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A number of exact relations are proved for periodic water waves of finite 
amplitude in water of uniform depth. Thus in deep water the mean fluxes 
of mass, momentum and energy are shown to be equal to 2T/c, (4T -3V) 
and (3T- 2V)c respectively, where T and V denote the kinetic and 
potential energies and c is the phase velocity. Some parametric properties 
of the solitary wave are here generalized, and some particularly simple 
relations are proved for variations of the Lagrangian (T  - V). The integral 
properties of the wave are related to the constants &, B and S which occur 
in cnoidal wave theory. 

The speed, momentum and energy of deep-water waves are calculated 
numerically by a method employing a new expansion parameter. With the 
aid of Pad6 approximants, convergence is obtained for waves having 
amplitudes up to and including the highest. For the highest wave, the 
computed speed and amplitude are in agreement with independent calcula- 
tions by Wamada and Schwartz. At the same time the computations 
suggest that the speed and energy, for waves of a given length, are greatest 
when the height is less than the maximum. In  this respect the present 
results tend to confirm previous computations on solitary waves. 

I n  a recent paper (Longuet-Higgins 1974, to be referred to as (I))some new relations 
were found between certain fundamental integral properties of solitary waves in 
water. These relations were used to obtain simple approximations to the profile of 
the solitary wave of maximum amplitude and, in a second paper (Longuet-Higgins 
& Fenton 1974)to assist in the accurate calculation of the speed, energy, momentum, 
etc., of solitary waves of arbitrary amplitude. 

One of the unexpected findings of the second paper (11)was that the speed and 
energy of solitary waves attain maxima for waves of less than the maximum ampli- 
tude. This property has possible implications for the manner in which waves break 
in shallow water. 

There is naturally some interest in the question whether all gravity waves of 
finite amplitude have a similar property. The present paper was stimulated by an 
attempt to answer this question for periodic gravity waves and in particular for 
gravity waves in deep water. The answer, as we shall see, is in the affirmative. 
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I n  the first part of the paper we deduce a number of exact relations for periodic 
waves in water of ~aniform clepth (and in particular when the depth is large compared 
to a wavele~igth). The analysis for waves of finite length differs in some significant 
respects from that for solitary ~vaves, and some new d-efinitions are required. 

Let rectangular coordinates (z,y) be chosen with the x-axis horizontal and the 
y-axis vertically upwards. Let the equations of the free surface and the bottom be 
y = 71 and y = -?b respectively. The velocity (u ,v)is assumed irrotationa-1 (=  Vq5) 
and periodic in n: with wavelength h. 

We choose axes so that the mean elevation 7, given by 

is zero. 80 the origin lies in the mean surface level, and h equals the mean depth (or 
the mass per unit horizontal distance). 

Similarly by choosing axes moving with the required horizontal velocity, we may 
malie the mean velocity Ti,defined by 

vanish a t  one particular level and hence (since the motion is irrotational) a t  all levels 
within the fluid. 

The wavelength h being finite, the vanishing of ?ji and zL implies that both iT1 and C 
must vanish, whereas for the solitary wave both these quantities are positive (see (I)). 

We define the mean wave momentum or impulse per unit horizontal distance 

(an overbar denotes the average over one wavelength or period), the mean kinetic 
energy 

arid the mean potential energy 

v = p .  

We also define the radiaiion styes8 (the excess flux of momentum clue to the waves) 

and the mean energy flux 

[p++(u2+v2)-t-gyludy. 
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Between these quantities some simple relations have been established. Thus 
Levi-Civit& (1924) showed that 

2T = cI, (B) 

where c is the phase velocity. A short proof is given in 5 2 of this paper, where we 
also deduce some alternative expressions for the kinetic energy T. Next in 5 3 we 
prove that 

SZ,= 4 ~ - 3 V + h Z ,  ( C )  

where 3denotes the mean velocity on the bottom. M7e show that (C) is another 
form of a relation due to Starr (1947). It becomes particularly simple in deep water, 
when u . ~tends to zero. Similarly we prove that in general 

a relation not found previously. I n  deep water this also simplifies, so that the three 
fluxes of mass, momentum and energy are given respectively by 

(the first relation remains true in water of any depth). 
In  5 4 we deduce some new parametric relations between these integral properties, 

which govern the rates of increase of T, V and c when the wave amplitude is allowed 
to vary, with the depth and wavelength fixed. Por instance we show that 

which generalizes a result proved previously for the solitary wave. (Equations (B), 
and (C) and (D) are analogues of the corresponding equations of paper (I).)from (D) 
can be deduced a number of interesting relations, particularly some involving the 
Lagrangian (I1-V). 

