
On the Nonlinear Transfer of Energy in the Peak of a Gravity-Wave Spectrum: A Simplified
Model
Author(s): M. S. Longuet-Higgins
Source: Proceedings of the Royal Society of London. Series A, Mathematical and Physical
Sciences, Vol. 347, No. 1650 (Jan. 13, 1976), pp. 311-328
Published by: The Royal Society
Stable URL: http://www.jstor.org/stable/78968
Accessed: 06/01/2009 05:07

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=rsl.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

The Royal Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the
Royal Society of London. Series A, Mathematical and Physical Sciences.

http://www.jstor.org

http://www.jstor.org/stable/78968?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=rsl


Proc. B. Soc. Lond. A. 347, 311-328 (1976) 
Printed in Great Britain 

On the nonlinear transfer of energy in the peak of a 
gravity-wave spectrum: a simplified model 
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Silver Street, Cambridge, and 

Institute of Oceanographic Sciences, Wormley, Surrey 

(Received 10 January 1975) 

An equation given by Davey & Stewartson (I974) for the evolution of 
wave packets in three dimensions is employed to discuss the resonant 
transfer of energy within the peak of a narrow spectrum of gravity waves. 
It is shown that the coupling coefficient G(kj, k2, k3, k4) between four 
nearly equal wavenumbers kl, ..., k4 is not zero (as had been speculated) 
but is equal to 47T. This implies that the exchange of energy within the peak 
itself is of dominant importance, and leads to a simplified discussion of the 
energy transfer. 

1. INTRODUCTION 

The gradual transfer of energy between gravity waves of different wavelengths and 

directions, which was suggested on theoretical grounds by Phillips (I960) and 
Hasselmann (1962, 1963), was confirmed in special situations by laboratory experi- 
ments (Longuet-Higgins 1962; Longuet-Higgins & Smith I966; McGoldrick, 

Phillips, Huang & IIodgson 1966). An interpretation of recent wave measurements 
in the North Sea (Hasselmann et al. 1973) strongly suggests that these nonlinear 
transfers of energy play an essential role in the development of the wave spectrum 
in wave-fields where the fetch is limited, particularly in the growth of the wave 

energy at low frequencies. 
Nevertheless the present state of the theory is in some respects unsatisfying. The 

expressions for the energy transfer are necessarily of the form 

-n, = ... G(k, k2, k3, k4) [(n1+n2)n3n4-(n3+n4)nln2] 
x 8(o 4+2- 0-3 - 0-4) 8(k, + k2 -k3-k4) dk2 dk3 dk4, (1) 

where ni denotes the action-density at wavenumber ki and frequency cr- = /(g\ kii), 
and where the delta-functions express conditions for resonance between the waves 
i = 1, 2, 3, 4. However, in the theory as given by Hasselmann (i962, I963) the 

coupling coefficient G(kl, k2, k3, k4) is exceedingly complicated, and the algebraic 
manipulations required to obtain it are both lengthy and heavy. No physical inter- 

pretation for the precise form of G has been given. The evaluation of G, and of the 

multiple integral in (1) has been attempted only on a computer, and with seemingly 
[ 311 ] 



M. S. Longuet-Higgins 

conflicting results. Thus, in the first computations by Hasselmanan (i 963) using the 
Pierson-Moskowitz form of the wave spectrum, it appeared that the rates of energy 
transfer would tend to augment the peak value of the spectral density, at the 
expense of the moderately higher frequencies. Later computations using the 
narnower spectra measured in the Jonswap field experiments (Hasselmann et al. 

1973) in:dicated a different behaviour, namely that the energy flow was such as to 
shift the energy peak towards lower frequencies. 

Moreover, at present it is necessary to rely for these critical conclusions upon the 
numerical computation of certain complicated multiple integrals, which cannot be 
accurately evaluated. There is obviously a need for a much simpler approach, more 
amenable to physical interpretation. 

An attempt to discuss the energy transfer to wavenumbers well outside the main 
peak in the spectrum was recently made by NWebb (1974), with some success. How- 
ever, it is clear from equation (1) that the rate of flux On/St depends in general on the 
third power of the energy density. Hence the rates of transfer in or near the peak of 
the spectrum are likely to be the most important in order of magnitude, provided 
only that when kl, k2, k3, k4 are all nearly equal, the coupling coefficient G(kl, ..., k4) 
does not become small or zero. Significantly, G has never been evaluated, even in this 
important case, because of the complexity of the algebra involved. Evei numerically 
this was not possible, because the expressions given by Hasselmann contain singu- 
larities, which can only be overcome by passage to the limit in an appropriate 
manner. The question whether or not G vanishes in the limit is clearly crucial for 
a discussion of the dominant energy flux. 

