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I t  is shown that an approximation to the initial stages of overturning in an 
irrotational gravity wave is given by the potential function 

x = $igBz$+ 2826, 

where g denotes acceleration due to gravity, 2 is a complex coordinate in the 
plane of motion, and A is a linear function of the time t. 

By adding to the above expression a third term, linear in z ,  an expression 
is obtained which can describe the development of sharp corners or cusps 
in the free surface. 

The sight of the sea surface overturning on itself, as when waves break in deep water 
or on a sloping beach, is familiar to most mathematicians. Yet surprisingly little 
progress has been made in finding an analytical description of the free surface 
profile and of the corresponding field of flow. Recently Longuet-Higgins & Cokelet 
( I  976,1978) demonstrated a purely numerical method of computation in short time- 
steps, a t  each step solving an integral equation. But to comprehend the results of 
such a computation or to handle them conveniently, the numerical calculation 
needs to be complemented by some exact or approximate analysis. 
d purely local solution describing how the free surface can develop a sharp 

curvature near the overturning tip of a wave crest was described in a companion 
paper (Longuet-Higgins 1980b). Here we propose to find simple expressions to 
describe the process whereby the whole body of fluid overturns. We are concerned, 
however, only with the upper part of the wave, not too far from the wave crest. 

I t  has sometimes been suggested (for example by Price (1971)) that a wave breaks 
only after attaining the limiting form described by Stokes (1880) in which the crest 
has a sharp corner of 120" (see figure I ) .  Thus Price proposed an approximate 
solution in which the 120" corner-flow was taken as an initial configuration. How- 
ever, observation suggests that, on the contrary, waves generally break without 
passing through the Stokes configuration, and that the 120" angle is a very special 
case, not generally attained. This conclusion is strengthened by the recent demon- 
stration that a limiting wave, with a 120" angle a t  the crest, actually has less energy 
than is possessed by lower, symmetric waves with rounded crests (see Longuet- 
Higgins & Fox 1978). Hence the limiting wave must be very difficult to attain 
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experimentally, for it cannot be built up by gradual shoaling or by normal pressure 
applied to the surface without the aid of some dissipative process. 

The Stokes 120' corner-flow is nevertheless of considerable interest for our 
investigation. Thus we shall obtain a tentative representation of the initial stage of 
overturning simply by adding to the Stokes expression some time-varying term 
representing aJinite perturbation of the 120' corner-flow. I n  our model the flow does 
not actually pass through the Stokes configuration. Indeed, the extent to which the 
corner-flow is by-passed is a measure of the total dimensions of the overturning. 

I n  any overturning flow, not only is the surface elevation multivalued but more 
fundamentally the velocity field (extended analytically beyond the free surface) is 
a multivalued function of the position coordinate. This is dramatically realized 
when the tip of a 'plunging ' breaker first comes into violent contact with the smooth 
forward face of the wave. The analytic description of such a multivalued velocity 
field must involve (at the very least) a branch point in the complex potential. The 
simplest such branch point is of order 4, that is to say i t  involves a square root. 

Now the Stokes corner-flow already involves a branch point of order $. If we 
assume that the branch-point of order 4 coincides with that of order + we are led 
immediately to the simple expression for the velocity potential x which is given in 
equation (2.5) below. A discussion of the corresponding field of flow is described in 8 2. 
I n  $ 5  3 and 4 we show that the boundary conditions may be satisfied asymptotically 
a t  infinity by taking the quantity A in equation (2.5) to be a linear function of the 
time t .  Then the solution contains two arbitrary constants which may be chosen 
( S  5) so as to obtain the best fit of the boundary conditions over the finite part of the 
wave. The resulting surface profiles are shown in figures 5 a  and 6 .  

I n  the second half of the paper we show that an improved family of solutions can 
be derived by adding to the potential function x a term that is linear in z, representing 
a uniform upwards velocity. Moreover i t  is then possible to  obtain solutions that  
develop a sharp-pointed cusp at the tip of the wave, as seen in figure 12. 