Finally in $ 5 these integral properties of the waves will be related to the quanbities 
Q ,  R and S introduced into shallow-water theory by Benjamin &: Lighthill (1954). 
It is noted that the integral quantities I,T and V nzay have some advantages as 
parameters of the wave motion, particularly in deep water. 

We emphasize that all the relations just mentioned are exact, and do not in any 
way depend upon the approximations either of small-amplitude wave theory or of 
cnoidal wave theory. 

In  the second part of the paper we use some of the above relations to calculate the 
values of I,T,  V and c for waves in deep water. The small-amplitude expansions for 
this case are quite different from those used previously for solitary waves. Never- 
tlzeless a similar result appears, namely that the speed, momentum and energy all 
appear to attain their maxinlum values for wave amplitudes less than the limiting 
amplitude (for which the crest angle is 120"). Moreover, the calculated values of the 
speed and height of waves of limiting amplitude are in very good agreement with 
the independent calculations of Pamada (1957) and Schwartz (1974). Further 
discussion of these results is given in $7. 
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2 .  M O M E N T U M&451)K I N E T I C  E S E R G V  

Let -Q be the mass flux in the steady flow relative to an observer inoring with 
the phase velocity c, that is let 

On integrating each side with respect to z between 0 and X me have 

where 1 M  is given by (1. I ) . Since 1 M  is taken to be zero this gives 

a relation analogous to equation (4) of (I). 

Wow to prove ecjuation (B) of 5 1we have from (1.4) 


where di and Ydenote the velocity potential and stream fi~nction of the steady flow, 
since a(@, Y/)/a(x, y) = [( tc -c)%+v2]. But 

by (2.2). Taking C = 8,we arrive a t  equation (B). 
B t  is worth noting thal in some physical circumstances it is appropriate to assume 

1- 0 (the total horizontal flux is zero) rather than C = 0. Then equatioii (2.3) 
leads to 2T = -QClA, (2.4) 
:t different result in general. 

Equations (A) and (B) have some further consequences. Since (x+iy) is a i l  
analytic furlctio~i of (@ i-iY)we have, by the Cauchy-Riemann relations 

where the integral rnay be taken over one wavelength, and from bottom to free 
surface. Hence 
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Since ds = Q -cx and dds = d4  -c dx we have 

by (A). Hence ('(h+9)dq5 = A(&-&) = A l  

Taliing C = 0, equation (B)now gives 

This is analogous to equation (2.2) of (I). 
Further we have 

d4  = dds+cdx = -qds+cdx, 

svliere q is $he speed a t  the free surface in the steady motion. Writing 

for tlie total head we have 
(12 = 2R-2g(h+r). 

Hence altogether (2.6) yields 

where 71' = d ~ / d x .Tliis expresses the kinetic energy as an integral involving only 
the surface elevation 7 and other constants of the motion. 

3. MOBIENTUMF L U X  A N D  P O T E N T I A L  E N E E G Y  

To prove relation (C), let us assume that 171 and C both vanish, and consider 
Eernoulli's equation in the form 

rp + (U -c ) ~ ]+ (gy-c2)+ v2+ ( p+ gy) = 2B, (3.1) 

where clearly we have from equation (2.8) 

B = 11-gh- &c2. (3.2) 

Kow by the equation of vertical niomentum 

Adding (3.1) and (3.3) and rearranging terms we have 

D a 
[ p +  ( a - c ) ? - t - ( g y - C ~ ) ] + ~ [ ( Z / + ~ ) V ] + - [ ( y + B )  (3.4)(p+gg)] - 2 0 .  

ay 

On integrating the first group of terms on the left of (3.4)we get 

!,"/Ih [ p+ (U -c ) ~-I-(gy-c2)] dy dz = A(X,, -2cI + 8). 