An opportunity to study the problem from a different point of view came with 
a recent paper by Davey & Stewartson (1974) who considered the evolution of the 
form of three-dimensional packets of gravity waves, on the surface of water of 
uniform depth. They discussed the deterministic problem of the change in form of 
the wave envelope, when it is assumed that the 'width' of the Fourier transform is 
of the same order of smallness (e) as the maximum slope of the waves. They then 
derived a remarkably simple equation (equation (2.4) below) for the rate of change 
of the envelope function, one, moreover, for which a simple physical interpretation 
can be given. 

It should be noted that an. equivalent but more complicated system of coupled 
equations was previously derived by Benney & Roskes (i969). Chu & Mei (I970, 
1971) gave coupled equations for the two-dimensional case (8/83 = 0) and for two 
dimensions the compact form of equation (2.4) was derived by Hasimoto & Ono 
(1972). All these authors considered the case of arbitrary uniform depth. Equation 
(2.4) is the form to which the equation of Davey & Stewartson is reduced when the 
ratio of the depth to the wavelength tends to infinity (see footnote on p. 314). 

The two dimensional form of equation (2.4) is in fact a special case of the wave- 
modulation equation discussed for example by Karpman & Krushkal (1969) and by 
Zakharov & Shabat (1 972). This equation has many interesting properties, including 
the existence of exact solutions in which the envelope has the form of a solitary wave 
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Transfer of energy in the peak of a gravity-wave spectrum 313 

(soliton). The initial-value problem is soluble, and it is possible also to discuss the 
stability of the soliton solution. However, the added introduction of variations in 
the horizontal direction (r) transverse to the direction of propagation is essential in 
our problem, as we shall see. 

The object of this note is to show how the simple evolution equation (2.5) can be 
used to study the energy transfer in a gravity wave spectrum, when all the wave- 
numbers kL, ..., k4 are near the peak. In ? 2 we state the equation and give a simple 
interpretation of it. In ? 3 we derive the resonance conditions for four wavenumbers, 
and in ? 4 we calculate the coupling coefficient. This is shown to be non-zero, thereby 
answering one leading question, and simplifying the discussion of the energy 
transfer. A preliminary discussion of the consequences is given in ?? 5-7. It is shown 
that the energy from an isolated peak in the spectrum tends to spread outwards 
along two characteristic lines, making angles + arctan (1//2) with the mean direc- 
tion. The relation of this to the Benjamin-Feir instability is discussed in ? 8, and in 
? 9 we present some computations of the energy transfer in a symmetric normal 

spectrum. The conclusions are summarized in ? 10. 

y 4m 
(a) A (b) 

'1111' '11i1 i 

1 1 II 0i 
FIGURE 1. (a) Schematic representation of a surface with a narrow spectrum, and 

(b) the corresponding representation in the wavenumber plane. 

2. THE EQUATION FOR THE WAVE ENVELOPE 

We consider free, irrotational gravity waves, on the surface of an inviscid, incom- 
pressible fluid of infinite depth. Let rectangular coordinates (x, y, z) be taken with 
the origin in the undisturbed free surface, the z-axis vertically upwards and the 
x-axis in the direction of propagation. In a wave train of small surface slope but 

slowly modulated amplitude and phase (see figure 1) the vertical displacement g of 
the free surface can be expressed in the form 

(2.1) g= =eA ei(x+7My--t), 
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where the exponential term represents a carrier wave of wavenumber k = (1, m) and 
radian frequency a satisfying the linear dispersion relation for waves in deep water, 
namely a2 = g, (k = [kI) (2.2) 
and A represents a slowly changing amplitude and phase. e is a small parameter 
which may be made to tend to zero. It is convenient to choose units of length and 
time so that s= 1, k=(1,0), a 1. (2.3) 
It is well known that in linear theory the wave envelope is propagated with approxi- 
mately the group-velocity c' = ac8k = , that is to say A is nearly a function of 
(x - c't) alone. More accurately, it can be shown (see Davey & Stewartson 1974) that 
the evolution of A is governed by the partial differential equation 

h2iA, n(Ad 2A)+( )A d e te (v2.4) 

where , ] and r denote the scaled variables 

= e(x-c't), -= ey, r = e2t. (2.5) 
and the suffixes in (2.4) denote partial differentiation.t 

The form of the scaling (2.5) implies an assumption that the length scales for the 
variation of A in any horizontal direction is of order e-1; in other words the spectral 
width is of order e. From the governing equations it then follows that time-scale for 
the evolution of the envelope is of order e-2. 

