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[Plates 1—4]

Water waves transport both energy and momentum, and any solid body
which absorbs or reflects wave energy must absorb or reflect horizontal
momentum also. Hence the body is subject to 2 mean horizontal force. In
low waves, the force may be caleulated immediately when the incident,
reflected and transmitted wave amplitudes are known. For wave power
devices the mean force can be large, so that anchoring presents practical
problems.

Experiments with models of the Cockerell wave-raft and the Salter
‘duck’ accurately confirm the predicted magnitude of the force at low
wave amplitudes. For steeper waves, however, the magnitude of the force
can be less than that given by linear theory. By experiments with sub-
merged cylinders, it is shown that this is due partly to the presence of a
free second harmonic on the down-wave side.

In breaking waves, it is confirmed that the mean force on submerged
bodies is sometimes reduced, and even reversed. An explanation is sug-
gested in terms of the ‘wave set-up’ produced by breaking waves. Sub-
merged cylinders act as a kind of double beach. A negative mean force
arises from an agymmetry in the breaking waves, associated with a time-
delay in the response to the change in depth.

Similar arguments apply to submerged reefs and sand bars. Experi-
ments with a model bar show that long low waves propel the bar towards
the shore, whereas steep, breaking waves propel it seawards. This is similar
to the observed behaviour of off-shore sand bars.

The existence of a horizontal momentum flux (or radiation stress) in
water waves is demonstrated by using it to propel a small eraft,

i. INTRODUCTION

Economically interesting methods of extracting power from sea waves have recently

been proposed by Masuda (1972), Salter (1974), Woolley & Platts (1975) and others.

Remarkably high efficiencies have been obtained in the laboratory. The present

investigation was prompted by the realization that any device which extracts

energy must on general grounds be subject to a mean horizontal force. Not only can
[ 463 ]



464 M. S. Longuet-Higgins

this force be large, but it has a special practical significance in that its effect on an
anchor cannot be reduced by any flexibility in the mooring cable.

Clonsider a two-dimensional irrotational wave train of amplitude e travelling with
velocity ¢, in deep water. Owing to the mass transport velocity (see Lamb 1932,
¢h., 9) the wawves have an averags horizontal momentum I, which for low waves is

simply proportional to the square of the wave amplitude:
I = ypgadje, (1.1)

where p i the density and gis gravity. Hence we expect a horizontal flux of momen-
tum given by f¢g, where ¢y denotes the group-velacity. In deep water ¢; = $¢. So we
expect a momentum flux
Iog = tpga® (1.2)
per unit distance across the waves, This flux is closely associated with the radiation
stress (see Longuet-Higging & Stewart 1964).

Suppose we have any wave power device acted on by the waves as in figure 1. Ifit
abgorbs all the wave energy then it must absorb the momentum also. Hence we
expect that it will be subject to a mean horizontal force

F = tpga? (1.3)

per unit distance across the waves. If all the wave energy is reflected, then the
momentum ig all reversed, and the resulting force is just doubled. In general, we
expect that the body will be subject to a foree

F = (Ieghn+ (Ics)ref - (Ics)tra.ns {1.4)

where the terms on the right represent the momentum fluxes in the incident, re-
flected and transmitted waves respectively. In deep water this becomes

F = }pglo +a'*—b%), (1.5)

where a, ¢’ and b are the respective wave amplitudes.

The maximum value of this expression {pga® is equal to the horizontal stress
acting on a dam, erected across a reservoir of depth @ equal to the wave amplitude.
If @ is measured in metres, this force is 1a? tfm {tonnes force per metre) measured
along the dam. Thus waves of amplitude ¢ = 10 m correspond to a maximum force
of 50 tfm.

In water of finite depth &, the ratio ¢, fc is more generally equal to (3 + khfsinh 2kh)
where % is the wavenumber. This leads one to expect that in general

I = lpg{a®+a'—b?) (1 + 2khfsinh 2kh) (1.6)

the last factor tending to unity as the depth tends to infinity.

