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On the mass, momentum, energy and circulation 
of a solitary wave 

BY M. S. LONGUET-HIGGINS, F.R.S. 

Department of Applied Mathematics and Theoretical Physics, 
Silver Street, Cambridge 

and 
Institute of Oceanographic Sciences, Wormley, Surrey 

(Received 13 August 1973) 

Some new relations are given between the kinetic and potential energies of a solitary wave. 
In particular, the Lagrangian is expressed as an integral involving the total energy. Alter- 
native proofs are also given of two other exact relations satisfied by the profile of the wave. 
These relations are used to derive some very simple but close approximations to the form 
of the wave of maximum amplitude. 

1. INTRODUCTION 

For many purposes, particularly for calculations of the dynamics of waves breaking 
in shallow water (Longuet-Higgins & Turner 1974), it is desirable to know not only 
the profile of a solitary wave, and how this depends on the wave amplitude, but also 
certain integral properties of the motion such as the total energy, mass and momen- 
tum. In particular we are interested in the wave of maximum amplitude, which as 
shown by Stokes (I88o) develops a sharp corner at the wave crest, with an interior 
angle of 120?. 

Despite recent calculations by Lenau (1966), Byatt-Smith (I970), Strelkoff (i97), 
Fenton (1972) and others, there are still some discrepancies in the determination 
of the wave profile, especially for high waves, nor have any reliable limits been set 
to the accuracy of the various determinations. 

Special interest therefore attaches to the existence of certain exact relations 
satisfied by the solitary wave, some of which have been known previously, others 
being given in the present paper. It will be shown how these relations can be used 
to check the accuracy of previous calculations and to provide a simple approxima- 
tion with a high degree of accuracy. 

Consider a solitary wave, of arbitrary amplitude a, propagated with velocity c 
in water of undisturbed depth h, as in figure 1. We may define the Froude number: 

F = c/^(gh), 

where g denotes the acceleration due to gravity. Taking axes as in figure 1, with 
the origin in the mean level and the x-axis horizontal, let u and v denote the horizontal 
and vertical components of the particle velocity, and y y= denote the surface 
elevation. q is assumed to tend to zero at infinity. 
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FIGURE 1. Notation and coordinates for the solitary wave. 

We may define then the excess mass of the wave 

M = fj dx, 

the total momentum (or impulse) 

I I= I udy dx, 
J-oo J ~h 

the kinetic energy 

T = f - -(u2 + v2) dy dx, 
-co 

and the potential energy 

V = W ?g2 dx. 

We also define the total circulation 

C = u-ds = j, 

where 0 is the velocity potential (the motion being assumed irrotational) and 
u = (u, v), a function of (x - ct). The integral is taken along any streamline. Although 
u = V6 vanishes at infinity, nevertheless since the particle motion in a solitary 
wave is always in the direction of wave propagation, the circulation C is generally 
positive. In a periodic wave of finite length one can of course choose a frame of 
reference in which C vanishes, but for a wave of infinite length this is no longer 
possible. 

Between the above quantities there are the following known relations 

I = cM, (A) 

2' =c(I- hC), (B) 
and 3 V = (c2- gh) M. (C) 

Equation (A) has been pointed out by Starr (I947). (B) was proved by McCowan 
(I891), and (C) was first prove by Starr (1947). For convenience we give short but 
direct proofs of these results in the Appendix. 
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To these we shall add in the present paper the new relation 

d) = dV, (D) 

the increment being with respect to the parameter F or the proportional wave 

amplitude a/h. From (D) a number of other relations can be deduced (see ? 3), in 

particular an expression for the Lagrangian (T- V). 
In ? 2 we derive some other relations between 0 and r, and in particular an identity 

involving q alone, namely 

i [(h + y) (1 -2ryF2lh) (1 + s'2)- hi dx = o (E) 

which was pointed out to the author by Dr Byatt-Smith. We shall here give a shorter 

proof. 
In ? 5 we shall discuss some previous calculations of the solitary wave, and in ? 6 

we shall show how the above relations can be used to deduce a very simple but close 

approximation to the profile of the solitary wave of maximum amplitude. 