Equation (2.4) has simple sine wave solutions of the form 

A = aei- +-T), (2.6) 

provided that w = - (A2 - 2p2) + 2a2. (2.7) 

The interpretation of this dispersion relation is very simple. From (2.1) and (2.6) 
A, /z and o are related to the physical wavenumber k = (1, m) and to the physical 
frequency cr by 

(Ix + my - at) = (At + 7] - wr) 

+ 

(Ix + yy- at). 

Substituting from equations (2.3) and (2.5) we have 

l= 1+eA, m= e, o= + eA6+ e2w. 

Substituting in the dispersion relation 

oS2 = k(l+ea2k), k2 = 12+mn2, (2.8) 

(Lamb 1932, C. 9) we find that the terms in e? and e1 are already in agreement, while 
those in e2 give precisely equation (2.7). The first two terms on the right hand side 
of (2.7) arise essentially from the curvature of the linearized dispersion relation; 
the last term is the well-known correction to the wave speed arising from the finite 
amplitude. 

t From (1) it will be noted that our definition of A differs from that of Davey & Stewartson 
(1974) by a factor of 2. Davey & Stewartson state that (2.4) is valid asymptotically as kh->oo 
(h = the depth), provided ekh -> 0, but further investigation shows that the troublesome 
terms in the third approximation are cancelled out in the next approximation. Thus (2.4) is 
uniformly valid as kh -> oo. 
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Physically, the term - A2 on the right of (2.7) is associated with the fact that 
the dispersion curve a2 = gl for long-crested waves (m = 0) is convex (see figure 27a). 
This implies that the envelope of two sine waves with different wavenumbers 
(1? eA), travels slightly slower than the speed corresponding to the mean wave- 
number; for, the midpoint of the chord joining two points on the dispersion curve 
lies slightly below the curve. 

(a) 

(b) 

l/ 
~(////~ /?-~ / 7/ /I//I7 

/ 
"'e'2i 

FIGURE 2. Plane sections of the linear dispersion surface c2 = g(12 + m2) by (a) the axial plane 
m = 0, (b) the transverse plane I = 1. In case (a) the mean frequency corresponding to 
adjacent wavenumber lies below the surface; in (b) the mean frequency lies above the 
surface. 

> i/// / / w , ,,, ,, , 7% .- ? 
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The positive term ~/2, on the other hand arises from the fact that the dispersion 

surface ar2 = gk (where k2 = 12+ m2) has axial symmetry. This, together with the 
fact that or increases with k, implies that a transverse section of the surface is concave 
upwards (see figure 2 b). Hence two waves of the same wavelength but travelling in 
slightly different directions combine to form an envelope which travels faster than 
either wave separately. 

The hyperbolic form of the terms (A2 - 2/t2) corresponds to the fact that the 

dispersion surface has principal curvatures of opposite sign. Hence any plane close 
and parallel to a tangent plane intersects the surface in a hyperbola, not an ellipse. 
The tangent plane itself intersects the surface in two lines which are asymptotes to 
the hyperbola. 

3. CONDITIONS FPO RESONANCE 

Consider four elementary waves 

An = a:,eiR( +1 n V-?7WT) (n = 1, ... 4) (3.1) 

each satisfying a dispersion relation similar to (2.7), that is 

D-n (Ai-2 jU)r 2M, (3.2) 

where M is a constant, independent of the suffix n. (Later, M will be identified with 
the total action density; see appendix A.) The conditions for resonance are then 

(t1+o = 93+04 (3.3) 

and 1 + 1C 2- 3+ K4, (3.4) 

where Kt = (Awn,/W). From (3.2) and (3.3) we have at once 

(AS- 21tl) + (Al _ 21j2) - (A3 - 232) + (Au-221/4). (3.5) 

Now (3.4) implies that K , K2 and c,3, K are opposite vertices of a parallelogram 
(see figure 3). Denoting the centre of this parallelogram by ic, we may write 