In §2 of this paper we shall first establish equation (1.6) theoretically, under
certain conditions. Thus the wave amplitude must be sufficiently small for the
bilinear theory to apply, which excludes breaking waves, for example. Neverthe-
less under appropriate conditions equation (1.6) can be generalized so as to evaluate
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the total force on any number of floating or submerged bodies, and to the situation
where the undisturbed depths of water on the up-wave and down-wave sides are
unequal. Hence we can consider applying the result to submerged bodies and sub-
marine reefs.

In §3 we shall describe experiments which verify equation (1.6) experimentally
for a Cockerell wave raft, and for a Salter ‘ duck’ in wawves of moderate amplitude.
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FioURE 1. Schematic representation of a wave abgsorber situated in a train of waves,

For totally submerged bodies, however, it is found experimentally that the mean
foree can be less than expected, and in § 5 we show theoretically and experimentally
that this is due partly to the presence of a second harmonic in the transmitted wave.

In breaking waves, Salter has found an even more drastic reduction, and even a
reversal, of the mean force. This is discussed in §86, and a qualitative explanation is
put forward in terms of the wave set-up. In §7 it is verified experimentally that a
similar reversal can occur on submerged sand bars, long low waves driving the harg
shorewards, but shorter, breaking waves driving them seawards.

Finally we discuss briefly the possibility of using wave momentum to propel a
small craft. This is demonstrated by means of a model.

2. THE BILINEAR THEORY

We shall first establish theoretically the results stated in the Introduction. The
arguments, which are simple, depend solely on the conservation of the mean
momentumn.

Suppose that waves of low amplitude o approach from the left in water of undis-
turbed depth k. They are incident upon any number of floating or submerged bodies
{which may bhe absorbing or generating wave energy at the same frequency) confined
to a finite horizontal range. ¥or simplicity, the mean depth on the right is assumed
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to be the same as that on the left, in the first place. The amplitudes of the reflected
and transmitted waves are denoted by ¢’ and b respectively, and we allow for a
small, second-order displacement £ of the mean surface level on the left,and ({+ AZ)

on the right, due to the wawves.

Horizontal and vertical coordinates are denoted by x and z, with zin the direction
of the incident wave and 2 measured vertically upwards from the undisturbed mean
water level. The horizontal and vertical components of the particle velocity are

denoted by w and w.
A general expression for the flux of horizontal momentum. across a vertical

plane x = constant is ¢
f (p+pu?)dz,
~h

where p is the pressure, p the density and {(#, ) the local elevation of the free surface.
Subtracting the corresponding flux in the absence of the waves (which arises solely
from the hydrostatic pressure p, = — pgz, and taking averages with respect to the
time, we obtain the excess flux of momentum due to the waves as

rET T e
8= J‘_h (p+pu )dz—fmﬁpodz. {2.1)

In the cage ¢’ = 0, { = 0, thisis just the radiation stress, which for waves of small
amplitude has been evaluated by Longuet-Higging & Stewart (1960, 1964). Gen-
eralizing their argument we note first that (2.1} may be written

z 0
8= f pdz+f {p—po+put)dz (2.2)
a —h

correct to second order. Now by conservation of vertical momentum. of the fluid
contained between (1) the free surface z = £, (2) the horizontal plane z = constant
and (3) any two vertical planes one wavelength apart, we have

D+ put =~ pg(§~2) = po+pgz,
where an overbar now denotes the double average over both a period and a wave-
length. Therefore _ 5
8 B—po = pgé—pw* (2.3)

and on substituting in (2.2) and taking averages over a wavelength we obtain
~ ¢ L. -
8 =f0 pdz+f hp(u*—»wﬂ)der,ogkg’. (2.4)

In the above integrals we may substitute the well-known first-order expressions for
the pressure p and the orbital velocities %, w in Stokes waves of arbitrary depth

h = b+, namely
W= ¢’x! w= ¢zi p/ﬂ = qﬁt“gzz g = 9_1(¢t)5=0:
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acosh k(z+ k)
ksinh kh

where ¢ = [acos (kx— o) + &’ cos (kx+ at)]
and g? = gktanh kA

(see, for example, Lamb 1932, ch. 9). On taking averages with respect to x and ¢, all
terms proportional to the product e’ vanish, and we obtain

8 = Lpg(a®+a'?) (1 + 4khfsinh 2kh) + pghl (2.5)

correct ta second order. So the momentum fluxes in the incident and reflected waves
are simply added. The last term pghl can be considered as the effect of an additional
hydrostatic pressure pgl exerted throughout the whole depth .