2. EXPRESSIONS FOR THE KINETIC ENERGY 

We note first that equation (B) enables us to write a simple expression for the 
kinetic energy in terms of the velocity potential 0. For we have 

aa y.dy = ao dy + (Os a) 

where (0)s denotes the value of 0 at the free surface. So on integrating with respect 
to x, 

hO I-+ ()sd. 

From equation (B) we have then 

2T=-c({ djq, (2.1) 

or on integration by parts 

2T =c fd. (2.2) 

To express the kinetic energy T entirely in terms of the surface elevation 1, let 

:= p -cx 

denote the velocity potential of the fluid motion as seen by an observer travelling 
with the phase velocity c, and let q (> 0) denote the speed at the free surface. We 
have then 

d = d0 +cdx = - qds+cdx. 

Also ds =(1 + '2)-d dx 
I-2 
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and by Bernoulli's equation for the steady motion 

q2 = c2 - = 2gh( - 2//hF2). 

Choosing for convenience units in which g = h = 1 we have 

do = .F[1 - (1 - 2,/JF2) (1 + y]2)-] dx. 

So from the definition of C in ? 1 we have 

C = F [tl-(l - 2/( 2)-i(l -+'2)4] dx (2.3) 
_ -00 

and from (B) 

T = ?F20 [ -l+(l- 2/F2)-i(1 +?'2)1- dx. (2.4) 

Alternatively we have from equation (2.2) 

211 _t7 [- (i-2i/2) (l+^^)] dx, (2.5) 
-00 

which, besides serving as a convenient check, has some advantages over equation 
(2.4). For, the integrand is immediately seen to be 0(y2) for small q and so tends 
to zero more rapidly as Ixl -> oo. We note also that for small values of y equation (2.5) 
gives 

T 1F2 y[1 -(1 -/F2)] d V, 
J -00 

showing that for solitary waves of small amplitude the kinetic and potential 
energies are nearly equal (cf. McCowan I89 ). 

Comparing equations (2.4) and (2.5) we have the identity 

f [(1 + V) ( F) (I+) -ldV20. ( 2/2 E) f (E) 

This relation, as pointed out byJ. G. B. Byatt-Smith (personal communication), can 
be derived from his integral equation for the solitary wave (Byatt-Smith 1970). 
We give here a more direct proof. Let 0 and W denote velocity-potential and stream 
function in the steady motion. Then since (x + iy) is an analytic function of (P + iW ), 
we have 

J dadTf = JJx dedT, 

so on integrating between the distant limits x = + X we obtain 

h +,) dq = 2XJ fd= -2Xch -ch dx 

from which (E) follows at once. 
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3. A PARAMETRIC RELATION BETWEEN T AND V 

To establish the relation (D) we shall use a variational argument similar to that 
of Benjamin (:1973), though with some essential differences. Let partial differentia- 
tion be denoted by suffixes. Then the motion being progressive, the kinematical 
and dynamical conditions at the free surface can be written 

f( qzSY-o-=Cz, (3.1) 

l2(02 + 02) +^ -cox. (3.2) 

The total energy E = T + V may be written 

E =f f (02+ 02)dydx+f 2 12dx. 

Now let 65 and 6y denote arbitrary small variations of the velocity potential and 
surface elevation, such that Sx, and 6y (but not necessarily 56) vanish as Ixl -> oo. 
Then applying Green's theorem we have 

6 =- IrS or FA+^S^dr+ f00 [i,+ )+ d BE f{(ox 8x + y Soy) dy dx + [L(02q + 02) + /] 6y dx 
J-oo -hA -oo 

- ( OS)sa ds + _ c(x) By dxZ 

by equation (2.3). But from (3.1) we have at the free surface 

96 , , . , dx dx 
as= (-xx + ) ds =-c ds 

Therefore 

5E = c [(qx)9 8y - (860) ] dx. (3.3) 
00 

On the other hand, since 

JI-= d 0dydx 

we have 

-I = 5f0 fbxdydx+ f(x)S B ) dx. (3.4) 
-J 0o J-oo 

Also since 

ax 6 d By = =G dy+xS(6)s, 

we have, after integration with respect to x, 

h0 5= 00 f Sxdy dx +f ^(68)s dx. (3.5) 

From (3.3), (3.4) and (3.5) there follows the general relation 

6E = c(6I-h 6C). 

