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A nonlinear mechanism for the generation of sea waves

By M. S. Lonauer-Hiceins, F.R.S.

Oregon State University, Corvallis, Oregon

(Received 3 September 1968)

Recent observations of the growth of sea waves under the action of wind have established
that the rate of growth is several times greater than has yet been accounted for. In this paper
a new mechanism of wave generation is proposed, based on the idea of a maser-like action of
the short waves on the longer waves.

It is shown that when surface waves decay they impart their momentum to the surrounding
fluid. Short waves are readily regenerated by shear instability. But a longer wave passing
through shorter waves causes the short waves to steepen on the long-wave crests. Hence
the short waves impart more of their momentum to the crests of the long waves, where
the orbital motion of the long waves is in the direction of wave propagation. If the short
waves are decaying only weakly (under the action of viscosity), the effect on the long waves
is slight. But when the short waves are forced to decay strongly by breaking on the forward
slopes of the long waves the gain of energy by the latter is greatly increased.

Calculations suggest that the mechanism is capable of imparting energy to sea waves at the
rate observed.

1. INTRODUCTION

After a decade of intense study, which has seen the development of wave generation
theories by Phillips (1957 to 1966), Miles (1957 to 1962), Hasselmann (1967) and
others, it is now evident that the mechanism mainly responsible for the most rapid
stage of growth of sea waves under the action of the wind still remains to be
found.

The ‘resonance’ mechanism suggested by Phillips predicts a small but constant
rate of growth of the energy in the initial stages of development, and gives correctly
the initial angular distribution of the waves. The ‘shear instability’ mechanism
proposed by Miles predicts an exponential rate of growth, which should eventually
overtake the linear rate. Yet recent observations of the growth rates by Snyder &
Cox (1966) and by Barnett & Wilkerson (19677) have shown, first, that the observed
initial growth rate, though similar in form to that predicted by Phillips, is some
50 times greater than would be expected on the basis of the measured intensities
of turbulence in air flow over rough surfaces; and secondly that the rate of growth in
the main stage of development is roughly an order of magnitude larger than pre-
dicted by Miles’s mechanism. Since the turbulent parameters of an airstream over a
moving water surface are not yet well known the discrepancy in magnitude between
the initial rate of growth and that predicted by Phillips’s theory may still be soluble.
The discrepancy between the later stages of growth and that predicted by Miles
seems at present to be more serious.

In addition, neither of the above theories accounts for two well-marked features
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372 M. S. Longuet-Higgins

of wave generation: the existence of some wave energy in a frequency range corre-
sponding to waves which travel faster than the wind-speed; and secondly the rapid
damping of a swell by an adverse wind.

There has been some revival of interest in a previous theory proposed by Jeffreys
(1924, 1925) that there is a separation of the airflow at the crests of the waves,
leading to a sheltering of the lee slopes of the waves, and hence a net rate of working
on the waves by normal pressure fluctuations. But it is difficult to see how long,
low waves could be associated with this effect. Nor does it explain the generation of
waves travelling faster than the wind.

Hasselmann (1967) has recently proposed that the waves react in a nonlinear way
with turbulent components in the airstream. But so little being known about the
atmospheric turbulence, and the difficulty of observation being so great, it seems
unlikely that this mechanism can ever be satisfactorily tested.t

The purpose of the present paper is to point out another nonlinear mechanism,
which is demonstrably operating in a normal sea state and which appears to be cap-
able of supplying enough energy to the waves to account for the observed rates of
growth.

The essence of the mechanism may be stated quite briefly. With any train of
surface waves there is associated both an energy density E, say, and a horizontal
momentum density M, related to £ by the simple equation

E =M (1.1)

where ¢ denotes the phase velocity. If the wave decays under the action of viscosity,
or even more drastically by breaking, it gives up a proportion of its energy. Conse-
quently, it must impart an identical proportion of its momentum to the surrounding
fluid.

Consider now a train of short waves riding on the crests of longer waves. It can be
shown that the short waves tend to be both shorter and steeper at the crests of the
longer waves than they are in the long-wave troughs, being compressed by the
horizontal orbital motion of the long waves. Hence the short waves have a pro-
nounced tendency to break on the crests of the longer waves, rather than in the
troughs. In breaking they give up a significant proportion y of their momentum to
the longer waves. But since the orbital velocity u, of the longer waves is positive at
the wave crests, the energy so imparted to the longer waves is also positive, and at
most equal to yMu,.