Consider now the horizontal momentum of the fluid contained between two fixed
vertical planes x = x,, &, one far to the left and the otherfar to the right. If # denotes
the sum of the mean horizontal forces exerted by the fluid on all the solid hodies
contained between these two planes, then the flux of horizontal momentum from the
bodies to the water is just —F. Assuming the mean horizontal momentum. of the
water to be conserved, we must therefore have

F = Sl‘_Sz,

where 8§, and S, denote the fluxes of momentum across the two planes. In this
equation we can take averages with respect to #; and x,, each over one wavelength,
with the result

F = Log(a®+a'2—b?) (1 + 4khfsinh 2kh) — pghAL (2.6)
from {2.4).

To complete the caleulation we must now evaluate the difference Af in the mean
level on the two sides. To do this we introduce the further assumption (see Longuet-
Higgins 1967) that the motion is irrotational to second order. Then we may use the
Bernonlli integral

plp+ §(1? + w?) + gz + [t = ()

and on taking both time and space averages we obtain

plp+ 3wt +wi)+ge = OF),
where € is independent of hoth  and 2. Combining this with equation (2.3) and
writing z = 0, p, = 0 we have

g8 = —Lu?—w?),_+Cfp

and so A = ~H(wi—w¥,_,| . (2.7)

= — 00
Now substituting the first-order expression for the orbital veloeities « and w we find

2k

F o Llafg2d g’ B2y e
gAS = zg(a*+a®—b )sinh 2k (2.8)
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This combined with equation {2.5) gives us
= Log(a?+ a2 — b?) (1 + 2khfsinh 2&R), (2.9)

the result to be proved.
When the depths of water on the two sides are unequal it is easily seen that the

same arguments lead to

F = lpgla® +a’?) (1 + 2kh, [sinh 2%k, ) — Lpgb?(1 + 2kh,[sinh 2kh,),
where b, and A, denote the mean depths on the two sides. That is to say

F = (Iog)yn + {Log)rer — (Lr)irans (2.10)
as expected.

We note that the assumption of a steady mean surface level (£ -+ A{) on the down-
wave side may be appropriate only when thers is a beach or other barrier to restrict
the mean flow an the down-wave or the up-wave side. Otherwise, if the waves were
started from rest, it would be difficult to achieve a steady state in a limited time.

The assumption that the flow is irrotational to second order also implies that the

waves are not breaking.

3. EXPERIMENTAL VERIFICATION

A Cockerell wave raft, consisting of six hinged floats each 12 in long x 28.5 in wide
(see figures 8 and 9, plate 1) was placed in a wave tank of length 40 ft and width
W = 2 ft. Periodic waves were generated hy a plunger at one end of the tank, and
absorbed by a sloping beach at the ather. Power was extracted by a simple arrange-
ment of pumps, generally two at each hinge, raising water to a height 1.6 m ahove
the mean water level. The mean force on the float was measured with a spring
balance.

Figure 2 shows a typical set of results for waves of period 1.0 5 in water of depth
h = 0.36 m. The measured force is plotted against the expression

WE = tpgW(a®+a'?—b?)

at various wave amplitudes ¢. The broken line in figure 2 represents the force that
would be exerted in deep water. The full line represents the theoretical force (1.6)
after adjustment by the factor for finite depth, and it can be seen that the agreement
is close. At higher values of the wave amplitude the accuracy of the measurements
was reduced by a long-period seiche (about 10 s) which was set up in the tank and
affected both the wave amplitude and the forces on the raft.

Further details of the experiments are given in table 1.

Salter, Jeffrey & Taylor (1976) have measured the mean forces on a nodding
‘duck’, which absorbs a high proportion of the incident wave energy. In figure 4 we
have plotted their measured values against the theoretical value }pgWa? for low
waves in deep water, Although there is greater scatter than in our measurements the
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FigurE 2. Mean horizontal forces on wave raft. Wave period 7 = 1.0 3;
mean depth A = 0.36 m.

