and that in general w
= X (ratid,) e, (42)
n=

where a,,, 8,, ¥, and 4, are real constants. Substitution of these expressions into
(2.8) and (2.9) and equating the coefficients of cosnf (n =0,1,2,...) and sinnf
(n=1,2,3,...) yields a system of equations for the constants a,,, 8,,, v, 8, and the
radian frequency o, which can be solved numerically by successive truncations.

However, we are here interested chiefly in the limiting case when o —0. From
(2.9) we see immediately that in the limit

Equation (2.8) then reduces to
Pp+Qny+Ryy+ Sy, =0, (4.4)
to be satisfied when ¥ = 0.
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We remark that this equation can be derived directly from the steady boundary
condition (y3+y3) =—1 on Y =F (4.5)
(compare (2.5)) by writing
y=Y+ey, F=cey, (4.6)

and then considering the coefficient of €.

5. NORMAL MODES (CONTINUED)

To proceed further with (2.8) we must evaluate @, R and S. From (2.10) and
(3.4) we have

[ce] 0
—cQ = 2* X a,b,[cos(m+n)f+cos(m—n)b], (5.1)
n=0 m=0
o0 [e¢]
—cR= X% ¥ a,b,,[sin(m+n)f+sin (m—n)0], (5.2)
n=0 m=0
Q0
that is —cQ =2 Q, coslb, (5.3)
0
—cR =2 R, sinlo, (5.4)
0
where Q,= 2 a,b, (5.5)
m=0

and when [ > 0,

-1 0
Ql = ZO A—m bm+ ZO (am bl+m+a’l+m bm)’
- me
T 5o
Rl = Z A—m bm+ Z (am bl—m_al+mbm)'
m=0 m=0 '
Therefore when [ > 0,
-1 0
Q+R, =2 % a_,b,+2 X a,b,,,=0 (6.7)
m=0 m=0
by (3.12). Hence for I = 0,1,2,3, ... we have
[ee]
Ql - Z_ A+m bm (5'8)
and in particular ©
QO’__ 2 ambm=—cz (59)
m=0
Thirdly we have from (2.10)
Hence
0 e o]
—c38 = X b, cosmf L* 2P, cosnf
m=0 n=0
o0 @
+ X X mb,(Q, cosmb cosnf+ R, sinmb sinnb). (5.11)
m=0 n=0
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On making use of the relations (5.7) we obtain

[e¢] [ee]
—c38 = X X*b,,P,[cos(m+mn)0+cos(m—n)0)
0

m=0 n=
[ee] o]
+ 2 X mb,Q, cos(m+n)b (5.12)
m=0 n=0
[00]
= 2* 28, cos 6, (5.13)
I-0

say.
Now adopting the expansions (4.1) and (4.2) we have when yy = 0

7 =2 (a, cosnd— g, sinnb),
0
o0
—cn, = 2 (na,, cosn—nf, sinnb) (5.14)
0

0

—cny = 20] (nee,, sinnf+np, cosnb)

On substituting these expressions into the boundary condition (4.4) and equating
to zero the coefficients of 1, cos 8, cos 26, ... and sin 6, sin 26, ... we obtain a linear
system of equations for

a = (otg, %y, Ay, ...), (5.15)
B= (ﬁpﬁz’ﬂa’“-)
and y,, which may be written in the form
MO s 0
----- peemmeee= (e s B v )t = - ) (5.16)
O N O 0
where
(L+5)  (B+F) (B+ 1) (B+Fy)
(B+8B)  (B+B+0Q,) (B+F) (B +F)
M=|(B+B) (B+B+Q) (B+P+2Q,) (P+P) | 617
(B+15)  (HL+EB+0Q) (B+F+2Q,) (H+F+3Q,)
(Bh—B+Q) (P—F) (B— 1)
(I)l—Bz+Q1) (P()_P4+2Qo) (P1_P5)

d N= 5.18
o (R=R+Q) (A-B+2Q)) (R—BK+3Q) . 519
and O denotes the zero square matrix, 0 a zero column vector. Finally

S = (8,,8,.8,,...)T (5.19)

where S, is given by (5.13).
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6. CONDITIONS WHEN 0 = 0
We shall make use of the following lemmas:

