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A theoretical probability density is derived for the joint distribution of
wave periods and amplitudes which has the following properties: (1) the
distribution is asymmetric, in accordance with observation; (2) it depends
only on three lowest moments m,, m,, m, of the spectral density function.
It is therefore independent of the fourth moment m,, which previously
was used to define the spectral width (Cavanié ef al. 1976). In the present
model the width is defined by the lower-order parameter

v = (mgmy/m3—1)3.

The distribution agrees quite well with wave data taken in the North
Atlantic (Chakrabarti & Cooley 1977) and with other data from the Sea of
Japan (Goda 1978). Among the features predicted is that the total distri-
bution of wave heights is slightly non-Rayleigh, and that the interquartile
range of the conditional wave period distribution tends to zero as the wave
amplitude diminishes.

The analytic expressions are simpler than those derived previously, and
may be useful in handling real statistical data.

1. INTRODUCTION

In a previous contribution (Longuet-Higgins 1975; to be referred to as I) the author
proposed a theoretical expression for the joint distribution of the periods and
amplitudes of sea waves, which was based on a narrow-band approximation applied
to the well known linear theory of gaussian noise. While giving a fairly good fit to
wave data with a narrow spectrum such as those of Bretschneider (1959), the model
did not account for the asymmetry in the distribution of wave period 7 which is
commonly observed in wave spectra with a broader bandwidth (see, for example,
Goda 1978).

At about the same time, Cavanié et al. (1976) proposed a theoretical distribution,
also based on a narrow-band, gaussian model, which accounted very successfully
for the asymmetry in the distribution of 7. However it involved the use of the well
known spectral width parameter ¢ where €2 = 1 —m2/mym,, and m, denotes the
nth moment of the spectral density. For some practical purposes this parameter is
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242 M. S. Longuet-Higgins

inconvenient, since the fourth moment, m,, may depend rather critically on the
behaviour of the spectrum at high frequencies.

Some lengthy and perhaps accurate approximations to the distribution of wave-
length and amplitude in gaussian noise have been given by Lindgren (1972) and by
Lindgren & Rychlik (1982), but for their evaluation these require a great deal of
computation. Moreover, these expressions also involve high moments of the
spectrum.

The purpose of this note is to present an alternative theoretical distribution, also
based on narrow-band theory, which has the same merit as the Cavanié distribution
in being asymmetric in 7, but which depends only on the lower-order moments
Mgy, My, My, as in paper I. A measure of the spectral width is provided by the para-
meter v, where v2 = mymy/m} — 1. As we shall see, this also accounts well for the
observations, and in addition the theoretical expressions are somewhat simpler to
handle than those in Cananié’s distribution.

2. THEORY

As in paper I we begin with the representation of the sea surface elevation ¢ in

the form N
¢ =Re de', (2.1)

where A(t) is a complex-valued envelope function:
A = peld, (2.2)

with amplitude p and phase ¢ both real but slowly varying functions of the time ¢.
It is convenient to choose the carrier frequency @ so that

7 = my/m,, (2.3)

where m,, denotes the nth moment of the spectral density E(c):
m, = fw o"E(o)do. (2.4)
0

A spectral width parameter v can then be defined in terms of the variance of E(c)
about the mean:

VE = /T my, (2.5)
where fy = f * (-7 B(a) do. (2.6)
0
Clearly,
Ho = My, M =0, o = My —mi[my, (2.7)
and so V2 = mgmg/m}— 1. (2.8)

We shall adopt the narrow-band hypothesis, namely,
2 < 1. (2.9)
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In practice we assume that 2 < 0.36. This ensures (as we shall see) that the envelope
function varies slowly compared with the carrier wave exp(i¢) so that the wave
crests lie almost on the envelope § = p. Also, the rate of change of the total phase,

X = ¢+3t, that is, Y =¢+7 (2.10)

(where a dot denotes differentiation with respect to ¢) is almost equal to @. In other
words ¢ < @, in general. We shall assume further that ¢ < &, so that ¢ varies little
over a wave period (an assumption discussed below). Then the local wave period 7

can be approximated by T =2n/y% =2n/(T+). (2.11)
The wave amplitude p and the wave period 7 may be normalized by writing