TARLE 1. PARAMETERS FOR THE DATA OF FIGURE 2

run period s afem {a’fa)? (Ble)® efficiency loss
Al 1.00 1.71 11 .34 A0 44
A2 1.02 2.36 07 24 .14 B35
A3 1.04 3.03 07 B 12 54
Ad 1.05 3.65 07 .16 .18 .62
Bi 1.01 1.31 A1 32 13 44
B2 1.01 1.88 A1 .28 .16 45
B3 1.02 1.88 .13 .25 .20 432
B4 1.03 2.18 05 21 .19 Nits]
BA .04 2.68 06 .22 .18 .64
B6 1.05 3.15 .08 .18 17 BT

ohserved values in figure 4 are in fair agreement at low wave amplitudes. The points
on the right of the figure are for breaking wawves. It is not surprising that the agree-
ment is less good. Nevertheless the reduction in force is interesting, and reasons for it
will be discussed below.
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Ficgurr 3. Mean horizontal forces on wavearaft. © = 1.0 9, 4 = 0.26 m.

4. EXPERIMENTS WITH A SUBMERGED CIRCULAR CYLINDER

Salter et al. (1976) also measured the forces on a circular eylinder, held with axis
horizontal so as to be completely submerged in still water. For non-bhreaking waves
the mean horizontal force was found to be quite small, ag would be expected from
equation (1.5)since asubmerged circular cylinderhas infact the remarkable property
that its transmission coefficient is unity and its reflexion coefficient is zero, accord-
ing to linearized non-viscous theary (Dean 1948; Urzell 1950, Ogilvie 1963). Thus in
equation (1.5) we should have o’ = 0,6 = a.

At higher wave amplitudes, however, the horizontal force was observed to change
sign, i.e. the mean force was found to be fowards the wavemaker. How is this to be
explained ?
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Froure 4. Mean horizontal forces acting on a Salter ‘duck’.

The present author carried out a somewhat similar experiment in which a sub-
merged cylinder of diameter 15 cm was suspended below the surface by a vertical
arm, free to swing about a pivot above the surface (see figures 10 and 11, plate 2}. In
this way the cylinder was constrained vertically but was free to make small oscilla-
tions in a horizontal direction. Being flooded internally, the mean density only
slightly exceeded that of the water, and the period of free oscillation (about 10 s) was
long compared to the wave period.

Now the amplitude of the waves reflected from a submerged, neutrally buoyant
cylinder, constrained vertically but free horizontally, may be shown (see the

appendix} to be given by o' fa = sin (3 — i), (4.1}

where ¥, is the phase-lag of the force on a fixed cylinder (relative to the force on a
fluid particle on the axis in the absence of the cylinder), and i, is the phase-lag of the
displacement of a completely free cylinder (relative to the displacement of a particle
on the axis, in the absence of the cylinder). The amplitude of the transmitted wave is

then B = cos (4, — ). (4.2)

The angles 3, and , have been computed by Ogilvie (1963}, and with the para-
meters of the experiment it is found that a'fe is fairly small, lying between 0.25 and
0.35. For incident waves of moderate amplitude we therefore expect a small mean
force on the cylinder, directed down-wave.
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Frcure 4. Mean harizontal forces on a submerged cireular eyiinder. Wave period 1.0 s, mean
depth 0.52 m: depth of immersion 4.0 em.

Figure 5 shows a typical set of measurements when the depth 4 of immersion (of
the uppermost part of the cylinder bhelow the still-water level) was 5.0 em. The
horizontal axis corresponds to the value of Log Wea?, and is a measure of the incident
momentum flux. The brokenline represents the measured value of 1 pgW(a® + a;? — 5%),
where a, @y and b, are the measured amplitudes of the incident, reflected and trans-
mitted fundamental frequencies. The ratios ai/e and b,fa were found to he in fair
agreement with equations (4.1) and (4.2}. The measured mean forces are shown in
figure 5 by crosses. Up to point B, where the waves were first observed to be breaking,
the force was smaller than expected, though generally positive. After point ¢ it had
definitely reversed sign. Under these conditions the cylinder tended to be deflected
strongly towards the wave-maker (see figure 11, plate 2). The effect was obhviously
similar to the ane reported hy Salter. We consider now some possible explanations.