WmC K-IC X C2 = =+ K^^K~i~ -K\', 12==S-X+K',1 (3.6) 
iC3 =K-K- -, K4= iK+KJ C " 

where i = (A, 7), c' = (A',/t'), '" - (A", t'). On substitution in (3.5) we find simply 

A'2-2p,'2 = A"2- 2 U"2. (3.7) 
This shows that K, c,2, 13 and e4 all lie on the same hyperbola, with centre i and 
with asymptotes making an angle arctan (11//2) with the 6-axis (see figure 3). For 
fixed ?cl but variable j2C, v3 and KC, the centre of the hyperbola is arbitrary and also 
the length of one principal axis, but the directions of the asymptotes are fixed. 

The asymptotes can be seen to correspond to the tangents to the figure-of-eight 
curve derived by Phillips ( 960) just at the central point i. The family of hyperbolae 
corresponds to the local aspect of the family of curves shown by Hasselmann ( 963, 
figure 6) in the neighbourhood of the central point. 
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4. THE TRANSFER OF ENERGY 

Let the envelope function A(6, V, T) be represented in the form 

A = an(T) ei(nn6+'-7nT), 
n 

317 

(4.1) 

where on is given by (3.2) and an(r) is a relatively slowly varying function of r only. 
an is complex in general, with slowly varying amplitude and phase. We shall suppose 
that the magnitudes of the an are small and their phases uncorrelated, to first order, 
and moreover that in the limit they become densely distributed in wavenumber 

space in such a way that when summed over an element dic 

(4.2) E laa t* N(i ) dsc. 
n 

The function N(ic) corresponds to the local action-density. 

_- _ -- 
00%.1 - 

FIGuRE 3. Illustrating the conditions for resonant interaction between 
four wavenumbers. 

Substituting for A from (4.1) into the differential equation (2.4) we see that the 
derivatives with respect to g and V both cancel. Then on equating coefficients of 
ei(ng+Inn) on each side we obtain simply 

2i da- = E a, aa,* e-i(-P+wq-?r-(n)Tr t(Kp + Cq - Kc - 7n) (4.3) "'dr p,q,r 

the delta function ensuring that in the triple sum only those terms are retained for 
which the exponential factors agree. Multiplying (4.3) by a*/2i and adding the 

complex conjugate we obtain 

d i, q,r 
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Now since the phases of the an are assumed to be nearly uncorrelated, the product 
ap aqca at will, on the average, be negligible except when either p = n and q = r, or 
else q = n and p = r. Hence the sum reduces to 

2aan a* arar 

which is real. Hence the right hand side of (4.4) vanishes, to order s4. To calculate 
higher order terms, we first differentiate the product apaqa an with respect to r. 
Then substituting from (4.3) we have 

d 2id (a aq a a*)= aq ar, S a avae-i(u+wv~-w-r)T )(c +c, v-~- ) 
U, V, W 

+apt a aaa* e-a iui(+wv--q)T 6(u + K- - t cq) 
U, V,W 

-a aa* E a6* aw ei(oia+?~-W2~-'r), 8(cu + rv -Vw - Cr) 
,- 

a 
v, a a 

w 

-apaqa,* z ac*av*awei(?u+'wv-ww--)T"(), +( , -Cu+cv-Cw-xCn). (4.5) 
tuV,W 

Now in the first summation we must have either (u,v,w) (r,n,q) or else 
(u, v, ) = (n, r,q). So taking averages in (4.5) and writing 

a an- =n (4.6) 
we find altogether 

2id (a paqa,a) = 2(C,CrCn + 6, CC, p0,00n Cp CCr) 
x ei(%+O-r-rn)T7(c,r ( + tq-f r- ,Kn). (4.7) 

Now on integrating with respect to r from - co (where the correlations are assumed 
negligible) up to r and then substituting into (4.4) we obtain 

dT r [(Cr n)0C C p+0 ))rn] UT p, q, r- oo 

x eI(P+-O-N(r'-r) 8((p + Cq -r - Kn). (4.8) 