R =p/2my)}, T =1/7, (2.12)
where we define T =2n/T = 2nmy/m,. (2.13)

Now it can be shown rigorously (see paper I, and earlier papers referred to
therein) that the joint probability density of p and ¢ is given by

PP B) = {02/ (2m i )} e be*lkot dia), (2.14)
We can now find the joint density of R and 7' from
P(B,T) = p(p, ) [0(p, $)/A(R, T)]. (2.15)
Applying the above formulae we obtain immediately
p(R,T) = (2/ntv) (R2/T?) e~ BO+A-UTEW [(p), (2.16)

where L(v) is a normalization factor introduced to take account of the fact that we
consider only positive values of 7"

% _ % f : f : g; e~ FALHA-1T2p8 R 4T (2.17)
On evaluating the integral (see the Appendix) we find,
1/L = §[1+ (1+v3)~H]. (2.18)
For small values of v this is close to unity:
L~ 1+h2 (2.19)

Some values of L are listed in table 1.

TABLE 1. PARAMETERS OF p(R, T')

mode
s A BEY
v L R T Dumax
0.1 1.0025 0.955 0.990 4.203
0.2 1.0098 981 .962 2.180
0.3 1.0215 .958 917 1.541
0.4 1.0371 928 .862 1.248
0.5 1.0557 .894 .800 1.096

0.6 1.0767 857 735 1.013
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Ficure la-f. Contours of p(R, T')/Py.. Where p(R, T') is the joint density of the normalized
wave amplitude R and normalized period T’ and p,,, is the density at the mode, see
(4.2); p/Pnax takes the values 0.99, 0.90, 0.70, 0.50, 0.30 and 0.10 respectively from

the centre contour outwards.
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3. DiscussIioN

Strictly speaking, (2.16) gives the probability density of R and 7' (the dimension-
less wave amplitude and period) at points uniformly distributed with regard to ¢.
To find the density of R and 7' at particular points, say, the maxima of {, we would
have to consider the joint density of ¢, ¢ and £ at least, as is done by Arhan et al.
(1976), or equivalently the joint distribution of p, g, p and ¢, ¢. But the variance of p
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is proportional to v? or u, (see Longuet-Higgins 1957) so that p is negligible, by our
assumption (2.9). This implies that p varies slowly compared with . Similarly, we
have assumed ¢ < &, that is, ¢ is also slowly varying. Hence the crests will occur
at almost regularly spaced intervals in time, and it matters not, in this approxi-
mation, whether the density is for values at the crests of the waves, or values
uniformly distributed with regard to ¢ as in (2.16).

In figure 1 we show contours of p(R, T') for a sequence of values of the parameter v.
The density clearly shows some asymmetry with regard to 7', in general. However,
in the limit as v — 0 if we write, as in paper I,

£ =p/m} = 21R, n=(T-1)/v, (3.1)
and assume |7'— 1| is of order v, then (2.16) reduces to
P&, 7m) = (2r)"FEe— 1A, (3.2)

asin I, equation (5). In other words, in the neighbourhood of 7' = 1 the distribution
becomes symmetric about the mean wave period, independently of R.
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It is pertinent to enquire whether the general expression (2.16) is any more
accurate, theoretically, than the expression (3.2) which is restricted to small values
of vand of |T' — 1]. One reason why this may be so is that in the derivation of (3.2) in
paper I, the ‘period’, 7, as defined by (2.11) of the present paper, was approximated
by 7(1— ¢ /&) (see paper I, equation (A 20)). In the present paper this approximation,
though formally legitimate, has not been made.

Another way of stating the situation is that though the distribution of the time
derivative y is exactly symmetric about its mean value 7, the distribution of the
reciprocal 2r/y is asymmetric. In other words, the distribution of apparent wave
‘frequencies’ is symmetric, but the distribution of wave periods is not.

In making the approximation (2.11) we assumed implicitly that (T + ¢) was
positive, for it is difficult to attach any meaning to a negative period. We therefore
agree to ignore the part of the density (2.16) for which ¢ < —c, or T' < 0.