5. THE EFFECT OF HIGHER HARMONICS

Wavesin the presence of submerged bodies tend to hehave quite non-linearly, and
with a submerged c¢ylinder it is easy to detect visually the presence of an appreciable
second harmonic (twice the fundamental frequency) in the transmitted waves. The
probable reason for this is that the wave amplitude above the cylinder quickly grows
to a significant fraction of the lacal depth d. Also, the horizontal fuid velocity is of
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aorder (gd)}tor greater. Both these facts imply strong nonlinearity, and the produc-
tion of higher harmonics. This is even without the occurrence of wave hreaking.

Consider the effect of a second harmonicin the transmitted wave. Since the second
harmonics have a frequency double that of the first harmonics, their group velocity
in deep water is only $¢,. So their ratio of momentum flux to energy flux is doubled.
Denoting the first and second harmonics in the reflected and transmitted waves by
ay, ay; by, by respectively, we have by conservation of energy

a? = (a® +5) + 3(as* +b3) + ¢, (8.1)

where ¢ is a positive term representing the dissipation or extraction of energy. But by
congervation of momentum

F = 1ogl(0® +a7® — b} + (&2* — ). (5.2)

If the reflected waves are small we may ighore a;% and a,? compared to the other
terms, and on substituting for «® we have

F = lpgle—1h3). (5.3)

Thus the sign of the force depends on a balance between the dissipation term and the
amplitude of the transmitted second harmonic. When the latter is larger, the radia-
tion stress in the second harmonic reverses the sign of ¥.

To measure the second harmonic b, in the transmitted wave, the waves were
abruptly shut off by lowering a gate into the water down-wave from the cylinder.
The waves continued to be recorded at a fixed distance down-wave of the gate. The
rear of the fundamental wave-train, of amplitude b,, passed first, with group velo-
¢ity cg; then the rear of the second harmonic, travelling with velocity }c,. Between
the two times of arrival, the amplitude b, of the second harmonic could be measured.

The two upper curves infigure 5 show the measured values of ;pgW(a®+ a2 —b)
and — LogWb3. These represent the observed mean forces associated with the funda-
mental wave and with the transmitted second harmonic, respectively. The former,
though not accurately measured, is necessarily positive. The latter is negative, and
is of the same order as the measured force, but is limited in magnitude. (The lowest
broken line corresponds to the force that would be exerted by a second harmanic of
limiting steepness, in otherwise still water.)

We may conclude that the second harmonic contributes an appreciable part, but
not all, of the observed negative force.

The explanation for the remainder of the force may lie partly in the existence of
harmonics higher than the second, which are effectively damped before reaching the
recording point (2.5 m from the cylinder). However, in breaking-wave conditions we
must in all prabability go beyond the range of small-amplitude, irrotational theory,
as follows.
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6. BREAKING WAVES

We suggest an explanation for the negative forces in breaking waves by analogy
with the situation when waves approach a simple beach. The waves cause a changein
the local mean water level £, called the wave ‘set-up’, which was studied experi-
mentally by Saville {1g61) and explained quantitatively by Longuet-Higgins &
Stewart (1963, 1964). On entering shallow water the wave amplitude, after an
initial decrease, begins to increase sharply. This produces an increage in the radiation
stress (the momentum flux due to the waves) which has to be offset by a decrense in
the hydrostatic pressure. The mean level therefore falls, and there is a wave ‘set-
down’. The set-down increases almost till the breaking point, when the waves begin
to lose height and the radiation stress diminishes. The static pressure must now
increase, and there is a dramatic rise in mean level, producing the much larger wave
‘set-up’. Assuming that the breaker height is proportional to the local depth of
water then it can be shown that the surface tilt is just propertional to the local slope
s of the bottom (0/ds = 0.2s). This result has been rather accurately confirmed by
Bowen, Inman & Simmons (1968).

incident
———— e

wave mean level

{o)

incident
—————i

wave mean level

{h}

Froure 6. Schematic picture of the changes in mean sea level of waves in the presence of a
submerged cylinder, if the waves are not hreaking: (e symmetrical; (8) unsyrarmetrical.
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We may think of the set-up as being due to the waves shooting their horizontal
momentum horizontally at the beach. The resulting pile-up is not statically main-
tained, but is balanced by the momentum flux term {pu)u, where « is the horizontal
velocity of the particles.