So we have the following picture: the wind continually supplies energy to the
shorter waves, imparting to them a momentum at a rate comparable to the wind
stress 7. The short waves cover the whole surface of the longer waves. The longer
waves, however, travel with a greater velocity and so move through the short

t Stewart (1967) has pointed out a more serious objection to this mechanism, namely that
the total energy in the atmospheric turbulence appears insufficient to generate ocean waves
of the observed magnitude. In the same paper Stewart (1967) suggests that appreciable energy

may be imparted by variations in the tangential stress of the wind on the sea surface. A
correction to his calculation is given in another paper (Longuet-Higgins 1969b).
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waves, causing the latter to break on the forward face of the long wave crests. In
this way the long waves gain energy at a rate comparable to 7u,.

This sweeping up of short-wave momentum by long waves, in a way favourable
to growth of the long waves, is similar to the action of a maser and is conveniently
called the ‘maser mechanism’ of wave generation. It is shown in § 8 that the maser
mechanism may indeed be of an order of magnitude sufficient to account for the
main stage of growth of the sea waves, and accounts quite well for the observations
of Barnett & Wilkerson.

First, however, in §§2 to 4, we give an account of the emergence of momentum
from a slowly decaying wave train, and show how it may contribute to the momen-
tum of its surroundings by a ‘virtual wave stress’ exerted by the boundary layer at
the free surface. The presence of this virtual stress corresponds to a small but signifi-
cant part of the total stress 7. Even if the short waves were not forced to break, they
would still do some work on the lower waves since the virtual stress is greater at
the long wave crests than it is in the troughs. Then in §§6 and 7 we discuss the
much more drastic ‘maser mechanism’ which results from breaking of the short
waves. Lastly in § 8 the consequences for generation of energy of the long waves are
discussed.

It will be seen that the maser mechanism can account for both the generation
of waves travelling faster than the wind, and the observed damping of waves by an
adverse wind.

2. THE MASS-TRANSPORT VELOCITY

We first recall some known results from the theory of surface waves on deep water.

The surface elevation { in a progressive wave of small amplitude @ may be de-
scribed by the expression ¢ = acos (kz— ot) (2.1)
where z is a horizontal coordinate, ¢ is the time and k and o denote the wavenumber
and the radian frequency. The latter are connected by the relation

o? = gk + (Tp) k* (2.2)

in which g, p and T denote gravity, density and surface tension (Lamb 1932).
Equation (2.1)is correct toorder (ak), the maximum surface slope. To the same order,
the components u, w of the particle velocity in the interior are given by

u = ao cos (kxz— ot) e"z} 2.3
w = aosin (kx — ot) e+ -3)

the vertical coordinate z being measured upwards from the free surface. Close to
the surface, however, there is a thin boundary layer, with thickness of order

8= (v[o)} (2.4)

where v denotes the kinematic viscosity. This will be discussed in detail in §3.
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In the interior of the fluid the particle trajections are circles, to a first approxima-
tion in powers of (ak). But in the second approximation, as was pointed out by
Stokes (1847), a marked particle possesses a small second-order mean velocity
U given by

_ ou o
U=u+fudt—é;c+fwdt—az (2.5)

where % denotes the mean value of » at a fixed point (the Eulerian mean) and the
remaining terms arise from the orbital displacement of the particle combined with
the gradients of the velocity field. The second term on the right of (2.5), when
evaluated by (2.3), gives a positive contribution la2cke?? This arises because
when the orbital displacement of a particle is positive, as it is on the rear slope of the
wave, the horizontal gradient of the velocity field is also positive. Similarly, the
third term on the right of (2.5) also gives a positive contribution }a?ske?*s. This is
because when a particle is at the top of its orbit its forwards velocity is greater than
the velocity at the centre of the orbit and when the particle is at the bottom of its
orbit the backwards velocity is less. Together the second and third terms on the right
of (2.5) may be called the Stokes velocity; thus

U=u+ UStokes (2.6)
where

o

ou
UStOkeS = fudt—é;‘+fwdt—a; (2‘7)

and for the interior of a progressive wave
Ustores = aPok e** (2.8)