4. PROPERTIES OF p(R, T

The position of the mode, or maximum value of p(R, T') is found from the condition
that 0p/OR and 0p /3T both vanish. Hence we find

R=1/1+2)} T =1/(1+12). (4.1)
The value of p(R,T) at this point is therefore
Dmax = (2L/nke) (1+412)/v = 0.415(v + v=1) L(»). (4.2)

The effect of broadening the spectrum is therefore to reduce the ‘most probable’
joint values of the wave period and amplitude, and also to reduce their probability
density (when v < 1),

Consider now the behaviour of p(R, T') near the origin. When R and T are both

small, we have p(R,T) ~ (2L /nbv) (B2/T?) e~ RHT2, (4.3)

that is, PR, T) ~ (2vL/nt) A2e, (4.4)

where A = R/vT. Hence the contours of p become tangent to the radii B/T = Av,
constant. The axes R = 0 and 7' = 0 both correspond to p = 0. The direction from
0 in which p is greatest is given by the maximum of (4.4), which corresponds to

2 —
A% = 1, hence R/T = v, P =p, = (2/nte)vL, (4.5)

(compare (4.2)). The contour p = p, actually has a cusp at the origin. When p < p,,
the contours p = constant all pass through the origin. On the other hand when
Po <P < Pmax> the contours enclose the mode once, but do not pass through the
origin.
From (4.2) and (4.5) it follows that

Po/Pmax = VE/(1+12), (4.6)
so that in figures 1 (a—c) no contours pass through the origin, and in figures 1 (d—f)
only the lowest contour: p = 0.1.
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5. THE DENSITY OF R

The density of the wave amplitude R by itselfis found on integrating p(R, T') with
respect to 7' over 0 < 7' < oo, that is,

_2L0) g e [P L geaymye
p(R) = = R%e fo 72® d7. (5.1)
Setting
R(1—1/T) = vB, (5.2)
2L Ry
we have p(R) = ERG—RZI e~ dp (5.3)
=2Re~F*L(v)F(R/v), (5.4)
1 Rfv
where FR/v) = n_%f e dp, (5.5)

a well known error function. Equation (5.4) states that the density of R is almost
Rayleigh, but must be corrected by the factor LF(R/v). For values of R that are of
order 1 or larger, the correction will be exponentially small. However when R is of
order v, that is, close to the origin, the correction becomes significant. Figure 2
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R
Ficure 2. The density of R (see (5.4)) when v = 0.2, 0.4 and 0.6 (full curves)
compared with the Rayleigh distribution (broken curve).

9 Vol. 389. A
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shows some examples. The effect of the correction factor is to reduce the number of
very low waves, and to shift the mode of the distribution, which otherwise is at
R = 2-%, somewhat to the right of this point.

TABLE 2. PARAMETERS OF p(R)

14 Rav Rfms (Rav - %1’[‘}) (ers - 1)
0.1 0.8832 1.0025 0.0020 0.0012
0.2 .8935 1.0095 .0072 .0047
0.3 .9006 1.0202 0144 .0100
0.4 .9087 1.0332 .0224 .0165
0.5 9167 1.0472 .0304 .0233
0.6 .9241 1.0611 .0378 .0301

The lower order moments of p(R), found by numerical integration, are shown in
table 2. From this it will be seen that the r.m.s. value of R differs only slightly from
unity. When v = 0.3, for example, the difference is only 1 9.

6. THE CONDITIONAL DISTRIBUTION OF WAVE PERIODS p(T/R)

The distribution of 7' at fixed values of the wave amplitude R is found on dividing
(R, T) by p(R); hence

p(T|R) = (ntv F(R/v))-1 (R/T?) e~ RA-UTEp2, (6.1)

To find the mode, or peak, of this function we set dp/8T = 0 to obtain
(1/T)(1/T —1) = v2/Re, (6.2)
and so T =2/[1+(1+ 412/ R?)3]. (6.3)

This curve is shown by the dashed lines in figure 1. It must clearly pass through the
mode (4.1) and where it intersects any countour p = constant, the tangent to that
contour is parallel to the axis of 7'. For small B we have 7' ~ R/v, so that the curve
touches the contour (4.5). On the other hand, for large R the curve is asymptotic to:
the vertical line 7' = 1. In general, the curve expresses very well the asymmetry in
the distribution of 7'.

