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A technique for time-dependent free-surface flows 
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I n  this paper we present a reformulation of the problem of time-dependent 
irrotational free-surface flows under gravity. Compact expressions are 
derived for the pressurep and its rate of change DpjDt following a particle. 
Some exact but special solutions are discussed, and a method of approach 
for the general case is proposed. 

Over 130 years after the formulation by Stokes (1845) of the general equations for 
inviscid irrotational flow, it is remarkable that few if any exact solutions to the 
problem of time-dependent free-surface flows under gravity are known. Most known 
solutions refer to flows that are steady, or, like progressive waves, are easily re- 
ducible to steady flows by an appropriate choice of the frame of reference. Among 
the time-dependent gravitational flows that have been considered are those for 
shallow-water waves and standing waves, but these all appear to involve expansions 
in powers of some small parameter, such as surface slope, and hence must be con- 
sidered as approximations a t  best. 

Other time-dependent solutions, such as the Dirichlet parabola (John 1g53), 
ellipse (Taylor 1960) and hyperbola (Longuet-Higgins 1972) are exact but do not 
contain gravity in an essential way. 

An interesting method for obtaining solutions to time-dependent free-surface 
flows was indeed suggested by John (1953), who in this way derived some special 
flows (see also Longuet-Higgins 1976). However, the method cannot be general, 
for it assumes a Lagrangian coordinate w which is an analytic function of the velocity 
potential. This would not include, for instance, a progressive irrotational wave 
with plane bottom, in which the mass-transport velocity induces a strong vertical 
gradient of the mean displacement. 

The present situation is highlighted by the absence of any satisfactory analytic 
solution to the problem of an overturning wave, although the possibility of accurate 
numerical calcujation has been demonst'rated by Longuet-Higgins & Cokelet (1976, 

1978). 
I n  our quest for a general method, we may be guided by the following considera- 
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tions. For free-surface flows there are two boundary conditions. One of these, the 
kinematic condition, states that a particle in the free surface must move with the 
surface. This is most easily expressed in terms of Lagrangian coordinates. However, 
in the Lagrangian analysis the equations of continuity and of irrotationality for the 
interior of the fluid are both highly nonlinear and difficult to handle, whereas in 
the Eulerian description both conditions are automatically ensured by the assump- 
tion of a velocity potential q5 satisfying V2# = 0, or equivalently the assumption 
that  

x =  #+i$ (1.1) 

is an analytic function of the space coordinate z. This overwhelming advantage of 
the Eulerian description suggests strongly that i t  be incorporated in our attack on 
the problem. 

The second essential boundary condition for free-surface flows is the condition 
that  the pressure a t  the free surface be constant (say zero). Now the pressure, for 
a time-dependent irrotational motion, is expressed quite simply in terms of the 
complex potential ~ ( x ,  t )  by the Bernoulli equation, so that the equation of the 
free surface can be expressed very simply in Eulerian coordinates as p = 0. 

Returning to the first condition, it is important to realize that the free surface, 
in unsteady flow, is not a streamline. (Indeed the trajectories of particles throughout 
the fluid are not streamlines, but only tangent to the streamlines instantaneously.) 
We may however express the kinematic boundary condition by saying that for a 
particle in the free surface Dp/Dt = 0, that is to say the rate of change of the 
pressure following a particle must vanish. This also can be expressed in Eulerian 
coordinates. However until the present investigation (described in § 2) i t  was 
possibly not realized how compact this boundary condition becomes when ex- 
pressed in terms of the complex coordinate z. 

Thus the problem, as formulated in the present paper, reduces to  ensuring that 
the two surfaces p = 0 and Dp/Dt = 0 are coincident. 

As we shall see later, this formulation, together with the fact that calculations 
in complex coordinates are very easily performed on a modern computer, places 
in our hands a powerful tool-for investigating time-dependent free-surface flows. 