If the motion is started from rest it is initially irrotational, and by a well-known
theorem must remain irrotational in the interior until vorticity is diffused or con-
vected inwards from the boundary. Under these conditions, if one chooses axes
at rest relative to the deep water, we find that in the interior

=0 (2.9)
everywhere except near the upper boundary. Hence
Uirrot = Ustokes (2.10)

This is greatest near the surface and diminishes rapidly with depth (see figure 1).
The gradient of U near the surface is given by

(%[z_])irrot - 2(“’0)2(7 (2'11)

The total forwards momentum within the wave is given by

0
M =f pU dz = 1pa?co (2.12)
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This forwards momentum is somewhat paradoxical. If one takes any volume
within the fluid, wholly below the level of the wave troughs then since % = 0 every-
where within this fixed space it appears that the total momentum contained within
this volume is zero. Thus from the Eulerian viewpoint (Phillips 1966, §3.2) the
whole momentum appears to be above the wave troughs: under the crests, where

Ule

—kZO

Fieurz 1. Profile of the mass-transport velocity in a progressive wave. , irrotational

motion; — - — —, profile modified by viscosity.

there is an excess of fluid, the motion is forwards, and under the troughs, where
there is a deficiency, the motion is backwards. Analytically this viewpoint is
represented by the formula

.
M =f pudz = pul (2.13)
~h

which on substitution from (2.1) and (2.2) gives the same result as equation (2.12).

The two viewpoints may be reconciled by noting that at any mean level z, within
the fluid a surface z = {(x, 2y, ) may be drawn consisting of the same particles, and
that by the same argument the total momentum contained below this surface is
given by

M (zy) = ul(z, 24, ) (2.14)
Since { = [w dt it follows that
M(z,) = pufwdt = 1pa%o ek (2.15)
Hence the distribution of momentum within the fluid is given by
pU = ?ii” = pa’ok e (2.16)
29

in agreement with (2.8).
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There are good reasons, in the present context, for adopting the Lagrangian
rather than the Eulerian viewpoint, that is to say for regarding the momentum as
being attached to marked particles rather than to particular regions of space. This
is because of the important role played by the viscous boundary layer at the surface
(which will be described in the next section), combined with the fact that the thick-
ness of the boundary layer is generally small compared to the vertical displacement
of the surface itself. Hence we require coordinates and dynamical quantities related
to the moving particles; in other words a Lagrangian description of the motion.

3. THE GENERATION OF VORTICITY IN THE BOUNDARY LAYER
Let us take coordinates 7 and s normal and tangential to the free surface, as in

figure 2. The boundary conditions at a free surface are that both the normal and the

tangential stress shall vanish:
Pan = Pps =0 (3.1)

C
——

Pnn
P ns

— _— g
—= \ =
\

B
S T =
d‘ <= —= (7]

o X

F1gure 2. The boundary layer at the free surface. p,, and p,, denote the normal and
tangential components of stress across the surface.

Now the vanishing of p,,, implies that the vorticity cannot vanish at the free surface.
For, if @ denotes the inclination of the surface to the horizontal, we have

Prns = (0082 0 —sin? 0) Do — COS Osin 6(paxc "'pzz)

= Pu(1+0(ak)?)
ou ow
=Uu (5; +%) (3.2)
Therefore the vanishing of p,,,implies that
ou ow
52_ = '——3; (33)
ow ou ow
and SO w= ('a—m'—-—a-;) =2%$0 (3.4)

in general. Since in the interior of the fluid the vorticity vanishes identically (to
start with, at least ) it follows that w has a sharp gradient near the surface. A closer
inspection (Longuet-Higgins 1953) shows that to the first order in ak we have

W = Wy e*" (3.5)

where Wy = 2(0w[d2),_y o = (—io[v)} (3.6)
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and n is the outwards normal. This represents an oscillating distribution of vorticity
which does not penetrate beyond a distance of order 8, = (v/o)%, from the surface.