When integrated similarly, the second group of terms in (3.4) vanishes, while the 
third group yields (since p vanishes a t  the fiee surface) 

Altogether we find A(#%:,,-- 2cI -/- 3V )= 2ABh, 

and so S,, = 4T- 3V+2Biz. (3.0) 

A simple expression for B can be found as foloms. Consider the total vertical 

niomentu~rr of the fluicl over one wavelength, between s = 0 and z = A, say. Its 

time-rate of change is zero. Since this rate of change is the result of the externel 

forces actillg on i t  we must have simply 


-\vherep, is the pressure 011 the bottom. The fluxes of vertical ino~nentr~rn across the 
ttvo planes z = 0, h just cancel, by periodicity. Bo on integrating both skies of (3 .1 )  
over one wavelength a t  y = -Jb we obtttin 

Tvhere u ,  denotes tlze T. docity on the bottom. 
Ou substituting for B into equation (3.6)we obtain the relation (6). 
I n  deep n~ater it can be shomn (see. I'or example, Longuet Miggins 1953) t21:1t 

(u2+tj2) decreases exponentially with y, in any motion which is irrotational, inco~zi- 
pressible arid periodic in z,anci such that u = 0. Hence as 17-+WJ 

Blz -> 0,  

and (C) recluces t'o S,,= 42' -3V. (C ' )  

Note that  for waves of infinitesimal amplitude T'+ B+ $E, where E is the total 
density of energy per t ~ ~ i i t  horizontal area. Erluation (C') then reduces to  

the well-known relation for waves of r;niall ainplitnde (Eonguet-Higgins 6;Stewarb 
1960). 

It can be shox~-n that equation (C) is related to equatioi? (4.5) of Starr (1947), 
which iiir~nlve~ the difference in kinetic energies of the florizontal and vertical 
motions. 

I 1 
l h e  mean energyT flux I' defined in 1 can be expressed in terms of tllc otller 
qnantiticg. For rro~n ( I .7) and (3.1) l~ave  

?IP =  (B+cu)ucb~= j;a2dy (3 .7 )  
-h h 
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and from (1.6) 

IS'$,+v = -1~( p+yy )dy+s l  u2dy. 1' 

-h 

But from (3.1) B = ( p+ gy)+ +(u2+2r2) -CZC. 


,So on integrating with respect to y and taking mean values, 


Using equation (B) we have then 

SY (p+g?y)dy= T+Bh,. 
- h  

From (3.7), (3.8) and. (3.9) it  follows that 

F = BI+c(S,,+ V-T-Bh,), 

and so on substituting for S,, from (3.5) we find 

F = (35"-2V)c+(I+ch)B. 

In  deep water, when Blz -t 0, we have simply 

F = (3T-2V)c. 

For waves of small amplitude this reduces to 

F= +Ec, 

the usual formula, since &c equals the group velocity.-/- 

We shall now prove some differential relations between I,T,V and c by using 
a variational method analogous to that used in paper (I)(see also Luke (1967) and 
Benjamin (1973)). 

The totall energy hE over one wavelength may be written 

where q5 is the velocity potential. The motion being progressive, the kinematical 
and dynamical conditions a t  the free surface can be written 

$2 r x- $2, = CT21  
$($; + 9:) +g r  = c$, + constant. 

t The relations (3.10) and (3.11) are not among those given by Starr & Plataman (1948). 
Equation (32.48) of Wehausen Ss Laitone (1960)appears to  be true only if B = 0 and c = 1. 
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Now let 6 9  and 671 denote arbitrary sinall variations of the velocity potential and 
surface elevation such that 6 9 ,  and Fq are periodic wit11 period A. It follows ti1a.t 

independently of the point x = (z,y ) .  Assumiilg that 67:= 0 we have 

by Green's theorem and (4.2),where a suCiix .Y denotes the value a t  the free surface, 

Also, stJarting from 

A 
we find w,dy d r  +I (9,),6~ di., (4.5) 

0 

and si~lce n / q6 9  dy = 1' 6 4 ,  dy +7, (6$),,
c'x: - I b  -h 

we have 011 integratioi~ with respect to x, 

(124-17) 6C = /oh[~1b6Q,zdydi+ (I.w~ ~ i i ( 6 d ) r d ~ .  6) 

From (4.41, (4.5) and (4.6)i t  follo~vs that 

Taking 6C = 0 as before we have 
FE = c S I .  