5 
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This is a generalization of the result due to Benjamin (1973), who considered 

only the case 5C = O.t Equation (3.6) is true for arbitrary (smooth) variations 89, 
8, subject only to the conditions that 565, and 8y vanish at co. 

Suppose now that the variations 65, 86 are consistent with the 'growth' of the 
solitary wave so as to slightly change its amplitude a (or Froude number F) while 

keeping the mean depth h constant. Then from (3.6) and equation (B) it follows that 

dE cd(2T/c). (3.7) 

This interesting relation may be put in a number of different forms. Writing 
E = T+ V we find 

dT 2T dV 
dc c dc ' 

Hence d (c) 
dV () 

so T =2 dV = -c. (D2') 

Alternatively, if we introduce the Lagrangian 

L T-V, 

dL_ 2T 
we may write d = () de c 

and d(L/c) ( 
d(l/c) 

or in integral form 

L, =-c2 fVd-) = dc2 = -c Ed(c-. (Div) 

It is worth noting that if in place of V one introduces the total potential energy 

V* = ( -A+)2 dx V+ghM + gh2X 
-x 

and considers the variation of (T + V*), admitting variations dh in the depth 7, 
then one arrives at the more general result that 

d(T- V) - 2T(do/c) + [(c2 -gh) - 2T] dh/h - 0. 

When dh = 0 then this reduces to equation (D). But when F is kept constant and 
h is varied, then since T oc h3, V c h3 and c oc hA it follows that 

3(- V)- T + [(c2-gh) - 2T] = 0, 

which is equivalent to relation (C) of ? 1. 

f It appears from equation (2.6) of Benjamin (I973) that he also assumed it possible to 
take C = 0. 

6 
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4. THE SMALL-AMPLITUDE APPROXIMATION 

Writing g = h = 1 and introducing the parameter 

caCF2- (F c) (4.1) 

we have the well-known approximate expressions for waves of small amplitude: 

? c sech2/(x-ct), 1 

+ i+if (a/f) tanh /(x + iy-ct),J 
( 

where / - -x/3 cc (4.3) 

(Boussinesq 1871; Rayleigh 1876; Lamb 1932). From these it is easy to find that 

IVTI cc2, 
-^3 "i 4 ;(4.4) 

and so from equation (D) 

L 5, 3 (4.5) 

Further terms in these expansions will be given in a subsequent paper by the present 
author and Dr Fenton (in preparation). 

5. THE 'ORM OF THE SOLITARY WAVE OF MVAXIMUM AMPLITUDE 

In table 1 are listed a number of calculations that have been made of the height 
and form of a solitary wave of maximum amplitude. The accuracy of these calcula- 
tions has not been easy to assess. Yamada (I957) satisfied the free surface condition 

numerically, but at only 13 points on his profile. Byatt-Smith (1970) and Fenton 

(1972) both calculated profile of waves less than the maximum amplitude and extra- 

polated the results to the highest wave. But because the behaviour of the wave 

TABLE 1. ESTIMATES OF THE SPEED AND HEIGHT OF A SOLITARY 

WAVE OF MAXIMUM AMPLITUDE 

author F2 alh 

McCowan (1894) 1.56 0.78 
Yarnada (I957) 1.656 0.828 
Lenau (I966) 1.654 0.827 

Byatt-Smith (1970) 1.72 0.86 
Strelkoff (I97 ) 1.70 0.85 
Fenton (1972) 1.70 0.85 

height as a function of wave velocity is unknown near the maximum amplitude, 
their extrapolation is necessarily in some doubt. Lenau (1966) and Strelkoff (1971) 
both solved integral equations for the wave profile of maximum amplitude. This 

7 
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method also involves some uncertainty, in that the appropriate expansion of the 

profile in the neighbourhood of the crest is still not known (see Grant 1973). 
Strelkoff did not publish the details of his profile but only quoted his result: 

a/h - 0.85. 