However, to the second order in ak there is found, just beyond the boundary layer,

a mean (second -order) vorticity

B=4 (g;”f dt) = 2ebpre (3.7)

which is independent of » and of the boundary-layer thickness ¢ (see Longuet-
Higgins 1953, 1960). This vorticity adds to the mass-transport gradient a term
2(ak)? o which is exactly equal to the irrotational gradient given by equation (2.11).
Thus the total gradient of the mass-transport just outside the boundary layer is

(aU/az)viscous = 4(“]‘;)20‘ (3'8)

or just twice the Stokes gradient (see figure 1). The velocity gradient in gravity
waves has been carefully checked by measurements in the laboratory (Longuet-
Higgins 1960) and found to agree well with equation (3.8) and not with the irro-
tational formula (2.11).

We expect that the vorticity given by equation (2.7), being of constant sign, will
gradually diffuse downwards from the boundary layer into the fluid At a time ¢,
after initiating the wave motion, the depth of the fluid affected by the diffusion
of vorticity will be of order (vt)i.

The wave-induced vorticity (3.7) is in fact entirely equivalent to a virtual tangen-

tial stress.
Twave = 2PV(0k)? (3.9)

applied to the surface of the fluid. We shall now interpret this stress in terms of the
loss of momentum in a decaying wave.

4. THE WEAK DECAY OF A UNIFORM WAVE TRAIN

If left to itself, a uniform train of free surface waves will decay under the action
of viscosity. Thus we have, in the linear theory

a = ay et (4.1)

where the decay time ¢, is given by
ty=(2vk2)~1 (4.2)

(see Lamb 1932, §348). Now the original momentum M of the wave cannot be
destroyed. How then isit redistributed ?

One might expect it to be distributed with depth as in the original motion, that
is to say proportionally to %2 But the existence of the virtual tangential stress
Twave Shows that the decaying waves are in fact transferring all their momentum to
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the boundary layer at the free surface. For, if we calculate the total momentum M’
transferred by the virtual stress (3.9) during the decay of the wave we find it to be
given by ® ©
M = fo Twave At = fo 2pv(ayethk)? odt (4.3)

thatis M’ = pvaik?ot, (4.4)
On substituting for ¢, from equation (4.2) we find that
M = tpaioc =M (4.5)

Hence all the momentum is transferred to the mean flow by the surface wave stress.

Hence the final distribution of momentum will be very different from the initial
distribution pU. It will be the result of downwards diffusion from the free surface.
We shall have

t
pU' = [ ft=t) Tuavelt a1 (4.6)
_exp (—2%/41)
where f@&) = —_«/ i)
v S = =F — V

FicurE 3. The flux of (Lagrangian) momentum in a damped water wave. The momentum is
first driven upwards the surface and then diffused downwards from the boundary layer
by viscosity.

After a time ¢ of order ¢,, the depth of the layer so affected will be of order £~*
which is of the same order as the depth to which the motion originally extended. But
for much larger values of ¢ the depth affected will increase like (t/to)E.

This interpretation is illustrated in figure 3. The horizontal momentum pU of
the waves per unit depth (which initially may have been imported solely by normal
stresses at the surface) is, during the process of decay, expelled upwards towards
the free surface and then diffused downwards again by viscosity.

Thus the waves act somewhat as a reservoir of horizontal momentum for the sea
surface. The momentum is drawn upon more or less gradually during the process of
decay.f

+ The upwards-pointing arrows in figure 3 represent the Lagrangian momentum flux.
The Eulerian momentum flux vanishes.



Nonlinear mechanism for the generation of sea waves 379

In this process the boundary layer acts as an essential link. However, for long and
steep waves it may, under the influence of intense shear, become unstable and break
up spasmodically, shedding vorticity into the interior far more rapidly than by
viscous diffusion.

5. MAGNITUDE OF THE VIRTUAL WAVE STRESS
It is interesting to estimate the magnitude of the virtual stress

Twave = 2pV(ak)? o (5.1)
in a typical sea state.
The formula (5.1) holds for a discrete wave of amplitude ¢ and maximum slope
(ak). With a continuous slope spectrum S(o) defined by

d(3a2k?) = S(o)do (5.2)
equation (5.1) is replaced by
Twave = 4pvf oS(o)do (5.3)
0
Consider now the contribution to this integral from different parts of the fre-

quency spectrum.
For the equilibrium range of gravity waves, in which the spectrum of the eleva-
tion ¢ is given by
F(o) =ag?05 (0,<0<0y) (5.4)
we have simply
aS(o) = a (5.5)
where « is a constant determined experimentally (Phillips 1966) and theoretically
(Longuet-Higgins 196g9a) to be about 1.2 x 102,