2. DESCRIPTIONO F  T H E  F L O W  

For simplicity we shall assume the flow to be two-dimensional, incompressible, 
inviscid and irrotational. In  general the velocity potential x is then an analytical 
function of the complex coordinate z = x +  iy (where x and y are rectangular 
coordinates in the plane of motion), and also of the time t .  It is convenient to take 
the real axis of z (i.e. the x-axis) pointing vertically downwards. 

Consider a wave crest that is being propagated horizontally to the right. Let us 
take a reference frame moving to the right with a uniform velocity equal to the 
phase-speed (suitably defined). Then the flow at  some distance below the wavecrest 
will appear to be backwards, i.e. to the left. 

Figure 1 is a representation of Stokes's corner-flow, in which 
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FIGURE1. Streamlines in Stokes' 120' corner-flow. The fluid 
occupies the region -60' < 0 < 60'. 

where g denotes acceleration due to gravity. The free surface consists of the two 
planes 

argz = k in. (2.2) 

The lower streamlines are in the water. The upper streamlines represent an analytic 
extension of the flow into the 'air' above. Because of the branch-point a t  z = 0we 
have to assume a cut in the z-plane. In  this instance we have taken the cut to  lie 
along the line arg z = in. 

Now in an overturning wave the streamlines are not altogether as in figure 1,but 
curl back over to the right, as in figure 2. This diagram represents the streamlines of 
the potential 

x = 2A.24, (2.3) 
where A is a complex constant: 

A = -ae-ic. (2.4) 

The streamlines are parabolae with foci at z = 0, and with axes along the line 
arg z = 2 ~ .In  figure 2 we have taken E = 30°, so t,he axes happen to lie along the line 
arg z = 60" which is part of the free surface in figure I .  
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FIGURE2. Streamlines of the flow x = e8inz3. 

Now let us combine the two flows (2.1) and (2.3) by writing 

x = $izB+2Az*. (2.5) 

(For convenience we choose units in which g = 1.)The streamlines are shown in 
figure 3b. It will be seen that for large values of lzl when (2.5) is dominated by the 
term in z*, the flow is asymptotically like the Stokes corner-flow. On the other hand 
for small values of 121, the term in z i  dominates, and the flow resembles the parabolic 
flow of figure 2. 

In  general the stagnation point z = Sis given by 

Hence 

so the vector is inclined a t  an angle e to the horizontal (negative y axis). 
Another example of the streamlines corresponding to (2.5) is illustrated in 

figure 3a. This corresponds to e = 0. We shall show later that i t  is necessary to add 
to the expression (2.6) for x a third term representing a uniform upwards flow. 
Nevertheless i t  will be useful to discuss first the simpler form (2.6). 
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FIGURE = 0'.
3 (a).Streamlines of the flow given by equation (2.5) when E 

The flow being time-dependent, the free surface is not in general a streamline, but 
instead may be specified by the two conditions 

where p denotes the pressure and D/Dt denotes the rate of change following a 
particle. 
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FIGURE3 ( 6 ) .Streamlines of the flow given by equation (2.5) when s = 30". 

It is convenient to write - 2p = P and -2DplDt = Q .  General expressions for 
P and Q were derived in Longuet-Higgins (1g8oa),namely 

and 

where F is some function of the time t only, and C.C. denotes the conjugate complex 
of all preceding terms. 
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I n  these expressions let us now substitute 

where 

and A is a function of the time, to be determined. We have then 

the terms being ordered in descending powers of Iwl. Also from (3.2) 

(33 -2w2w* + 2w0*2 -w * ~  2i(A*w2- A w * ~ )  
Q = l i  + A*o*) + w* -+ ~ ( A W  2 P2 ww* 

+ (A -A*) (w -w*) A*w5+ A w * ~  ~ ( A A *  +A*A) 

ww* 2w30*~ ow*
+ 

The general problem, as formulated in Longuet-Higgins (1g8oa),is to determine the 
functions A and F so that both P and Q shall vanish on the same surface (the free 
surface). Although this may not be possible over the entire ranges of w and t, we 
shall show that over significant ranges of w and t this can be achieved quite closely. 