M=BxC, (6.1)
N=BxD, (6.2)
in which B denotes the matrix (3.15) and C, D are the symmetric matrices:
2 (a,+a,) (2a,+2a,) (3a;+3ay)
(a, +a,) (1+ay+2a,) (2a, +3a,) (3a,+4a,) .
C =| (2a,+2a,) (2a, + 3a,) (14 2a,+4a,) (3a,+5a;) (6.3)
(3a;+ 3a,) (3a,+4a,) (3a, +5a;) (1+3a,+6a,)
and
(1+a,—2a,) (2a, —3a,) (3a,—4a,)
D= (2a, —3a,) (1+2a,—4a,) (3a, —5ay) (6.4)
(3a,—4a,) (3a,—5a;) (1+3a,—6a,)
Moreover, MxbT =S, (6.5)
NxbT=0,
where S is given by (5.19) and
b = (by,b,,b,,...), (6.7)
b = (b,,b,,b;,...). (6.8)

These results are all proved in the Appendix.

Consider the consequences. Equation (6.5) implies that the last column of the
matrix in (5.16) depends linearly on the columns of M, and hence is redundant.
The value of v, is thus arbitrary. This is not obvious a priori, since although a
non-zero value of y, implies the addition of a mere constant to the streamfunction
Y, it also changes the position of the free surface, to order €, hence the values of
the coefficients a,, in the Fourier expansion (3.1).

On omitting the last column of the matrix, (5.16) reduces to the ‘square’ form

————— | ox - ) = ) (6.9)

This again reduces to the two independent systems :
Mxat=0 (6.10)
and Nxfr=0 (6.11)

for the in-phase and quadrature components of the perturbation (4.1).
Consider first the symmetric perturbations. The system (6.10) can have a
non-vanishing solution only if | M| = 0. But by (6.1)

|IM|=|B|x|C|=|C| (6.12)
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since | B| = 1 by (3.15). Therefore for a non-vanishing solution we require
|C|=0. (6.13)

Now it was shown in Longuet-Higgins (1984b) and can indeed be seen from
equations (3.12), that the vanishing of | C'| is the necessary condition that the phase
speed ¢ be stationary with respect to changes in the wave amplitude, that is

de = 0. (6.14)

This then shows that there can exist symmetric normal perturbations at zero
frequency only if dc = 0.

Consider on the other hand the asymmetric perturbations. From (6.6) it follows
that there always exists an antisymmetric perturbation, given by

p=0b. (6.15)

This represents a simple phase-shift of the original wave through the horizontal
distance ec.

Now (6.11) implies also that the determinant of N vanishes. Hence the first row
of N is linearly dependent on the others. The corresponding equation is thus
redundant and may be replaced by a condition on the phase, for example that

B, =0. (6.16)
The modified system then becomes
N xpT=0, (6.17)

where ' = (f,, 85, ...) and N’ is the matrix derived from N by omitting the first
row and column, that is

(Fy— B +20Q,) (A—HR)
N’:l(Pl—Ps_+2Q1) (Po—l_%+3Qo) (6.18)

Thus an antisymmetric perturbation exists only if
|IN"|=0. (6.19)
Now, as in the proof of (6.1) given in the Appendix, it may be shown that
N =BxD’, (6.20)

where D’ is the matrix derived from D by omitting the first row and column, that
is

(142a,—4a,) (3a,—5a;)
] (6.21)

D' =| (3a,—5a;) (14+3a,—6ay)

But it has already been shown numerically that | D’| does not vanish anywhere
in the range of uniform waves (see Longuet-Higgins 1984b), and particularly not
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when £ = E_ .. Hence | N’| does not vanish anywhere in the range, and there are
therefore no antisymmetric normal modes at zero frequency apart from a pure
phase-shift.

Since any perturbation to the original wave form may be expressed as the sum
of a symmetric part and antisymmetric part, this shows that there are no other
antisymmetric normal modes of any form at zero frequency, except at points where
the phase speed has a stationary value, i.e. when dc = 0.

The form of the normal mode, at points close to a point of stationary phase speed,
is presumably given by

a=[ay,a,,a,...] =a+eda+puf)+0(?), (6.22)

where a® denotes the values of the Fourier coefficients at the critical wave
amplitude, @ and f correspond to solutions of (6.10) and (6.11), and A, x are
constants. To determine the ratio A:x and the corresponding (non-zero) value of
the radian frequency o the full equations (2.8) and (2.9) may be carried to higher
order in e.