6. A SIMPLE APPROXIMATION TO THE WAVE OF MAXIMUM AMPLITUDE 

For some purposes it is convenient to have a simple but accurate approximation 
to a function which otherwise requires numerical tabulation. We shall now show 
how the energy relations obtained earlier can be used to obtain such an approxima- 
tion to the profile of the solitary wave. 

Stokes (I880) showed that at a sharp wave crest the angle at the corner is 120?, so 
that the surface gradient is 1/7/3. Since also a particle at the surface must come to 
rest at the corner (in the frame of reference moving with the wave) we have the 
two necessary relations 

(0) = 2, '(+o) = - /3. (6.1) 
We know also (see Lamb I932, ? 252) that in the outer fringes of the wave the profile 
y behaves asymptotically like e-~ml, where 

tan/,a// = F2 (6.2) 

exactly. Suppose then that we approximated the profile by a simple exponential 
= A e-Ili, (6.3) 

we should obtain 
tanp/ = 2/7/3 = 1.155, F2 = 1.347, (6.4) 

a somewhat low value. This is because the single term (6.3) can satisfy, in effect, 
only two conditions, one at the crest and one at infinity. 

Suppose, however, that we introduce a second term: 

y = A e-lxl + B e-2,IxIl. (6.5) 

This is still consistent with (6.2) and in addition we can now satisfy the integral 
condition 

[j 2 (F2 _1),]d = 0. (6.6) 
-00 

Substituting in equations (6.1), (6.2) and (6.6) we have 

A +B = -F2 = tan //2/, 
A + 2B = 1/43 u, 

3(2A2+ 2A3B + 1B2) - (2A +B) (F2 _1). 
These equations are easily solved to give 

A = 1.116, B = --0.284, = 1.052, 2 = 1.665. (6.7) 
The value of F2 is now close to that found by earlier authors (see table 1). 

By introducing a further term: 

jy = A e-Flxl + B e-2lxl + C0 e-3#Ix 

8 
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we can satisfy also the integral condition 

Jf [(1 + ) (l-2 /F2)l) (1 + '2)] -dx = 0. 
In this way we obtain 

In this way we obtain 

A = 1.3117, B = -0.6522, 

/t = 1.0577, F2 = 1.6780, 

C = 0.1795,1 
a/h = 0.8390.J 

TABLE 2. THE PROFILE OF THE WAVE OF MAXIMUM AMPLITUDE, AS GIVEN BY EQUA- 
TIONS (6.8) AND (6.12), COMPARED WITH THAT GIVEN BY YAMADA (1957) 

Yarnada (I957) 

x/h h 

0.0000 0.8278 
0.1631 0.7363 
0.3462 0.6414 
0.4968 0.5698 
0.6370 0.5086 
0.7751 0.4533 
0.9172 0.4014 
1.0690 0.3514 
1.2381 0.3016 
1.4368 0.2508 
1.6880 0.1969 
2.0505 0.1369 
2.7971 0.0596 

oo 0.0000 

equation (6.8) 
A 

/lh 
0.8390 
0.7490 
0.6573 
0.5847 
0.5230 
0.4666 
0.4133 
0.3615 
0.3101 
0.2576 
0.2025 
0.1412 
0.0663 
0.0000 

difference 

0.0112 
0.0127 
0.0159 
0.0149 
0.0144 
0.0133 
0.0199 
0.0101 
0.0085 
0.0068 
0.0056 
0.0045 
0.0067 
0.0000 

equation (6.12) 
c A 

l/h difference 

0.8296 0.0019 
0.7380 0.0017 
0.6426 0.0012 
0.5707 0.0009 
0.5093 0.0007 
0.4540 0.0007 
0.4023 0.0009 
0.3527 0.0013 
0.3037 0.0021 
0.2540 0.0032 
0.2017 0.0048 
0.1436 0.0069 
0.0699 0.0103 
0.0000 0.0000 

A comparison of the profile (6.8) with Yamada's profile is given in table 2, showing 
that the differences are only of order 0.01. The corresponding values of the mass 
and of the kinetic and potential energies are 

M = 1.977h2, V = 0.447gh3, T = 0.547gh3. 