The factor in square brackets may be assumed to vary only slowly with r' compared 
to the rest of the integrand, so that it can be taken outside the integral. We use the 
result that if o has a small negative imaginary part, then 

ei1s ds- + 7rS(4), (4.9) 

where 8(w) denotes the Dirac delta function. If we introduce a small artificial 
damping into equation (2.4) to indicate the direction of time, then op, Oq will have 
a small negative imaginary part. In equation (4.8) (owp+a(q - (o,r- ) must be 
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replaced by (( + - o* - o*), which will have a small negative imaginary part 
also, so that (4.8) becomes simply 

dC- = [(r +Cn) pq- (C + q) GCn] dT p, q, r 

x( +pJr X( -(-p)q.* ) (Kp+K -ic,-c-n). (4.10) 

Finally, in view of the relation (4.2) we see that (4.10) is equivalent to 

d 
=4S{..S fJ[(N+N2)N3N4-(N3+N4)NIN2] (4.11) 

X 8(0t)1 + o2 - (03 
- 

(4) (1 + 2 -K - - 
Kx4) dKa dj3 dc4 

where Ni = iN(i). 
Since Ni dxci is equivalent to ni dki where ki = (1 + 2ci) and dki = e2dxi, we 

see that equation (4.11) is of the same form as (1.1). Moreover, when kl, k2, k3, k4 
are equal, the coupling coefficient does not vanish. On the contrary, we have, in 
dimensionless units, G(1, 1 1) = 4c. (4.12) 

One would expect the above value of the coupling coefficient to agree with the 
value derived from the lengthy expressions given by Hasselmann (I962, pp. 490, 
491 and 1963, p. 276) on passing to the limit in a suitable manner, and it can indeed 
be verified that this is so. The details need not be given here. 

5. PROPERTIES OF THE ENERGY FLUX 

From (4.11) we can deduce immediately certain properties of the energy transfer 
within the spectral peak. First, there will be a tendency for energy to move towards 

regions of low density. Consider for instance the extreme case shown in figure 4, 
where N(x) vanishes to the left of a given line in the wavenumber plane, and is 

positive to the right of it. If more than one of the ci lie to the left of the line, as in 

figure 4 a, then clearly the integrand in (4.11) vanishes and there is zero contribution 
to the energy flux. If K, lies to the left of the line and xc2, C3, KC4 lie to the right, as in 

figure 4b, then the contribution to aNl1/r is positive, and is proportional in fact to 

N2N3N4. Altogether, since there will be some appropriate hyperbolae through ic 

intersecting the boundary, there will be a positive flow of energy into wave- 
number Kl. 

In general we may expect that the transfer of energy will tend to reduce any 
asymmetry in the spectrum. 

Suppose next that the spectrum is symmetrical, as in figure 5, but the energy is 
confined mainly to a limited region surrounding the peak density. There will be 
a tendency for energy to flow outwards from the peak. For, consider any wave- 
number Kx outside the peak. Provided that IK lies close to an asymptote, it may be 

possible to find an opposite wavenumber tK2 and two companion wavenumbers 
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IC3, Ka within the peak itself, such that all lie on the same hyperbola. Since N, and N2 
are smiall compared to AN and N4, the important terms in (4.11) are (N-+l- N2) N3NT4, 
the terms (Ns + N4) NN a being relatively small. 

If, however, Kq lies outside the peak but not near one of the asymptotes A2 = 2/,2 
it will be impossible to find any allowable hyperbola intersecting the peak, on which 
K3, c can lie. So there will be a negligible flux of energy into Y. 

FIGURE 4. Curves for resonant interaction in an asymmetric spectrum. 

K1 

FIGURJE 5. Curves for resonant transfer of energy to wavenumbers outside 
the spectral peak. 

It follows that energy will tend to stream outwards from the peak in the directions 
dA = + /2 d/a. Subsequently, the energy will tend to diffuse from the neighbourhood 
of the asymptotes into other parts of the plane. 

In short, we may consider the directions defined by dA/d, = ? /2 as defining 
characteristics, in a certain sense, for the flow of energy outwards from the peak. 
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6. CONSERVATION LAWS 

The combined flow of energy to different parts of the plane is, however, governed 
by certain conservation laws. Thus from (4.11) we have 

d 
JJN(Ic)dKUc = 47r ... Jf(il2, K 3, C4) dK dK2 d3 dK4d 

wheref is a function which is symmetric in Kx, K2 or 13, 1C4 but antisymmetric in 

1(1, K3. Thus, by interchanging x~ and K3, say, and adding, we get 

dH N(,)d = O. 
dT 

So jJN(c) dx = M, constant. (6.1) 

From (4.1) we have also 

dT dj- 
N(1)d = 47C ... jx f(,K21C3, 1K4) dKddf?c d(dK 

so that by cyclic permutation of the ci, and adding, we get 

d KJ N(c) dKC = zJ ... (c + \ 
-2K2-3C3-YC4)f( CI, ..., C4) dc1 . .., dli4. 