Now the quartiles of p(7'/R) are given by

Qn
f p(T|R)dAT = in, n=1,23, (6.4)
0
. L[ _pin_
that is -Tt_;fﬂ e #dp = inF(R]v), (6.5)
where p=R1—-1/T)/v. (6.6)
So we have to solve numerically
F(B) = I F(R/y) (6.7)
for 8, and then
@, = 1/(1-pvR). (6.8)

These curves are illustrated in figure 3, in the case v = 0.3. Clearly all the quartiles
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F1GuRre 3. Curves showing the mode and quartiles of the conditional
density of wave periods when v = 0.3.

are now asymmetric, and pass through the origin. Moreover, the interquartile range
(@3 — @,), instead of being proportional to 1/R for all values of R, as in paper I, has
a maximum at around R = 0.22(§ = 0.31) and tends to 0 both as R — o0 and as

R—0.
7. THE ToTAL DENSITY p(7T)
The density of 7' regardless of R is found by integrating p(R,T') with respect to
Rover 0 < R < o0, to give
p(T) = (L/2vT?) [1+(1—1/T)2/v?] %, (7.1)
This is shown in figure 4 for some representative values of v. The median and
quartiles are found by the substitution

a=(1-1/T)/v, (7.2)
leading to
@ de
1 = =11
2Lf_w(1+a2)% Liord, (7.3)
hence a/(1+a®)t =n/2L-1, n=1,23. (7.4)
Solving for a we find,
a = (n/2L—1)/[1—(n/2L—1)2}}, (7.5)
and then Q,=T.=1/(1-va), n=123. 7.6)
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F1cUure 4. The density of the wave period T' (see (6.9)) when v = 0.2, 0.4 and 0.6.

Some representative values of @, are given in table 3. Also shown is the interquartile
range

IQR = @51 (7.7)
The mode of the distribution is also easily found and is given by
T = 2/[(9+8v2) —1]. (7.8)

Note that the mean of the distribution is theoretically infinite, since for large
values of 7' the density p(7") behaves like 7-2. This implies only that as 7' — co the

TABLE 3. PARAMETERS OF THE DISTRIBUTION OF PERIODS, p(T")

v N @ Q2 Qs IQR T
0.1 0.9934 0.9452 0.9998 1.0606 0.1154 0.9950
0.2 9742 .8953 .9981 1.1249 .2296 .9806
0.3 9444 .8488 9937 1.1891 .3403 9578
0.4 .9065 .8050 .9859 1.2492 4442 .9285
0.5 .8633 7636 9743 1.3020 .5384 .8944

0.6 8174 7243 .9589 1.3450 .6207 .8574
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integrated error becomes infinite. An alternative estimate of the mean does, how-
ever, exist. For we know the exact result that the average frequency of up-crossings

of the mean level is N = (2n)2 (1my/my)?. (7.9)
From the relations (2.3), (2.5) and (2.7), this can be written
N = (1+w)}5/2n. (7.10)
Hence
Tay = N71=7/(1+ %), (7.11)
and so Toy = Tay/T = (1 +12)71. (7.12)

These parameters are all shown in table 3.

8. COMPARISON WITH OBSERVATION

The measurement of the local wave height and period from a wave record is liable
to some ambiguities. For example, in figure 5, should the ‘period’ be taken as the
crest-to-crest interval 7, or the up-crossing interval 7,? Not all authors specify their
choice precisely. It may be that for the Cavanié distribution, depending on the
higher moment m,, the choice of 7, is more appropriate, whereas for the present
distribution, depending only on m,, it is more appropriate to choose 7,.

Q)

T2

FIGURE 5. Alternative measures of the local wave height and period.

Without knowing precisely the authors’ procedure we shall nevertheless compare
the theoretical model described in §§ 2—-6 with some previous observations.

Chakrabarti & Cooley (1977) measured 1624 waves from a North Atlantic storm,
over an interval of 3.5 days. The scatter diagram of their observations is shown in
figure 6, where the vertical scale is the wave height normalized by the ‘r.m.s. wave
height’ H,,; the horizontal scale is the wave period normalized by the ‘mean
period’ 7},,. To judge by the spread of wave periods (see figure 7 of their paper) an
appropriate value of v for these data was 0.30.