Now we can think of a submerged circular cylinder as two beaches, back-to-back
(seefigures 6and 7). Suppose first that thereisno breaking (figure 6). Then there willbe

(¢)

I B

incident. ? e, i
—— g - level
| - ~. j mean lew

wave b N

! ~ g
===_t" ~HEm

! i

I

{¢)

Fieure 7. Schematic picture of the changes in mean level of waves in the presence of 4 sub-
merged cylinder (@) symmetrical, () unsymmetrical, wavelength large compared to that of
curvature (¢} unsymmetrical, wavelength not large compared to radius of curvature.
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a small wave set-down, but no set-up. I the set-down is symmetrical (figure 6¢)
there will he no mean horizontal force on the eylinder, but a small vertical force,
directed upwards. This is in fact the situation for waves of small amplitude imping-
ing on a submerged cirenlar cylinder, either fixed or neutrally buoyant and free to
move (see Ogilvie 1963). According to the linearized theory there is no reflexion.
Hence the wave velocities may be all simply reversed in time, the incident and
reflected waves having their réles exchanged. The mean level must therefore be
symmetric about the mid-point, For largsr waves, however, both non-linearity and
viscosity may make the mean level unsymmetrical, as in figure 65. Then there can
be a small horizontal force as well as a mean vertical force.

Suppose now that the waves are breaking as in figure 7. The points where the
waves begin and end their breaking are shown by B and B’ respectively. Outside
these limits, approximately, there is a wave set-down. But inside, there is a much
Iarger wave set-up, to balance the loss of horizontal momentum flux. If the set-up is
symmetrical, as in figure 7a, there will be no mean horizontal force, but simply a
large downwards foree on the cylinder. If the set-up is unsymmetrical asin figure 75,
there will be a net horizontal farce to the right. This is the situation we might expect
if the wavelength is short compared to the diameter of the cylinder. For then the
change in depth above the cylinder will be relatively slow and the hreaker-height will
have time to adjust to the local depth of water above the cylinder. To the right of the
mid-point, when the depth begins to increase, breaking will soon ceass, because the
waves will no longer be forced to try to beconie steeper.

In the present experiments, however, the wavelength is not small compared to the
diameter of the cylinder. The waves are forced to break, from their point of view,
without much warning, and there is a delay in the onset of breaking until near the
point of minimum depth. Moreover, breaking continues until some time after the
depth begins to increase again. Hence the wave set-up is unsymmetrical as in figure
7¢, with most of the set-up occurring on the right. This produces a net force to the

left, as shown.

7. EXPERIMENTS WITH SUBMERGED BARS

If our reasoning is correct, a similar reversal of the mean force is to be expected
when breaking waves impinge on a sand-bar or on any other submerged hody resting
on the hottom.

The author carried out exploratory tests with an artificial sand-bar mounted on
wheels (see, figures 12 and 13, plate 3} which was free to move horizontally in either
direction. When subjected to long, low waves (period 7' = 1.15 s, amplifude ¢ = 1.0
cm) from the left {(see plate 5) the mean force on the bar was positive. Thus the
forces corresponding to the reflected wave predominated. If left entirely free, the
bar tended to move towards the beach, with a mean speed of 0.95 cm/s.

When on the other hand the bar was subjected to short, steep waves (T = 0.75 s,
@ = 4.0 em) the waves broke on the far side of the har (see figure 13) and the mean
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Ficure 8. The wave raft in position, facing incident waves. On the left is the spring balance
for measuring the mean horizontal foree. Width of tank = 2 ft.

Froure 9. The raft under the action of waves: T = 1.0 5, ¢ = 2.0 cm.
(Faring p. 470)
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Frgurr 10. Submerged eylinder in low waves incident fram the left: d = 3.5 em, 7' = 1.0 s,
a = 1.5 em,

Frevre 11. Submerged cylinder in breaking wawves incident from the left: d = 3.5 cm,
T =108 ¢ = 40 cm.