Suppose now that  the variations SQ, and 671 are specialized so as to describe the 
growth of a wave of fixed wavelength h but x-ariable amplitude. Then we may write 

But in addition eciuatiois (B)~villapply, so that we have also 

2 d T  = c d l i - I d c .  

Subtracting, we get d (T- 8)= Idc .  
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These relations are identical with those for solitary waves (see (I)$3) except that  
now I ,  T a,nd V denote densities of momentum and energy. It follows immediately 
that  

and if L = T- B denotes the Lagrangian, then 

Equation (4.0) may be further generalized to include variations in the wave- 
length h and depth h by the following argument. 

If in (4.1) me allow a change 6h in the depth brrt keep h constant, then an extra 
term 

j: dx 6h = hB Sh, 

must be added to the right-hand side of (4.4), and an extra term 

must be added to (4.5). Since C = 0 this means that equation (4.8) becomes in general 

6E = cSI+B6h.  (4.12) 

Hence for the special variations appropriate to free waves we have in place of (4.11) 
the inore general relation 

dL = Idc-Bdh.  (4.13) 

If we now include variations in the wavelength A, equation (4.13) becomes 

where the coefficient K remains to be determined. Consider a variation which simply 
enlarges the scale of the wave, keeping the shape constanb, the11 since h is propor- 
tional to h and since L K h2 and c cc we have from (4.14) 

or on using equation (B) 
K = (T-2V+Bk)/A. 

Altogether then we have 

d L  = 2T dc/c + ( T- 2 B -1- Bh)dhlh -B dh. (4.17) 



We now seek to express the above relations in terms of the coll~talzts &, B and S 
used by Benjamin $ Eightllili (1954)in their approxima tc Ltleory of c~ioidalwaves. 

& and R have already been defined in (2.1) and (2.8) respectively. The third 
constctnt S is the monaentum flux in the steady rnotion: 

On expanclizlg the right-hand side and taking mean value;; i t  is readily seen that 

S = S,, -2c l+  h(c+ $qh). (5.2) 

To express I,T and V in t e ~ m s  of&, 11 and Xwe have, first, from equation (A), 

1= ch-Q, 

[lien from equation (B), $1, 2 T  = c(ch-Q), 

arlcl on eliminating (X,, -2 ~ 1 )and B frorn (3.2), (3.5) and (;3.2),  

The radiation stress, Srom (5.2) and (5.3), is given b.y 

S,, = s-2cQ +h(c2- ig i t ) ,  

while from (3.9)we find after some reduction 

From 5 4 we can also write down differential relations for &, I:, X ancl c, but these 
appear less simple. 

We note that apart from ari arbitrary phase constant a gravity wave is uiliquely 
defined by three parameters, for instance the wavelength, wave height and the 
mean depth. The three quantities Q ,  R and S are particularly suitable for use in 
shalloxv water, when /A 4 A. However, in deep water when t,/h-z co we have 

where the suffix cc denotes the limiting value as h//t -+a.Hence &, R ancI X all tend 
to infinity, for fixed A. 

On the other hand all the integral quantities I,T, V ,S,,arid F remain finite as 
h/A+m. Any three of tllese quantities, within certain ranges, would serve to define 
the motion. Eowever no exact differential equation for the wave profile, ~ ~ i t h  these 
quantibies as parameters, has yet been given. 
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6. C A L C U L A T I O NO B  C, 2' A N D  V FOR WAVES I N  D E E P  W A T E R  

We shall now apply some of the foregoing analysis to  the calculation of the speed 
and energy of finite-amplitude waves in deep water. 