7. DISCUSSION

We have shown, essentially, that for irrotational waves on deep water the
conditions for a normal-mode perturbation at zero limiting frequency are the same
as those for a bifurcation of the steady motion. But it was already shown previously
(Longuet-Higgins 1984b) that the only possible + 1 bifurcation consists of a pure
phase-shift, except possibly at a stationary value of the phase speed, that is when
de = 0. It follows that if there exists a superharmonic normal mode with zero
limiting frequency at any value of a k other than d¢ = 0, then its limiting form must
be a pure phase-shift.

This conclusion applies in particular to the numerical result of Tanaka (1983),
who found a zero-frequency mode at around ak = 0.429.

In a recent correspondence Dr Tanaka has kindly informed the author that the
limiting form of the instability found by him is indeed a pure phase-shift. However,
it is still not clear why this situation should occur so close to the point at which
dE = 0. A further investigation of the question is in progress.

APPENDIX A. PROOF OF EQUATIONS (6.1), (6.2), (6.5) AND (6.6)

To prove (6.1) let the matrix C, defined by (6.3), be written in the apparently
asymmetric form

(by+by) (0+b,+a,) (0+b,+2a,) (0+b,+3a,)
(b, +0b,) (b0+b2+a0) (0+b;+2a,) (0+b,+ 3a,)

C =1 (by,+0,) (b, +b;+0a,) (by+by+2a,) (0+b5+3a,) (A1)
(by+b;) (bt ®

by+a,) 1 Hbs+2ay) (bo+bg+ 3ay)

On multiplying the ith row of B (see equation (3.15)) by the jth column of (A 1)
and using the definition of P, in (3.8), we see that the terms in b,, alone yield the



On the stability of steep gravity waves 279

inner product (B,;_;+ F;). On the other hand, from equations (3.12) and (5.3)
the terms in b; and a; yield 0 if i < j, and (j—1)@Q,_; if ¢ > j. This proves (6.1).
To prove (6.2) let us define

(by—by) (0—b,+a,) (0—b,+2a,) (0—b;+ 3a,)
(b1_b1) (bo_b2+a0) (O—b3+2a1) (O_b4+3a2)
D, =| (b,—b,) (b,—bg+a,) (by— b4+ 2a,) (0—b;+ 3a,)
(by—by) (by—b,+a,) (b, —bs+2a,) (bo—bg + 3a,)
(A 2)
Then it is clear that
D, =D (A 3)

(where a prime denotes the matrix derived from a given matrix by omitting the
first row and first column). As before, we now have

BxD,=N,, (A4)
where
(L—F) (A=HK+0) (F,—F,+0) (5 —1+0)
(h—=h)  (B=F+Q,) (P —F+0) (B,—F,+0)
N, =|(L=F) (B=FK+0Q) (F—F+2Q,) (A—5+0)
(B=F) (B-R+Q,) (A-HK+2Q) (K—F+30Q,)
(A5)
But in D, the elements of the first row all vanish. So from (A 4) we have
B'xD, =N, (A 6)

and since B’ = B (see equation (3.15)) this is (6.2).
To prove (6.6) we note that since the elements in the first row of N, all vanish,
it follows from (A 4) that

b’ xD =07 (A7)
and on taking the transpose matrix of each side of this equation we obtain
Dxb'" =0, (A8)

D being symmetric. We now multiply on the left by B, using the commutative
law for matrices, to obtain

(BxD)xbT=0 (A 9)

and (6.6) follows, by equation (6.2).
Lastly, to prove (6.5) note first that from the definition of S, in (5.13) we have

Sy = (B +B)by+(P,+P,+0)b,+(P,+ P,+0)by+ ...,
Sy = (B +B)bo+ (B + B+ Q) by + (P + P+ 0)by+ ..

(A 10)
Sy= (B B) by+ (P4 P+ Q) by + (B4 Po42Qy) by + ..
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From (5.17) and (6.6) it is clear that S, is the inner product of b with the (!—1)th
row of M. This proves the lemma.

This paper was begun while the author was visiting Cal. Tech. Jet Propulsion
Laboratory, Pasadena. These and other results were presented at the Workshop
on Surface Gravity Waves at U.C. Santa Barbara on 31 May—1 June 1984 ; also
at a meeting at the University of Bristol on 3 July 1984. To Dr M. Chahine, Head
of the Earth Sciences Division of J.P.L., and to Professor M. Tulin, U.C.S.B., the
author expresses thanks for their hospitality and assistance.

I am indebted to Dr P. A. Saffman and Dr M. Tanaka for interesting corre-
spondence and discussion.
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