4. C O N D I T I O N SA S  w -+a 


If A vanished for all t, then from equations (3.6) and (3.7) we should have 


1 w-w*
Q=-- P

2i ww* 

precisely, so that the vanishing of P implies also the vanishing of Q. From (3.5) the 
free surface P = 0 is then given by 

w2 -ww* + w*2 = 0. (4.2) 

This represents the pair of straight lines arg (o/w*) = + in ,  that is argx = + in,  
as in figure 1. 

When A is not zero, but w is large, we can still ensure that Q vanishes on the same 
surface as P asymptotically, by making 

1 w-w* +-)h 
p,2i ww* wo* 
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to order I as w -+ CQ, where h is a real constant to be determined. Substituting for P 
and Q from (3.6) and (3.7) ,  and considering only the terms of order w and 1, we see 
that 

and 

whence 

-2iA = iA*-h j 
and 

-2P = i(A -A*) +A. 
From (4.6) we have 

A + A *  = 0, 

so that A is pure imaginary, and also 

h = iA. 
Then from (4.7) 

A = + i ~ .  
Equation (4.4) also implies that 

A = constant, A = A, +At, 
and from (4.10) 

F = Fo+Pt ,  

where A, and F, denote the values of A and Fwhen t = 0. The constants A,, F, and P 
are a t  our disposal, A being related to &' by equation (4.10). 

If A # 0 we may choose the origin of time t so that t = 0 corresponds to the 
instant when A is real. I n  other words we may choose A, to be real. Assuming A, to 
be negative, we may choose units so that 

FIGURE4. LOCUSof the point A ( t ) :(a )when U = V = 0; 
(b) when U < 0, V > 0. 
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as in figure 4. We see then that the expression (2.5), if it is to satisfy the boundary 
condition as w -t co, has essentially two degrees of freedom, controlled by the two 
real parameters Foand F. 

It would be possible to obtain further relations for determining F, and 3 by 
considering lower-order terms in equation (4.3) but such relations would not 
necessarily improve the fit of the boundary conditions except a t  large w .  Instead we 
may choose Foand F so as to optimize the fit of the boundary conditions over the 
Jinitepart of the boundary, in the following way. 

To determine the two independent parameters F, and P we may agree to satisfy 
the boundary condition Dp/Dt = 0 a t  a finite number of points (generally not more 
than two) on the free surface p = 0. Alternatively, for any given values of Foand # 
we may calculate 

along the free surface p = 0, and then adjust F, and F so as to make R a minimum. 
The latter course has the advantage that the boundary condition is, so to speak, 
distributed over the range -co < y < co, rather than being concentrated a t  one or 
two discrete points in the free surface. 

Adopting the second method, we find for the values of Foand F the following: 

The corresponding free surface, a t  t = 0, is shown in figure 5a. A comparison with 
the streamlines for s = 0, which are shown in figure 3a, shows that the free surface 
does indeed intersect the streamlines a t  a non-zero angle. 

To find the form of the free surface a t  earlier times t < 0 we may proceed back- 
wards, by writing 

and taking t = -1, -2, ... , say. (Note that 2 ,  not F, remains constant.) The 
resulting profiles are shown in figure 5a for t = 0, -2, -4, ..., - 10. As time 
regresses, the profiles become increasingly rounded. Indeed a t  t = - 10 there is 
little sign of the overturning to follow, apart from a slight asymmetry in the surface 
profile. 

On the other hand as t increases from 0 the profiles rapidly become steeper, as 
shown in figure 5b. The profiles are quite similar to those calculated numerically by 
Longuet-Higgins & Cokelet (1978, figure 21). 
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FIGURE5. The form of the free surface thftt minimizes S ( D P / D t ) 2 d sat time t = 0, for 
U = V = 0, A, = - 1; F,  = -0.176, F = 0.124. (a) Successive profiles of the free 
surface a t  previous times: t = - LO, -8, . . . , 0. (b)  Successive profiles of the free surface 
a t  subsequent times: t = 0, 1, .. . ,5. 
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The solution is nevertheless valid only for a limited range of the time t .  I n  the 
second half of this paper we shall show that, by adding to (2.5) a further term, linear 
in 2, i t  is possible to obtain solutions in which the surface inclination exceeds 90°, 
and the free surface develops a sharp corner or cusp. 