But since f contains as a factor the delta-function S(x + K2 - C3 - K-q) the integral 
on the right vanishes. Hence 

HfKN(K) d1c = , constant. (6.2) 

Similarly Jfr (,) N() dfc = E, constant. (6.3) 

Equations (6.1) and (6.2) together give 

(1 + ex)N(xc)dK = J kn(k)dk = constant, (6.4) 

and similarly equations (6.1) and (6.3) give 

j (1 + e2o) N(c) dcK = Jo(k) n(k) dk = constant. (6.5) 

Equation (6.1) expresses the constancy of the total action, and (6.4) and (6.5) 
express the constancy of the total momentum and energy, respectively (see also 
appendix A). This is always assuming that the contribution to the integrals from 
those parts of the spectrum outside the peak can be neglected. 

The constancy of the three spectral moments in (6.1), (6.2) and (6.3) imposes 
certain constraints on the exchange of energy within the peak. Thus if there is a flux 
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of energy towards lower wavenumbers i (as there may be in a typical wind-wave 

spectrum) there must also be compensating flux towards much higher wavenumbers, 
to maintain the mean wavenumber constant. And if there is some flux into the zones 
where o(ic) > o0 there must be a compensating flux into the zones where 

)(K) < (. 

7. EQUILIBRIUM SPECTRA 

Does an equilibrium spectrum exist ? The argument of? 5 makes it appear unlikely 
that there could be a continuous spectrum, with finite total energy, for which N > 0 
and vN/at = 0 everywhere. For if the total energy is finite, the density must be low in 
certain parts of the K-plane, especially at large distances. Hence energy will tend to 
flow into these areas, particularly in the direction of the characteristics dA/d/t = + V2. 

The equilibrium solutions quoted by Hasselmann (1963) in which 

1 1 1 1 
N^0 o(7.1) N1 N2 N3 N4? 

for all tetrads satisfying the resonance conditions, imply that 

1 = P. K +Q (O+R, (7.2) N(IK) 
where P, Q and R are constants. If either P or Q is not zero, then N(c) becomes 

negative for some K. If P and Q both vanish, but not R, then the density is uniform 
and the total energy is infinite. In neither case does the solution have any physical 
significance. 

The nearest approach to an equilibrium spectrum appears to be when the energy 
is concentrated in the form of isolated delta functions, or along a pair of charac- 
teristic lines. Both forms, however, would appear to be unstable with respect to the 
addition of small amounts of energy in other parts of the plane. 

8. SIDE-BAND INSTABILITIES 

The stability of the pure sine wave (2.11), considered as a wave of finite amplitude, 
may be discussed by means of equation (2.4) itself (see Davey & Stewartson I974). 
Slightly generalizing their result, we set 

A = a( + a') ei(AX+#-/T+O'), (8.1) 

where a' and 0' are real functions representing small perturbations of the solution 
(2.11). Substituting in equation (2.4) and retaining only first order terms in a' and 0' 
we obtain, from the real and imaginary parts, the two equations 

= 0, (8.2) 

[ra 1-) 2a a - 6-2 0' =0 
L[^a -(ag2 - ) k-(a-? -.8 2 a2 = 
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Then a', 0' will have solutions 

a' = a1 ei(A'g+z'r-n'r), 
0' = B01 ei(A'6+/'- 'r),J (8.3) 

provided that 

[4)' -+ 4 = (A' -2,,C)]2 = 2(A'2 '2) [(/'2 _ 2'2) a2]. (8.4) 

The imaginary part of o' will be non-zero, and hence there may be instability, if the 

right hand side is negative, that is to say if 

0 < A'2- 2/t'2 < 8a2. (8.5) 

Hence for instability, (A', ,u') lies in a zone bounded by the hyperbola (A'2 - 2/'2) = 8a2 
and the two asymptotes A'2 - 2t'2 = 0. The fastest-growing instabilities are such 
that the right hand side of (8.4) is a minimum, that is when 

A'2- 2/u'2= 4a2. (8.6) 

Then (A', It') lies on a hyperbola centre (0, 0) and with vertices ( 2a, 0). 
For waves of small amplitude, the instabilities will all tend to lie close to the 

asymptotes ,u'/A' = + /2. This suggests a close relation between this type of 

instability and the type described in ? 5. 