2. 2 A N D  t A S  I N D E P E N D E N T  V A R I A B L E S  

Throughout this paper we assume the flow to be two-dimensional and work in 
tJerms of the complex variables 

where x and y are rectangular coordinates, x being directed vertically downwards. 
The flow being irrotational and incompressible there exists a complex velocity 
pot,ent,ia1 

,1, = $ + i @  (2.2) 
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which is an analytic function of z and a smooth function of the time t, such that the 
particle velocity u + iv = W* is given by 

Here a suffix denotes partial differentiation, and an asterisk denotes the complex 
conjugate. The pressure p is then given by the Bernoulli equation in the form 

where g denotes gravity and f is a function o f t  only. 
To find an expression for Dp/Dt, where DIDt denotes differentiation following a 

narticle. we have first 

Now if F(z,  z*) is any differentiable function of both z and z* we have 

= (4+Fz*) ,  F u = i ( q - F c * ) .  (2.6) 
Also 

u = t ( x z + x z * ) ,  v=Bi(x,-x,*). (2.7) 
Therefore in general 

DP/Dt = Ft+ (x,"3'+xzFz*). (2.8) 
Writing 

F = = ( x ~ + x ~ * ) + x ~ x ~ * - ~ ( z + ~ * ) - ~ ~ ,-21, (2.9) 
we find 

-~ ~ P I D Q  2*ft= (xtt+xtt*)+ (xztxz*+xzt*xz)-

+xz(xzt*+xzz*x z  -9) (2.10) 
and so 

DPIDQ= (xtt+ 2W*xzt+ W*2~zz)  (2.11)Re [ g W* - +ftl,
where 

W* = xz* = Dz/Dt. (2.12) 

The remarkably compact. expression (2.11) seems not to have been recognized 
previously. 

For steady flows or for motions such as progressive waves when referred to the 
appropriate coordinates, equation (2.11) reduces to 

The first term on the right represents the pressure change due to vertical motion 
in the hydrostatic pressure field. The second term, involving x,,, represents the 
effect of the curvature of the streamlines. 
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3. X A N D  t A S  I N D E P E N D E N T  V A R I A B L E S  

For some problems (for example in waves of finite amplitude) i t  may be more 
convenient to take x and t as independent variables, and to express the space co- 
ordinate z in terms of them. For steady waves (no time dependence) this method 
was suggested by Stokes (1880). 

To find the corresponding expressions in the new variables, we have for example, 
by the method, of differentials, 

dz = z,dx+zt dt, 

dx = xzdz+xtdt. 

On eliminating d~ from these equations and then equating coefficients of the inde- 
pendent increments dz and dt we obtain 

Hence 

The expression (2.4)for the pressure then becomes 

To obtain the corresponding expression for Dp/Dt, we note that if F(z, t) is any 
differentiable function which on substitution z = z ( ~ )becomes equal to G(x,t) 
then, by the same argument, 

Fzl = G,/z,
and 


Ft = Gt+xtGx, 


so on substituting for xt from (3.4) we have 

By repeated application of the results (3.6) and (3.8) we obtain 

Finally on substitution in (2.1 1) we find, after some rearrangement, 

where 
H = W{W*-zt). 
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Since from (2.8) the rate of change of x following a particle is 

Dx/Dt = xt+xz*xz= -Wzt+ WW* (3.12) 

(from (3.3) and (3.4)) i t  follows also that 

H = Dx/Dt, (3.13) 

showing the analogy between (2.11) and (3.10). However, since W ( = X, = l/z,) is 
linear in X, H is clearly not linear in z, showing that (2.1 1) is generally the simpler 
expression of the two. 

I n  steady flows equation (3.10) reduces to  

The term due to curvature of the streamlines can also be written as 

where q denotes the particle speed. I n  progressive gravity waves this term must 
exactly balwce the hydrostatic term at  the free surface itself. 

4. X AND 2 BOTH FUNCTIONS OF W 

The analysis of the two previous sections may be included in the general case 
when x and z are each functions of a third complex variable w, and of the time t, 
that is 

X = X(w, t), z = Z(w, t). (4.1) 

Thus $$2 and 3 correspond to the cases Z = w and X E o respectively. The form 
(4.1)also includes as a special case the formalism of John ( I953) but is more general, 
since John assumed that w was a constant following a particle, and moreover that 
w was real a t  the free surface. This restricted the solution of flows of a special class. -
When we adopt the assumption (4.1), the equation of the free surface is given by a 
more general (but real) function of w and o*. 

Expressions for p and Dp/Dt can be derived by an argument similar to that of 
$3. Thus we easily find 

Xz = X,/Z, = W(w, t) (4.2)
say, and 

Xt = Xt-WZ, (4.3) 
leading to 

-2p = QWW*+(Xt- WZt)-gz-f+c.c., (4.4) 

where c.c. stands for complex conjugate. The right hand side of equation (4.4) is 
a real symmetric function of w, w' and t. 