6. A M O R E  G E N E R A L  M O D E L  

Now let us adopt the more general expression 

where U is a constant and A = A(t) as before. On substituting this expression in 
equation (3.2) we find 

+ i(A*w2- Aw*')/ww* +( UU* -2F) 

Likewise if we substitute in equation (3.3) and retain only the terms of highest 
order in Iwl we obtain 

+[( U+ 2iA*)w2- ( U+ U*+2P) ww* +( U*-2iA) ~ * ~ ] / w w *  

If we now assume the relation (4.3), then on equating coefficients of the terms of 
highest order on each side we find 

A ' = o = A ' *  (6.4) 
as before, but now 

( U + ~ ~ A * ) + A - $ ( U * - ~ ~ A )= 0,  

(U*-2 iA)+h-+(~+2iA*)  = 0, (6.5) 

- ( U +  U * + ~ P ) - A + + ( U * - ~ ~ A ) + ~ ( U + ~ ~ A * )= 0. 

On eliminating h from these expressions we have 

and 

Hence 

which generalizes equation (4.10). 
Let us write 

U = U+iV, 
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where U and V are real. Then equation (6.8) becomes 

A = $i(P+&U)-8V. 
Conversely 

B = - t ~ - $ i ( V + z A ) .  

The form of the free surface is obtained by writing P = 0 in (6.2). Since from 
(4.11) and (6.11) we have 

A = (Ao-+Vt) +#i(P+$U)t  (6.12) 
we obtain 

w2- ww* + = +i(P+ U) (w -w*) 

Now, introducing polar coordinates by writing 

z = eie, w = r4 e4'8, 

we find, to  order r-l, 

On the forward face of the wave set 

where 6 is of order r-*. Thus by expanding each side of (6.15) in powers of r-4 and by 
successive approximation we easily obtain 

Similarly on the rear face of the wave if we set 6 = -(in+6) we find 

Consider now the implication of these expressions. In  (6.17), the quantity r6 
represents approximately the normal displacement of the free surface above the 
straight line 6 = in.For large values of r, the leading term in (6.17) represents a 
parabola which is concave or convex upwards according to the sign of F+ U .  For 
a concave forward face (and convex rear face) we need to have 



On the overturning of gravity waves 389 

The second term on the right of (6.17) or (6.18) represents an upward displacement 
which is independent of r but increases linearly with the time. We require that as 
t -+ -co, so the normal displacement shall be negative, at  lea,st when r -+ co. This 
implies that the coefficient oft  in (6.17) or (6.18) shall be positive, that is 

In  the simplest case U = V = 0 discussed in $ $ 4and 5 the two conditions (6.19) and 
(6.20) are clearly mutually contradictory. In the next-simplest case when V = 0, 
U # 0, the conditions (6.19) and (6.20) imply that 

Hence U < 0, in other words the imposed uniform velocity must be upwards. 
A physical interpretation is as follows (see figure 6). On the forward face of the 

wave the upward uniform velocity combines with the upward component of flow 
in the Stokes corner-flow (seen in the present frame of reference) to produce a larger 
value of the absolute velocity, compared with the velocity a t  an equal distance on 
the left, where the velocity in the Stokes corner-flow has a downward component. 
Now from Bernoulli's equation 

it follows that, a t  two comparable positions 1 and 2 on the right and left respectively, 

since a t  large distances $, is of order r d only and so relatively small. The right-hand 
side of (6.23) is seen to be positive, showing that the displacement of the free surface 
face is downwards on the forward face but upwards on the rear face. The whole wave 
therefore tends to tilt clockwise. 

t 
X 

FIGURE6. A phxsical interpretation of the role of the upwards 
vertical velocity ( U  < 0)in equation (6.1). 
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FIGURE7 (a). Successive positions of the free surface corresponding to equation (6 .1)  
with U = - 1, V = 0.5. A,,Poand I" are-chosen so as to minimize s ( D ~ / D t ) ~ d s  a t  
time t = 0 : A, = - 1.702, Po = -2.492, P = 0.403. 