However, this side-band instability, which is essentially an extension of the one- 
dimensional instability discovered by Benjamin & Feir (I962), is essentially 
dependent on the initial phases. In this respect it is quite different from the phase- 
averaged exchange of energy discussed in ?? 4 and 5. In the side-band instability the 
flow of energy can theoretically be reversed; in the phase-averaged theory the flow 
is irreversible. 

9. RATE OF CHANGE OF THE PEAK DENSITY 

Finally, let us calculate the flow of energy away from the peak of the symmetric 
normal spectrum , 

N(:) = -Noe-i 2--, (9.1) 

where No, P, Q are constants. We use the form of the flux equation (4.11) derived in 

appendix B (equations (B 8) and (B 10)). At the peak itself, where Kc = (0, 0) so 
c = ', the expression for F contains four exponentials, each with a factor z. The 

integrations with respect to a may be carried out immediately, giving 

i a= 167N3sj S (P, Q, ', 0")dO'dO", (9.2) 

where 0 is a rational function of P, Q and of cosh 0', sinh 0', cosh 0", sinh O". Also 
0 is symmetric in P and Q. The integral in (9.2) is easily evaluated numerically, 
giving N N3 

( i = H(P ) (9.3) 8-r (pQ)H2 
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where H is the function shown in table 1. It can be seen that H is a maximum when 

P/Q = 1 and that even over so wide a range as 0.2 < P/Q < 5.0 the value of H differs 
from H(1) by less than 2 %. Thus for all practical purposes we may take 

H(P/Q) = H(1) = 32.9. (9.4) 

To express the result in terms of convenient parameters, let a denote the r.m.s. 
wave amplitude defined by 

2 - an - 2ffN(K) dc - 4(2No (9.5) n n n/l\ (2PQ)- 

and let zi, 1 2denote the width of the spectrum, in the 6 and y directions, at half the 

peak amplitude, so 

Id = 2 I4 ,i A= s2 
In4 

(9.6) 

and (2PQ)t = 41n 4/(A1A2). Then (9.3) may be written 

da 1.-0.72 A2 I2 (9.7) 

In other words, the peak density tends to diminish at a rate proportional to the 
sixth power of the mean-square amplitude, and inversely as the square of the band- 
width in each direction; and almost independently of the shape of the peak. 

TABLE 1. CALCULATED VALUES OF H(PIQ) 

P Q P Q 
Qor - H Q or H 

1.0 32.91 0.08 30.31 
0.5 32.82 0.06 29.41 
0.4 32.75 0.04 27.88 
0.3 32.59 0.02 24.74 
0.2 32.19 0.01 21.33 
0.1 30.91 0.00 0.00 

10. CONCLUSIONS 

We have shown that the assumption of a narrow spectrum enables the transfer 
of energy within the spectral peak to be discussed in much simpler terms. The 

coupling coefficient has been evaluated explicitly, and is positive, not zero. In the 
wavenumber plane, the curves for resonantly interacting waves are simple hyper- 
bolae and there is a tendency for energy to spread out-wards from the peak in direc- 
tions making angles arctan (1/1/2) with the mean direction. 

The possibility of a steady, continuous spectrum, with finite total energy, is ruled 
out. For a normal spectrum, the energy density at the peak frequency tends always 
to diminish, though at a rate critically dependent on the mean-square amplitude 
and on the spectral width (equation (9.7)). 
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A further discussion of the effects of asymmetry in the spectrum, and of the 
relative importance of contributions from outside the spectral peak, will be given 
in a second paper. 

I am indebted to Mr M. J. H. Fox for confirming the calculations in ? 9. 