Proe. R. Soc. Lond. A, volume 352

Longuet-Higgins, plate 3

Fieurg 12. Artificial sand-bhar in low waves incident from the left. d = 7.0 o, T = 1.15 5,
g = 1.0 em. Mean motion of bar = 0.95 em/fs to the right.

Ficurz 13. Artificial sand-bar in steep waves incident, from the left. d = 7.0 em, T

a = 4.0 em. Mean motion of bar =

= 0.75 5,
= 1.2 emfs to the left.
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Frgure 14. Model boat (side view} with drive and Salter cam ab sterr.
Frgurm 15. Boat propelled by wave momentum flux. Forward speed. 12 em/fs.
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force wasreversed. If left to itself the bar now tended to move in the reverse direction,
with a mean speed —1.2 em/s.

This behaviour is qualitatively similar to the well-known behaviour of offshore
sand-hars; long, low waves tend to move them heachwards, but short, steep waves
tend to move them seawards (Sheppard & LaFond 1g40).

It is generally supposed that most of the sediment transport due to waves is
either ‘bed-load’, taking place in a thin mobile layer close to the bottem, or else
‘suspended load’, i.e. carried at a higher level. However, preliminary observations
by the author have suggested that it is also possible for the motion of the sand to
penetrate much deeper, presumably in response to the horizontal pressure gradi-
ents in the waves above. In that case shear takes place at a lower level, and the
mass above moves more nearly as a solid body.

It seems desirable to determine the importance of this effect by further
experiments.

8. UsE OF THE RADIATION STRESS FOR PROPULSION

The momentum flux in waves will necessarily produce a mean reaction on any
wave-maker. Thus the radiation stress may be actually set up to use for propelling a
small craft (see, figure 14, plate 4). In this model, a Salter cam is attached to the stern
and is made to oscillate by attachment to a crank driven by a small electric motor.
At wave-maker frequencies of 3 s~ the boat is propelled along at speeds of 10-15
em/fs. The ratio of thrust to power expended on the wavesis quite advantageous. For
we have

I = Ble,

where F denotes the energy density 1pga®and ¢ is the phase velocity. Hence the ratio
of the thrust to the power expended is given by

F/Ecg - ICg/EGg - 1/6.

This is larger than for same conventional propellors. The total thrust, at given
frequency ishoweverlimited by the maximum steepness of the waves, and the need to
avoid cross-waves, which only generate wave momentum in a transverse direction.

By designing a wave-power device in conjunction with a wave-maker on the down-
wave gide which generates waves at a higher frequency, it should be possible, on the
basis of equation (5.3) to design a wave-powered craft which can advance against
the waves. However, it is necessary for both the reflected wave amplitudes and the
energy dissipated to he sufficiently small. In practice this requirement is quite
stringent.



478 M. S. Longuet-Higgins

APPENDIX. PROOF OF EQUATIONS {4.1) AND (4.2}

Consider a submerged circular cylinder of radius B, either fixed or making small
oseillations, with its axis horizontal and at a mean distance (R +d) below the free
surface. Let (x, ¥) be horizontal and vertical coordinates, with @ = 0 as the plane of
symmetry, and y vertically upwards, and let (£, %) denote the instantaneous dis-
placementsof theaxis from its mean position. We consider two-dimensional motions,
with waves approaching from, or diverging towards, & = cc.

We know the following:
Theorem A. When the cylinder is fixed, then the coefficient: of reflexion vanishes

(Dean 1948; Ursell 1950).
Theorem B, When the cylinder i free and neutrally buoyant, then the coefficient

of reflexion also vanishes (Ogilvie 1963).
Theorem (. When the centre describes a.small circle, it generates or absorbs waves
travelling only in the direction of the motion of the cylinder at the top of its orbit

(Ogilvie 1963).

In general, let {_ and &, denote the free surface displacements as z-> —c0 and
+ a0 respectively. Consider the following situations.