For given values of U and V we may choose the three variables A,, F, and F so as 
to  minimize JQ2ds taken along some central part of the free surface (say- 10 
< Y < 10). In  the typical case U = - 1, V = 0.5 we find the optimum values 

The corresponding r.m.s. value of Dp/Dt is 0.281. 
Successive profiles of the free surface are shown in figure 7. For a quantitative 

comparison with the profiles calculated numerically by Longuet-Higgins & Cokelet 
(1978), we may consider the time-history of the maximum surface slope a,,,, 
shown by the broken curve in figure 8. This suggests that da,,,/dt reaches a 
maximum when a,,, is about 60°, or t = 6. The solid curve in figure 8 corresponds 
to the profiles from figure 21 of Longuet-Higgins & Cokelet (1978). I n  these calcu- 
lations, da,,,/dt clearly continues to increase steeply beyond a,,,, = 60". Moreover 
the corresponding time-scales in figure 8 are in the ratio 7 FS 8.8. The length-scales, 
on the other hand, are in the ratio 2 ,- 17.6, so that 7/14 is about 2.1 instead of unity 
as we might expect (g is taken as unity in both cases). 
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FIGURE7 (b).  AS figure 7 a , but viewed in a frame of reference travelling 
with velocity ( -0.6, - 1.7). 

The cause of the discrepancy can be traced to the fact that as t increases DpIDt, 
instead of remaining small, becomes of order unity near the wave crest. In  general 
the crest appears less sharp-pointed than in observations. 

SHARP C O R N E R S  A T  THE F R E E  S U R F A C E  

I n  this section we shall enquire whether the form of the velocity potential pro- 
posed in equation (6.1) can lead to  the formation of a sharp corner a t  the interface, 
and possibly even to  a cusp. 

As shown in Longuet-Higgins (1g8oa,paper I ) ,  the simplest type of sharp corner 
corresponds to  a saddle-point in the pressure field. The general condition for a 
saddle-point, in terms of the velocity potential ~ ( z ,  t ) ,was shown in $ 6  of paper I 
to  be 

x z z  xz +xzt = 1 (7.1) 
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t' 

t 
FIGURE of the free surface as a function of the time t.8. The maximum inclination a,,, 

-, From numerical computation (Longuet-Higgins & Cokelet 1978) ; upper time-scale. 
- - -, From analytic model (figure 7); lower time-scale. 

(g being taken as unity). On substitution for x from (6.1) this gives 

where w = z j  as before. Hence 

A = U-&w*(l+iB)(l+iB*)+J(B-i)U*, (7.3) 
where 

B = A / w ~= A l z .  (7.4) 

Now, if we satisfy the free surface conditions a t  co,then by $ 6  

On substituting for A from (7.3) and simplifying we obtain 

(W + w*) (1 + BB*) + [i(w-w * )  + U ]( B+ B*)- iV(B-B*) = 0. (7.6) 
Then writing z = r eiB as before, so tha t  

we find tha t  equation (7.6) becomes 

(a/r)2-2P(a/r) + 1 = 0, (7.8) 
where 

p = ( - tan  S O +  JUr-4sec SO) cos ( O + B )  -JVr-fsec 4esin ( 8 + c ) .  (7.9) 
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Equation (7.8) has two positive real roots 

provided that 

When /I = 1, the two roots are coincident. Given r and 8 (but not a or E )  a necessary 
and sufficient condition for (7.1 1) to be satisfied is that 

(tan $8 -Ur-t sec 48)2 + (iVr-1 sec $8)2 2 1, (7.12) 
On writing 

r* cos $3 = 5,\ 
rtsin 10= 7,) 

this becomes 
4" (7-$ U)2 < 4V2, 

a region whose boundary is a hyperbola in the (c, ?)-plane. We recover the per- 
missible region in the x-plane by noting that 

z = x+iy = (5+i7)2+2ic7. (7.15) 

The region is sketched in figure 9 in the typical case V = 0.5. When V = 0 the 
boundary consists of two intersecting parabolas. 