To make a comparison with p(R, T'), we replot the contours to a new vertical scale
R’ = R/R,,,, and a new horizontal scale 7" = T'/T,, where T, = (1+»?)~%. There
will be a new value of p,.,., namely p;.« = Rips Thy Prmax> DUt the relative values
of p, namely p'(R',T")/Pmax, Will be unchanged.
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This is done in figure 7, and it will be seen that the resemblance between figures 6
and 7is close, in particular as regards the shape of the distributions and the tendency
for plotted points to be drawn down towards the origin. However, the absolute
densities are not easy to determine from the scatter diagram.

3 6 3 7
ot - 2 M\
, A\
: k /A
i \\\\\
/ /AN
r r I
)
=
L LT L
0 3 0 1 2 3

Ficure 6. (From Chakrabarti & Cooley 1977.) A scatter diagram of normalized heights
against normalized wave period, for a storm in the North Atlantic.

Ficure 7. Contours of p’(£, T”)/Dmax When v = 0.3, for comparison with the data of figure 6.
The contour values are as in figure 1.

Figure 8 shows a histogram of the wave heights measured by Chakrabarti &
Cooley (1977). The horizontal scale has been normalized by the r.m.s. value of the
observations. In the same diagram, the full curve indicates the theoretical density

p(R/ers) = ersp(R)’ (8-1)

where p(R) is given by (5.4) and v = 0.30. The broken curve shows the Rayleigh
distribution corresponding to v = 0. It will be seen that the curve for v = 0.30 is a
slightly better fit to the observations when R is small, and near the peak of the
distribution.

In figure 9 we show a comparison of the interquartile range (Q;—@,), corre-
sponding to the theory of figure 3, and the data plotted by Chakrabarti & Cooley
(1977). At large values of £, the theoretical curve.is asymptotic to the hyperbola
given by the narrow-band theory: Q; — @, = 1.35 v/£, but at lower values of £ the
curve reaches a maximum and then returns to the origin. The plotted observations
follow the theory down to about { = 1, and then lie inside the curve. The discrepancy
between theory and observation is less than previously, but is still appreciable.

Goda (1978) has presented diagrams of the relative wave height H/H, against the
relative wave period 7'/T,,, as in figure 10, the data being classified according to the
value of a certain ‘skewness parameter’ r. Goda has found a fairly good correlation
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Ficure 8. Histogram of wave heights from Chakrabarti & Cooley (1977) normalized by the

r.m.s. value. The full curve represents p = R, ,p(R) (equation (5.4)) when v = 0.3.
The broken curve is the Rayleigh distribution: p = 2R e~F".

Ficure 9. The interquartile range of the wave periods, as a function of the normahzed wave
height £. Data are from Chakrabarti & Cooley (1977). The full curve represents the
difference (@, — @,) in figure 3. The dashed curve is the narrow-band asymptote.
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Ficurg 10. (From Goda 1978.) Scatter diagrams of H/H,, against T'/T,, for different ranges
of . The contours of p(z, t) take the values 1.0, 0.5, 0.1, 0.03 respectively from the centre
curve outwards. The parameter »(H, T') lies in the range (a) 0.20-0.39; (b) 0.40-0.59;
(c) 0.60-0.69; (d) 0.70-0.79.

between r and the parameter vy, (derived from the distribution of wave periods) which
corresponds roughly to v. In table 4 we indicate the average values of v chosen (from
Goda’s figure 10) to correspond to the stated ranges of r.

We note also that since Goda plotted H /H,, rather than £, the vertical scale of his
plots is different from that of Chakrabarti & Cooley (1977). Accordingly the scale
must be modified by the factor 1/R,,; see table 4. The horizontal scale has also to be
modified by the factor 1/7,,, which we assume is given by the formula 7,, = (1+»?)~%
derived from zero-crossings (see § 7). This factor also is shown in table 4. Finally the
theoretical value ” R.T (8.2)

pma\ av avpma)v
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TABLE 4. PARAMETERS FOR THE DATA OF GODA (1978)

r v R,
(@  0.20-0.39 0.29 0.8999
(%  0.40-0.59 0.38 9070
(¢)  0.60-0.69 0.50 9167
@) 0.70-0.79 0.58 9226
4
[ @
»=0.29
ot
3
4 ~
(c) y=0.50
3 -
R 2
1 N
2 ] 1
0 2 3

Ficure 11. Contours of R,,T.,

R//

Dlax
(_—'A—'ﬁ
T, theor. obs.
0.9604 1.34 1.37
.9348 1.06 1.14
.8944 0.85 1.05
.8650 0.76 0.96
4
(b)
v=0.38
3 -
2t
I 1
2 3
4~
(d] v=0.58
3 -
R// 2 L !
1+ '/'I \\‘
a I |
0 2 3
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T/

p(R, T) for values of v corresponding to figure 7. Contours
take values 1.0, 0.5, 0.1 in (a) and (b) and 0.5, 0.1 in (¢) and (d) from inner to outer.