Following Stokes (1880)we consider the motion in a frame of reference moving 
with the phase velocity, and take the velocity potential @ and stream-function V 
as independent variables. Let 

exp [i(@+iY)/c] = W (6.1) 

say. On the free surface we have 

yJ = 0, -Cy = eialc, 

and as y-f-CO, SO Y - -cy, W-tO. 

In general (x+iy) is expanded in tlie Fourier series 

(the wavelength being normalized to 2x) and hence the particle velocity (U, v) is 
given by 

The coefficients a,, a,, ..., which are all real, are determined from the constant 
pressure condition a t  the free surface, which can be written 

the constant a, being a t  our disposal. Equating coefficients of cos (n@/c) in $his 
equation we get a sequence of relations to be satisfied by a,, a,, a3, . . .,c2 and I{ (see, 
for example, Schwartz 1974). 

Schwartz assumes expansions ia powers of a small parameter e, dependent on 
the wave amplitude, in the form 

and gives algorithms for the successive calculation of the coefficients ajk,  yk, 8,. L4s 
expansion parameter Stokes (1880) chose e = a,. Schwartz (1974) shows that a, is 
not a monotonically increasing function of the wave height, and prefers instead 
e = a, where a is the wave amplitude, defined by 

a, = l ( ycrest -']trough).2 (6.8) 



Thus for instance i t  is found that 

From these expressions we can calculate not only c but also 1 ~ " n dT in pon.ers of a,  
for froni equation (2.5) we have 

while on letting y -+- cc in Bernoalli's theorern ive find from (6 .6) that 

With g = 1 the last two equations yields 

Tn calculating the potential energy V froni eyuatioiz (1.5) we must be careful to 
choose no so that the mean level 7 vanishes. Alternatively we can let 0, = 0,  as in 
Schmartz (1974). and then use the more general relation 

-
V = ig(q" Ti). (6.14) 

In terms of a,, a,, ... have, if a, = 0,  

and 

Using t21e expansions of the coefficients a, in powers of cr as given by Schn-artz me 
f h d  thtxt, 

T = $(L" - I c t a G  -731LaR -
48  2880 . " 9 1  

g = l a 2  - La" IdLaG -1011 8 
(6.43) 

4 8 48 i 8 8 o a - ' " ' 9 4  

and (y- j7)z== - ilzas -#Lz~o - . . . . (6.16) 

Thcse expansions confirm those obtaincd by Platzmaii (19471, "110 expaiided 
'2" and V in powers of /? = (c2-- I)&. 

However, for 'cFTaves of large dniplitude a,terms of'nnuch higher order are required. 
Xor is i t  ltnorvn apriori &.hatis the maximulm value: of a, expected to eorrespo~~ei to 
the wave of limiting amplitude. For this purpose we introduce a nex7 parxlle-ter o 
defined by 



Periodic gravity waves of finite amplikude 169 

where qCrest and q,,,,, denote the particle speeds a t  the wave crest and wave trough 
respectively, and c, is the speed of waves of infinitesimal amplitude. This parameter 
has the following convenient properties: 

(1) For waves of small amplitude, w < I, while for waves with a sharp-angled 
crest, a t  which qCreEt vanishes, we have o = 1. Thus the limiting value of w is 
accurately known. 

(2) Since from equation (6.5) 

and a, contains only odd or even powers of a according as n is odd or even, it follows 
that w can be expanded in powers of a2,. Thus 

Reverting, we have 1x2 = +w+gw2-&&w3-..., (6.20) 

and c2, T and V can also be expanded in powers of w. This not only reduces drasti- 
cally the length of the computation a t  high orders, but also iniproves considerably 
the rate of numerical convergence. 

(3) It will be noticed that for solitary waves the 'trough' occurs a t  x = + co,so 
that qtrOugh = c. Hence w becomes simply ( I  -q2r,st/~,2),which is the parameter used 
previously by Longuet-Higgins & Fenton (1974). 