(1) The cylinder generates waves by making small vertical oscillations:

£=10, u=iseiat,
where s and ¢ are constants and ¢ is the time. By symmetry about the plane z = O we
have &, = qeltio—otta),
=~ mi(—ka‘,~a’ﬁ+o¢1j}
where o and « are amplitude and phase angles.
(2) The cylinder generates waves by making small horizontal oscillations:
£=se7it, »=0.
Because the motion is antisymmetric about x = 0,
¢, = delta—at+a :
¢ = _a-,ei(—kxwaﬁa)’}

where & and & are new constants.
(8} The cylinder generates waves by making small circular motions in a clockwise

sense: £ = ge—idt = —ige-iot,
We simply subtract (1) from (2). But by theorem C, {_ vanishes. Hence @ = a,
& = o and we have g, = 2aeiin—ct+a)

Co

(4) The eylinder absorbs waves coming from x = — 0. In (3), reverse the signs of
#, tand £, Taling complex conjugate expressions, and adding a phase 1 we get

g — Se—id’t’ ?? = __ise—ifrt
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and £ =0,
¢ = —2gellea—ai-a) |
(5) The cylinder is fixed and subject to waves incident from x = —c0. Taking
11(3)~
3 [{3) ~(4)] we have E=0, =0
and. &, = aeltiz—ottay
g_ = a',el(kﬁ—a'ﬂ‘f'ﬂ-}.}

This incidentally proves theorem A.
Consider now the mean forces (X, ¥) on the cylinder. In cases (1) and (2) these are,

by symmetry, ¥ =0, Y = Qelt-at+d
and X = Peit-ettn), ¥ =0,
where P,  and v, § are real constants. Hence in case (5} we obtain
Y =iPginye et ¥ = —@sinde-lot,
The phase-lag i, of the force ¥ hehind the vertical acceleration 82¢fas® at x = 0 in

the incident wave is therefore ¥, = n4a (A1)
L= .

(6} The cylinder responds freely to waves incident from # = ~—c0. By theorem B
we know there is no reflected wave, so the motion has the form

(6) = $[(8) e+ (4)e7"],

where € 15 a constant phase. Thus we have

£ =scosee~lmt, y = —igcoseeiot
&Hd é‘+ — aei(kx-—o't+a+e)’
€ = — pel-ki—gl-a-e)

The phase-lag ¥, of the vertical displacement % behind the vertical displacement at
% = 0 in the incident wave is therefore
iy, = —In—(—a—e—u)=In+ta—ec (A 2)

Tt will not be necessary to determine ¢, although this may easily be done from the
condition that X = M3%/0i? where M is the mass of the eylinder. Finally

(7) The cylinder is constrained vertically and free horizontally. We simply modify
(6) by subtracting a fraction of the forced motion (1) to cancel the vertical displa.ce-
ment. Thus taking (7) = (6)— (1) cose, we have

£=scoseeiot, =0,

The addition of the foreced motion involved no extra displacement or force in the
z-direction; hence the freedom of the motion in the horizontal is unaffected. Now
the amplitudes of the incident and. reflected waves are equal to o and a cose re-
spectively. Therefore the coefficient of reflexion is

cose = cos (3 — i, )
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from equations (A 1) and {A 2). This proves equation (4.1). Since by conservation of
energy a'?+ b2 = a?, equation (4.2} follows immediately.

Equations (1.1)-(1.5) were pointed out by the present author in a memorandum
to a meeting on wave power at the C.E.G.B. Headquarters on 17 March 1975, under
the chairmanship of Dr B, T. Swift-Hook. A gualitative confirmation of the radia-
tion stress was reported to the author on a subsequent vigit to British Hovercraft
Corporation, Isle of Wight at the invitation of Sir Christopher Cockerell and Mr
Peter Crewe. The measurements by Salter ef al., made originally at the author’s
prompting, are here quoted by kind permission of Mr Salter. The author has had
many interesting discussions with those mentioned and also with Mr J. Platts and
Mr I. Glendenning. The contents of the present paper were outlined at a discussion
meeting at the Society for Underwater Technology on 10 March 1976, and at the
annual meeting of the British Theoretical Mechanics Colloquium in Edinburgh.
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