APPENDIX A. INTEGRALS OF THE ENVELOPE EQUATION 

Starting from equation (2.4), let us multiply each side by A *. Then subtracting 
the complex conjugate we obtain 

2i(AA*) - [(A -A*AA g-2(A A*-AA ()]. (A 1) 

Suppose A is statistically uniform over the (6, V)-plane. On integrating over a large 
area of linear dimensions L, the left hand side is O(L2) while the right hand side, 
by the Green theorem, reduces to a line integral and so is 0(L). Hence dividing by L 
and letting L - co we get 

(AA ) = 0, (A 2) 

where an overbar denotes the average value with respect to (, y). So 

jAA* = M, (A 3) 
a constant. Similarly we find 

2i(AA * -AA*), = X + Y, 4) 

2i(A,A*-AA), = X,- 1Y 

where X= (AA*)2, Y=(A *A-AA*). (A 5) 
This leads to 

i(AA -AA) = 1, 
(A 6) 

i (AA* - AA*)= I,J 

where I1 and I2 are real constants. Thirdly, we find 

2i[AgA - 2A1,A + 4(AA *)2]7 = U + V, (A 7) 

where U = H(A A -Ag A)- 1(A A*-A,vA,)+AA*(A -A*-AA ), 
V = -(AsA*-AA*)+ (A A -A,A*)- 2AA *(AA- A A) -AA .J 

Hence I(A A* - 2AA*) + I (AA*)2 = 2E (A 9) 

say. The relations (A 3), (A 6) and (A 9) correspond respectively to the conservation 
of action, momentum and energy. 

21-2 
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If in equation (A3) we substitute the gaussian form (4.1) we find on taking 

averages that 
M = 1 an* = N(K)dKc. (A 10) 

Similarly from (A 6) 

(Il, I2) -JfK c(K) dc. (A 11 ) 

The expression for (AA *)2 is a quadruple sum, which on taking average reduces to 

as2 E ana* - (ana*)'2+(a). (A 12) 
n m n 

As the number of terms in the summation increases, the second group becomes 

negligible compared to the first. So to order e4 we have 

(AA*)2= 8M2. (A 13) 
Hence (A 9) becomes 

2E -= -(A2 - 2a2) + 21I] 2N(K) dK, (A 14) 

that is E = ffN(K)dK, (A 15) 

where (o - (A2- 22) + 2M (A 16) 

in accordance with the dispersion relation (3.2). 
From the two-dimensional form of equation (2.4), without the term in Av, 

Zakharov & Shabat have derived an infinite sequence of conservation laws, and it 
should be possible to do the same for equation (2.4) in the general case also. How- 
ever, this sequence of laws involves successively higher powers of e (the expressions 
in (A 3), (A 6) and (A 9) are proportional to e2, 

3 and e respectively. Since the original 
equation (2.4) is correct only to order e3, the relations beyond n = 4 will have no 

physical meaning in the present context. 

APPENDIX B. TRANSFORMATION OF EQUATION (4.11) 

To calculate the energy transfer in particular cases it is convenient to transform 

equation (4.11) as follows. Because of the delta-function 6(s1 + K2 - K3 - K4) in the 

integrand, we can integrate with respect to c3 by writing 

K3 = C1 + Ki2- K4 = 
K1 + K' - K". 

Then, since K2 == K1 + 2K' and C = -c, + c' + cK" we have 

^ -2. (B 1) 
I(K2, 

1K4) 2( 1) 
?(,c', K") - (1 

So (4.11) becomes 

-- = 8r f... F(KI. K', X, ) (01 + 2 - )3 - 4)dc' ddc", (B 2) 
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where F stands for the square bracket in equation (4.11). To eliminate the remaining 
delta-function in equation (B 2) we now write 

a' = A'2- 2,'2, a" = A'2 - 2U2, (B 3) 

so that 6(01 + o2 - o3- -4) = 8[4(a" - a')] = 48(c"- a') (B 4) 

and if 3', ft" are arbitrary functions of (A', u') and (A", ,u") then 

- 

' 
2 A l0'-+4 4'a(B 5) 

:= (A',a') i't (B 5 
with a similar expression for J". Hence (B 2) becomes 

a NJ 32- F do dfi' dfi" 
Tx327ffffd 

8 32= (B 6) 

in which a', c" are both set equal to c. 
When a > 0 we may take simply ,f' = u' and fi" = u" so J' = 2A' and J" = 2/". 

Then substituting 
A' = + a cosh 0', /2 /' = a sinh ', (B 7) 

A" = + ac cosh 0", ^/2,/" = ac sinh O",i 

we find for the contribution to aN1/ar 

47r E G Fda dO'dO" (B 8) 

the sum being taken over the four combinations of signs for A' and A". 
When a < 0 we make precisely similar substitutions except that a is replaced 

by -a. 
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