Schwartz (1974) calculated the coefficients aj,, y, and 8, as far as the terms in all7. 
The numerical values of these coefficients were kindly supplied to the present 
author by E.D. Cokelet, who had recalculated them on the I.B.M.370 in quadruple 
precision (about 32 decimal places). The present author then inverted the series 
for w and expressed c2, T and V as power series in w. Calculations were carried to 
order w40 (that is to a8O) beyond which point rounding errors prevent any further 
gain in accuracy. 

As an important check on the algebra, the coefficients of onon each side of the 
identity 

(see § 4) were compared a,ndwere found to be in agreement to one part in l o p ,  where 
p ranged from 32 when n = 4, down to 21 when n = 40. 

The series for a2,c2, I,T and V were then summed by [N, N] Pad6 approximants. 
Surprisingly good convergence was obtained right up to the limiting value w = 1 
(see, for example, table 1).The final values as determined in this way are given in 
table 2, and also shown graphically in figures 1and 2. 

With the alternative expansion parameter 

the rate of convergence was less rapid, but the limiting values were consistent with 
those in table 2. 
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TABLE1. SUCCESSIVE APPROXInlANTS [ N ,i\i] TO TEIE SQUARE OF T H E  WAVE PAD& 
SPEED c2, FOR VALUES OE w CLOSE TO THE iMAxmunI:  

7. . D r s c u s s ~ o ~  
It will be seen from figure 1 and table 2 that ~vhereas the steepness (a/%)is a 

monotonic function of w,  both I ,  T, V and c2 apparently have maxima before the 
highest wave is reached. A similar property was found for the solitary wave by 
Longuet-Yiiggins & Penton (1974).Both sets of calculations relied on Pad6 approxi- 
mants, bat the series expansions i11the two cases were quite different. In the previous 
paper a physical disc~rssion was given of the possibility of a maximum phase speed 
within the range of o, and i t  was seen that apparently sue11 a inaxirnurn was not 
unreasonable. Maxima in the magnitudes of the Fourier coefficients a,, a,, ...were 
previously found by Schwartz (1974). 
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Ii 'rurm~1. The square of the wsve amplitude a and wave speed c as 
fullctions of the parameter w .  

As a check on the calculations we may compare the values of c and a in the 
extreme case w = I with the limiting values of the speed and wave height as found 
by previous aJuthors. 

Yamada (1957) calculated the profile of the highest wave by fitting a Fourier 
series a t  12 points on the profile, so as to satisfy the constant pressure condition 
numerically. His result c2= I .  1932 is close to the value c2= 1.1931 in our table 1. 
Schwartz (1974) calculated c2= 1.1930 a t  a wave steepness a/x = 0.14 very near 
to the limiting wave and suggested that the speed had a stationary value (maximum) 
in the limit. (Our calculations suggest that if there is such a stationary value, i t  is 
a minimum .) 



M. S.Longuet-Higgins 



- - - 

173 Periodic gravity waves of Jinite amplitude 

As regards the limiting wave amplitude, Yamada (1957) found alx = 0.0412, and 
Schwartz the same value, to four places of decimals.? This is close to the limiting 
value 0.1411 found by the present method. Thus it would appear that the values 
in table 2 are not seriously in error, a t  least for the limiting wave. 

One point a t  issue in the previous calculations for the solitary wave (11)was 
whether the small-amplitude expansion used in that paper was truly convergent, 
or only asymptotically valid as the amplitude tended to zero. In  the present situa- 
tion of waves in deep water i t  is known that the small-amplitude expansions in 
powers of h or w are convergent for sufficiently small wave amplitude, as was proved 
by Levi-CivitA (1925). Numerically, the radius of convergence in powers of w is 
found to be close to unity, and there is no reason to doubt the completeness and 
convergence of the series up to and including the highest wave. 

As pointed out by Longuet-Higgins & Fenton (1974)~ a maximum in the total 
energy (T-t- V) would have some implications for wave breaking, and may contribute 
to the intermittency of spilling breakers as observed for example by Longuet- 
Higgins & Turner (1974). However the energy maximum has no apparent con- 
nexion with the instability of gravity waves in deep water which was discovered by 
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