To find the angle y contained between the tangents to the free iurface a t  the sharp 
corner itself we may make use of the formula 

which was proved in Longuet-Higgins (1980~).On substituting from equation (6.1) 
of the present paper and making use of (7.3) we find 

cosy = rt/l+iBl2/[21~-BU*+iB(l+iB*)w*I]. (7.17) 

The condition for a cusp is that y = 0 and so 

cosy = 1. (7.18) 

For given values of U and V, one further condition may be imposed on the 
solution. It is natural to specify that Dp/Dt = 0 at  the sharp corner itself. Now in 
general we have 

D P I D ~E Pt + XZPZ  + X Z P Z .  (7.19) 

At the sharp corner, pa also vanishes; hence 

From the general expression (3.2) for the pressure i t  follows that we must have 
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FIGURE9. Sketch of region in the z-plane allowing real solutions of 
equation (7.8). Shaded areas indicate no solution. 

Further, since in our model A = 0, we have x,, - 0. Thus (7.21) becomes 

where F is given in terms of A by equation (6.11). 
Altogether, equations (7.10), (7.18) and (7.22) provide three conditions for 

determining a l r ,  6' and s, given U and V. 
To determine the nature of the solution i t  is convenient to start with the case when 

U = V = 0 (see the appendix) or equivalently when r -+ but r/a remains finite. 
Then the boundary (7.14) of the permissible zone of solutions to the first condition 
collapses onto the (horizontal) y-axis. Solutions may occupy the upper half-plane 
x < 0, but differ radically in the left-hand and right-hand quadrants (see figure 10). 
Solutions with values of y less than 60°, including the cusps, for which y = 0, are 
confined to the left-hand quadrant ( - 180" > 6' > -90"). On the right the only 
corner-angles are much blunter. The loci corresponding to equation (7.22) reduce to 
two arcs, shown by dotted lines in figure 10. The cusp-locus y = 0 intersects these in 
two points, each a possible position of a sharp crest. 

To obtain solutions for finite values of r = r, i t  is convenient to take units so that 
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FIGURE11. Loci of possible sharp corners a t  the free surface when U = -1. Solid 
curves show admissible solutions. Broken curve shows inadmissible solutions. 

and to seek first solutions at  large but finite values of r in the neighbourhoods of the 
two limiting solutions in figure 10. This was done, by starting with r = lo6 and 
solving (7.18) and (7.22) by iteration. The value of r was then gradually reduced, 
each solution being used as a starting point for the next. 

Of the solutions obtained in this way, those starting from the inner of the two 
solution points in figure 10 corresponded to high values of p and were therefore 
unsuitable, by the criterion (6.19). Solutions starting from the outer point in 
figure 10 corresponded to smaller values of p. Some loci of possible cusps are shown 
in figure 11. The corresponding values of 

are generally not positive, as is required by equation (6.20). Nevertheless they can 
be made small enough to be acceptable. 

An example is shown in figure 12, where we have f = -0.039, which is sufficiently 
small that the slight rise in level as t -+ -oofor large r may be accepted. The shape of 
the forward face, while concave as r -t co,is slightly convex a t  smaller values of r. 
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FIGURE12. A time-sequence of surface profiles culminating in a cusp. 

U = - 1, V = 0, r, = 6.0. 


We have argued that, the flow in a breaking wave being multivalued, we must 
expect a t  least a branch-point in the velocity-potential X. The simplest possible 
branch-point is of order 4,and we have shown that the three-term expression (6.1) 
is capable of describing, a t  least qualitatively, the most obvious features of plunging 
breakers, namely the overturning of the forward face and the apparent forming of 
a cusp a t  the tip. 

It should be emphasized that the solutions are valid only approximately, and over 
a limited range of the time t. At the later stages of the flow it  will be necessary to 
match the solution near the tip of the wave to  a locally valid solution such as was 
described in Longuet-Higgins (1g8ob).The reason for our interest in the cusp-like 
solutions of 5 7 is that these particular forms, with a small crest-angle, are most likely 
to be suitable for matching to the local flow. 