Now if F ( x ,  x*, t) is any real symmetric function of x and z* which by the sub- 
stitution z = Z(w, t), z* = Z*(w*, t) becomes G(o, w*, t)  i t  can easily be shown that 
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and 
Ft = Gt -G,Z,/Z,- G,*Z,*/Z,". 

Therefore from (2.8) we have 

Applying this result to the function -2p of (4.4) we obtain finally 

where 
W = X,/Z, = DzlDt 

and 
K = (W* -Zt)/Z, = Dw/Dt. 

It can be seen that when Z = w we have 

Zw= 1, Zt = 0; zwwZwt= Ztt = 0, (4.11)= 

W = Xu, K = W*, (4.12) 

and equation (4.8) reduces to (2.1 1). On the other hand when X = owe find 

and so (4.8) reduces to (3.10). 
In  his formulation of the free-surface problem John (1953) defines a Lagrangian 

variable w . This is equivalent to assuming initially that 

and so 

But we shall see that the description of many flows is in the end simpler if we do 
not make this assumption. 

In  order that the solution shall represent a permissible flow having a velocity 
field that is both finite and single-valued everywhere within the fluid,. we must have 

everywhere within the fluid. This implies, for example, that any zero of Z, within 
the relevant domain must coincide with a corresponding zero of X,,. 

We mention now some known exact (but non-trivial) solutions to the equations 
of $4. 

First is the Dirichlet parabola (John 1953; Longuet-Higgins 1976) in which 
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R being an arbitrary real constant. For, from equations (4.9) and (4.10) we have 

W = o/t, K = o*/t +R/t4 
and so from (4.4), if g 9 0, 

while from (4.8) we find 
Dp/Dt = -4p/t 

provided f = aR2/t8. From (5.3) and (5.4) it is clear that both p and Dp/Dt vanish 
on the free surface 

= R(xt3+&R) (5.5) 

which represents a parabola, expanding or contracting like t-3. 
Other self-similar flows, in which Z and X are both polynomials in w, have been 

derived by Longuet-Higgins ( I976). 
Closely related to the flow given by equations (5.1) is the Dirichlet ellipse (Lamb 

1932; Taylor 1960) corresponding to 

Here the function A(t) is given inversely in terms of t  by 

t = 1;A - ~ ( I-A4)-$ d~ , 

and we have also f cc A4,g = 0. 
Similarly we have the Dirichlet hyperbola in which 

This was discussed by Longuet-Higgins (1972, 1976). Both (5.5) and (5.6) have 
surfaces which are conics, with axes in $xed directions in space. However, some 
asymmetric and more general (irrotational) flows in which the free surface rotates 
about 0 with a non-zero angular velocity will be described in another paper (Longuet- 
Higgins I 980a). 

The above-mentioned solutions are all gravity-free, and so their application is 
restricted to situations where the fluid is in free fall, or where the motion develops 
so rapidly that gravity can be neglected. Of great int'erest therefore is the Stokes 
corner $ow, which in our formulation corresponds to 

The free surface is a pair of lines (or planes) inclined a t  angles + in to the vertical. 
To see that this is a solution, we have from equations (4.9) and (4.1 0) 
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and so from (4.4) 
p = g(w2-ww* +w*2). 

On the other hand from equation (4.8) 

Con~pasing equations (5.6) and (5.7) we see that 

Dp 1 w-w*-= -94-
~t 4i ww* " 

from which i t  follows that Dp/Dt vanishes everywhere on the surface p = 0, as 
required. Equation (5.1 1) shows that the free surface is in fact a degenerate conic 
consisting of the two straight lines 

argw = &in (5.14) 

through the origin. Since x = w2, this implies argx = & in. 
The above method of solution is a t  first sight more complicated than Stokes's 

original method. However, as we shall see later (Longuet-Higgins 1979b), by 
merely adding to X a quadratic function of the variable w, a simple but accurate 
solution may be obtained to the hitherto intractable problem of the flow in an 
overturning wave. 

Meanwhile, in the next section of this paper, i t  will be convenient to derive some 
compact formulae relating to certain singularities in the pressure field. Not only 
will these be useful later, but they also illustrate the unexpected simplicity of the 
present analysis. 

6. SINGULARITIESTHE F I E L DI N  P R E S S U R E  

The free surface, being a surface of constant pressure, can have a sharp corner 
only when the pressure gradient vanishes. Consider then the condition that the 
pressure gradient vanish while the pressure p remains a differentiable function of 
x and y, or equivalently of x and z*. 