256 M. S. Longuet-Higgins

where p,,, is given by (4.2) is shown in the next-to-last column of table 4, compared
with the maximum observed value, from Goda’s figure 10. The agreement is
reasonable, except that the theory is consistently lower. Most of the discrepancy
seems due to our choice of 7}, and it is possible that a value nearer to unity would be
more appropriate.

In figure 11 we show contours of R, T, p(R, T'), which may be compared with the
corresponding contoursin figure 10. We have not plotted any contours corresponding
top” = 0.03, since Goda’s data appear insufficient for him to trace the corresponding
curves with any accuracy.

The agreement between figures 10 and 11 seems reasonable. In particular the
position of the modes agrees fairly well, though in figure 10 there is an indication
that for the larger values of v the mode of the distribution splits into two, one
further from and one nearer to the origin.

Other authors, for example, Cavanié et al. (1976), have combined data for many
different spectra, which precludes any precise comparison with theory. However
Cavanié’s data, containing 28 240 waves with a mean value ¢ = 0.865 do appear to
resemble in a general way the contours of figures 1 (d—f).

9. CONCLUSION

We have derived an approximation to the joint distribution of wave periods and
amplitudes that gives a reasonably good fit to some typical data, and that depends
only on the low-order parameter v. Technically the approximation is correct only
to order v, but by not making certain approximations, legitimate to this order,
which were made in a previous paper I, the distribution is given an asymmetry with
respect to 7' in agreement with the observations. Undoubtedly there are further
corrections of order »% to be made if the distribution is to be entirely correct to this
order, but the observational evidence suggests that such corrections are small and
not very significant for practical applications.

In comparison with the analysis of Cavanié et al. (1976) the present model has
the advantage of comparative simplicity, and in depending only on v rather than on
the higher-order parameter €. This seems desirable, since for many spectra that
behave like 0% or o= at infinity (such as the Pierson—-Moskowitz spectrum) m,
becomes infinite, making ¢ = 1. Thus € becomes insensitive to other parts of the
spectrum. On the other hand, v, which depends only on m,, is less subject to this
difficulty. Rye & Svee (1976) have suggested that even v is unduly influenced by the
high-frequency cut-off but the examples given are for rather broad spectra. The most
satisfactory procedure may be to estimate v not from the spectrum E(o) but from
the measured distribution of wave periods, as is done by Longuet-Higgins (1975)
and Goda (1978). Indeed Goda finds that vy is highly correlated with certain other
parameters which shows that it is reasonably stable. Apparently the reason for the
success of this method of estimating v is that it reflects whatever subjective choices
are made by the observer when measuring 7 from the wave record, choices which
may amount to applying a subjective low-pass filter to the record.
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Finally, the parameter v has one clear advantage in being related theoretically to
other statistical properties of the record and in particular to the lengths of the wave
groups, (see, for example, Longuet-Higgins 1957, 1983).

This paper was written during a visit to the Department of Engineering Sciences
at the University of Florida, Gainesville, Florida. The author is indebted to Dr K.
Millsaps and his staff for their hospitality and assistance. Valuable comments on a
first draft have been given by Professor M. K. Ochi, Dr M. Y. Su, Dr O.S. Madsen
and Dr S.J. Hogan.

APPENDIX. EVALUATION OF L(»)
To carry out the integration in (2.17) set

(1-1/T)/v = a, (A1)

@

1 1Y  da
Then Z=§f—w———(1+a2)%

1 o 1/v
- 5[(1 +oc2>%]_w

1+ (1402 1] (A3)

1 9 [ [Py
— = = 2 o—R2(1+a?)
so that T ﬂ%fo f_ R?e dRdoe. (A 2)
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