Likewise, the earlier stages of the flow, when t is large and negative, must be 
matched to the flow in the rest of the wave, in a manner similar to that used for the 
almost-highest wave by Longuet-Higgins & Fox (1978), but the time-dependence 
also being included. 
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Thus we see the present solutions as essentially intermediate, in both space and 
time, between expressions describing the wave as a whole, which must take account 
of boundary conditions such as finite or decreasing depth of water, and the ultimate 
stage of breaking described locally as a jet or sharp corner. 

The expression (6.1) may possibly be the first three terms of an asymptotically 
convergent series of decreasing powers of x i .  Further terms in the series could 
perhaps be determined in the same way in which we have determined A(t ) .However, 
different forms would be required for non-progressive waves. For example, in a 
standing wave, with a vertical plane of symmetry, we should require a solution with 
a t  least two singularities, situated symmetrically on either side of the plane, or 
reflecting wall. 

Naturally, any of the foregoing profiles may be viewed in a frame of reference 
moving with an arbitrary steady velocity U', so that the branch-point appears to 
move in the opposite direction with speed - U'. Moreover we can obtain new 
solutions relative to axes with any acceleration a ,  on replacing the gravitational 
acceleration gby g' = g-a and referring the new solutions to axes pointing in the 
direction of g'. 

The following analysis provides starting values for obtaining solutions in the 
more general case. 

When U = 0, equation (7.9) reduces to 

Since p has to satisfy (7.1 I) ,  there is a critical point where 

(hence a/r = 1). Equations (A 1) and (A 2) lead immediately to 

and 

The loci of z/a = (r la)  ei* are shown in figure 10. The critical point is designated by 
P.We show the quadrants -90" > 0 > - 180" and - 180" > 0 > -270°, the others 
being obtained by reflection in the origin. 

In  figure 10 the contoursof y are obtained from (7.17) by writing U = 0. However, 
the loci for DpIDt = 0, obtained from (7.22), simplify very considerably in this 
instance. For, since from 5 6 A* = - A  and F = - j i ~ ,equation (7.22) implies that 
either 

A = 0 (A 5) 
or 

w-I(- iw* +A*/w*) - ji  -c.c. = 0. (A 6) 
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Consider the first alternative (A 5). In  that case X, = 0 and the motion must be 
steady (clearly an approximation). However, assuming this is so, we have from 

(7.1) that 
x e z x t  = 1;  

hence 
@/o- A/@ ( - io*+A*/w*) = 1, 

that is 
( i-B)(-i+B*) = 2ei0. 

The real part gives 
1-BB* = 2 cos 8. 

But from (7.4) we have BB* = a2/r2. Combining this with (A 10) gives 

r/a = (1-2 cos8)-h. (A 11) 

This is the locus shown by the outer dotted lines in figure 9. 
The second alternative (A 6) gives 

i(02-3ww*+w * ~ )+ (A -A*) = 0, 
that is 

r (2cos8-3)+2asin~= 0. 
Therefore 

r/a = 2 sin s/(3 -2 cos 8). 

This locus is represented in figure 9 by the two dotted arcs closest to the origin in 
each quadrant. 

When the free surface corresponding to the above values is plotted as a function of 
time, however, it is found that the profiles have unphysical features; either they are 
strongly convex on their forward face, or else the limiting profiles with sharp corners 
are approached from the outside, as t increases, and not from the inside as desired. 
We have shown in $ 7  that this difficulty is overcome by taking non-zero values 
of U and V. 

This paper was begun in Cambridge and completed during a visit by the author 
to  the Je t  Propulsion Laboratory of the California Institute of Technology, 
Pasadena, between November 1979 and February 1980. For the hospitality and 
assistance given him there, he is much indebted to Dr 0.H. Shemdin and Professor 
P . A. Saffman, and members of the Division of Earth and Space Sciences headed 
by Dr M. T. Chahine. 
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