If, on the other hand, we adopt the simpler form 

/ = A e-/ll + B e-vlxl (v > ,), 

(6.11) 

(6.12) 

(a suggestion that I owe to Dr Packham) and then choose A, B, It, v so as to satisfy 
the same four conditions, we obtain 

A = 1.5389, 

it = 1.0495, 
F2= 1.6592, 

v = 1.4630, 
a/h = 0.8296. J 

6.13) 

From table 2 it will be seen that the agreement with Yamada's profile is now even 
closer, the differences over most of the range being only of order 0.002. Graphically 
(figure 2) the profile (6.12) is almost indistinguishable from that of Yamada or 
Lenau. Corresponding to (6.12) we find 

M = 1.963h2, V = 0.431gh3, T = 0.527gh3. 

9 
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FIGuRE 2. The profile of the vavae of maximum amplitude as given by equatio (6.12) (solid line), compared with the nuLmerical calculations of Yamada (1I957) (circles) and Lenau (1i966) (crosses). 
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7. CONCLUSION 

We have derived some exact integral relations for the solitary wave and used these 
to obtain simple approximations for the wave of maximum amplitude. These agree 
well with the more lengthy calculations of Yamada and Lenau. In fact both Yamada's 
and Lenau's profiles lie very slightly below our approximations, but there is some 
evidence from the work of Strelkoff (I97I), Fenton (I972) and Byatt-Smith (I970) 
that the maximum surface elevation may indeed slightly exceed the values obtained 

by Yamada and Lenau. There is clearly still a need for a definitive calculation of the 
profile of the solitary wave of maximum amplitude. 

In a further paper we shall pay attention to improving the calculation of waves 
of less than the maximum amplitude. Here the parametric relations derived in ? 3 

may be expected to be particularly useful. 

APPENDIX. PROOF OF THE RELATIONS (A), (B) AND (C) 

To prove (A), consider the motion relative to axes moving with the phase- 
velocity c. The particle velocity is then (u - c, v) and by continuity of mass 

(u - c) dy constant = ch 

so uddy = cdy 

which is equivalent to (A). 
Following McCowan (189I), let 0 and T denote the velocity potential and stream- 

function in the relative motion, so that 

= 0-cx, = f-cy 

and( Uao + = +V2 and U 
a(x,y) 

where (U, V) denotes (u - c, v). Then on integrating over the region of flow contained 
between the two distant limits x = + X, say, we have 

2T = [(U+c)2+ V2] dx dy 

= 
f(U2+ V2) dxdy 2c U dy2c +c)dydx +c2f dydx 

= ffd Td+ 2c (-hc )dx+c 2 (h + ) dx 

- c[0]x - 4c2hX + c2(M + 2hX) 
- ch[]X + c2M. 

Letting X -> oo and using equation (A) we see that (B) follows immediately. 

11 
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To prove (C) let p denote the pressure and write Bernoulli's equation (multiplied 
by two) in the form 

[p+(-c)2] + (gy-c2) + v2 + (p +gy) = 0. 

Now from the equation of vertical momentum we have 

(y+h) ~ -+ y(p+gy) = O, 

where D/Dt denotes differentiation following the motion. Adding, we get 

D a 
[P+ (u-c)2+(gy-c2)]+t[(y+)(y+h)v+ (+h) (p+gy)] = 0. (A ) 

But by using the constancy of momentum flux in the moving frame of reference, 
we have 

[p+( - c)2+(gy -c2)]dy [-gy+c2]dy + (y-2)dy 
-h h- J- 

= fgy-c2) dy. 

So on integrating over the whole wave, 

f 
f 

[p+ (u-)2 + (gy- c2)]dydx = V- c2M. 
J --oJ -h 

Also we have, with the same limits of integration 

JJt[(y + h)v] dy dx = (y+h)vdydx = 0 

and f -[(y +h)(p+gy)]dydx= f(+h)gdx = 2 V +ghM. 

So from equation (A 1) we have altogether 

(V- 2M1) +(2V+ghM) = 0, 

from which (C) follows immediately. It will be noted that this proof does not ex- 
plicitly introduce the kinetic energies of the horizontal and vertical motion, as is 
done by Starr (1947) and by Keady & Pritchard (I973). 
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