From equation (2.9) and the general formulae (2.6) for differentiation of a smooth 
function we have 

-2% = (xzzxz*+xzz*x z )  + (xzt  +xzt*)-29, 
(6.1) 

- 2 ~ ,= i(xzzxz*-xzz*x z )  +i(xzt-xzt*). 

At a stationary point, where p, = p, = 0, we then have 

Re ( x ~ ~  0,xz*fxzt-9) = 

Im (xzz,xz* +Xzt -9) = 0, I 




449 A technique for time-dependent free-surface jlows 

In  other words the condition for a stationary value of the pressure p is simply 

For a frame of reference in free fall, that is to say if the origin is accelerated down- 
wards with the acceleration of gravity, we may set g = 0 in equation (6.3) so that 
the condition for a stationary value of the pressure reduces to 

Consider now the form of the contours p = constant in the neighbourhood of a 
stationary point. Assuming the second derivatives of p to exist we have, tfo second 
order, 

d2p= i(pxx dx2 +2pxy dx dy +pyydy2). 

We shall be concerned mainly with saddle points that is to say points a t  which two 
different contours p = constant intersect one another. In  tthat case the angle y 
between the two contours is given by 

Now from (2.6) we have in general 

Pxx = Pzz + ~ P Z Z *  +Pz*z*, 

Pry = i(pzz-pz*z*), IPvv = -Pzz + ~ P Z Z *  -PZ*Z*,
so that 

PXX+Pyy = 4~22*, 

Pxx -Py, = 2(112z+~z*z*), 

and hence (6.6) becomes simply 

or since p,,,, = p,,* this is equivalent to 

P,,*
cosy = I IPzz 

provided we choose y so that - i n  < y < i n .  
Now from equation (2.9) we see that in terms of the velocity potential X. 

-2~22= Xzzt +xzzz xz*, 1-21)22*= x z z  xzz*. 

Therefore on substitution in (6.10) we obtain 

x z z  xzz*cosy = 
IxZZBXZ* +xzztI ' 
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The expressions for the mean curvature and the Gaussian curvature of the 
surface p = p(x,y) are also very simple. I n  fact from (6.8) we have that 

&I =Pxx +Pug = -2xzzxZz*, (6.13) 

showing that the mean curvature of p is in general negative. Exceptionally where the 
velocity gradient vanishes, that is when 

xzz*= &(u,+iv,) = 0, (6.14) 

then the mean curvature will also vanish 
The Gaussian curvature, from (6.8) is given by 

0 = PXxP,, -P x 2  = ~ ( P z z * ~-PZZPZZ* (6.15) 

and from (6.11) this is 
l-2 = (XZZXZZ*)~- +xzzt12,IXZZZXB* (6.16) 

which may be either positive or negative. Thus the pressure field can have both 
saddle points (Q < 0) or maxima (Q > 0, M < 0). On the other hand minima 
(Q > 0,M > 0) are ruled out by (6.13). 

Lastly, the characteristic condition for a cusp in the free surface is that Q shall 
vanish, that is to say 

xzs XZZ*= Ixzzz XZ*+X Z Z ~1 (6.17) 

7. DISCUSSION 

We have seen that the equations for time-dependent irrotational flow of a perfect 
fluid with a free surface become remarkably compact when formulated in terms 
of the complex variables x = x +iy and x* = x - iy, instead of x and y respectively. 
This is because the velocity potential x is a function of x and t only, independent 
of x*, and because the pressure p is a real function of z ,  x* and t which is symmetric 
in x and x*. The kinematic boundary condition DpIDt = 0 is also much simpler 
than expected. 

This simplicity is maintained when z and x are each expressed in terms of a third 
complex variable w, which need not be a Lagrangian coordinates, as in the formu- 
lation of the problem by F. John. 

I n  all the exact solutions known a t  present i t  appears that p and Dp/Dt are 
related by an equation of the form 

Dp/Dt = @(w, w*, t)p,  (7.1) 

where di is a real function, symmetric in w and w*. I n  the Dirichlet conics, which 
are gravity-free, di is independent of w and w*, and is a function o f t  only. I n  the 
Stokes corner flow, on the other hand, @ is a function of w and w* only, and inde- 
pendent oft, while in the self-similar solutions described by Longuet-Higgins (1976) 
X,x and di all involve functions of a similarity variable wt" where h is a constant. 
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However, equation (7.1) is not the most general relation which ensures the vanish- 
ing of DpIDtwhen p = 0.For example, we may also have 

Relations of this kind will be explored in the papers to follow. 
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