TABLE 1. VALUES OF 03 AND 0, AS DERIVED FROM THE OBSERVATIONS OF Cox
(1958), AND A COMPARISON OF THE VIRTUAL WAVE STRESS 7,y WITH THE TOTAL
WIND STRESS Tying-

U O3 Oy Twave Twind Tweve
(cm}s) (rad]s) (rad]s) (@ynjem?)  (dynjem?) T
318 35 300 0.15 1.2 0.13
608 25 900 0.45 4.3 0.11
920 ' 15 1000 0.5 9.6 0.05
1202 12 1000 0.5 17 0.03

In the capillary range, the slope spectrum as measured by Cox (1958) in a wind-
tunnel, is closely approximated by

oS(o)=8 (05<0<0,) (5.6)

where o3 and o, depend to some extent on wind-speed and fetch and £ is about
1.0 x 10—2. Some typical values of o5 and o, are given in table 1. It appears that at
higher wind-speeds the two ranges (5.4) and (5.6) merge, and that over the combined

range oy < 0 < o, wehave
oS(o) = 102 (5.7)

24 Vol. 311. A.
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as pointed out by Phillips (1966). From (5.3) it then follows that

Tyave = 0.04pv(0y— 0y) (5.8)
Since o, > o, the lower frequency o, can be omitted. Indeed, by far the largest

part of the stress comes from the high-frequency end of the range. We can therefore

take Twave = 0.040pvo, (5.9)

where o, is the high-frequency cut-off.

The values of 7y,e, 88 determined by equation (5.9) and the observed values of o,
are shown in the fourth column of table 1; in the fifth column are shown the corre-
sponding values of the total horizontal stress as determined by the empirical formula

Twina = Opair U2 (5'10)

where U is the wind-speed at a height of 4 cm above the free surface (as measured by
Cox 1958) and C is the corresponding drag coefficient. We take C' = 6 x 10-3. It
can be seen that at the lower wind-speeds the capillary wave stress appears to account
for a small but significant partof the total stress exerted by the wind. At higher wind-
speeds the proportion appears to diminish.

However, it may be pointed out that if the laminar motion breaks down, as it
probably will, the damping of the short waves may be greatly increased, leading to
a corresponding increase in the virtual wave stress.

The part of the total wind stress in table 1 which is not accounted for by direct
viscous decay of the wave field may be attributed to wave breaking and to the sup-
ply of momentum to increasingly long waves. We shall see in §7 that these two
effects are closely related.

6. THE WEAK DECAY OF SHORT WAVES RIDING ON LONG WAVES

It is commonly observed that short gravity waves riding on the backs of longer
waves are steeper on the crests of the longer waves than they are in the troughs
(see figure 4). A quantitative analysis was carried out by Longuet-Higgins &
Stewart (1960). The steepening is due to a combination of effects : the primary
effect is a shortening of the wavelength due to the horizontal contraction of the sur-
face near the crests of the long waves; next, the same horizontal contraction does
work on the short waves, causing their amplitude to increase; thirdly, owing to
the vertical acceleration in the long waves the ratio of the potential to the kinetic
energy of the short waves is increased.

Let a,, k, and o, denote the amplitude, wave number and frequency of the short
waves and a,, k, and o, the corresponding quantities for the longer waves, so that
ky > ky, 0y > 0. Then in the paper just quoted it was shown that if viscous dissipa-
tion is altogether neglected

ay = @4(1 +agk,cos (kyx — ogt))
ky = ky(1 +aykycos (kyx — 0yt)) (6.1)

O'1= 0'1
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to first order in (a,k,) and (a,k,). The ratio of (a,%,)% 0 at the crests to the corre-
sponding value in the troughs, is thus

(1 tagk,\t
= (1”‘“2]02) (6.2)

For small values of (a,k,) (to which the theory strictly applies) this ratio is equal to
r=1+8ayk, (6.3)

Ifforexample ayk, = 0.1, thenr = 1.8. Thus the virtual stress of the short waves will
be considerably greater at the crests of the long waves, where the long wave orbital
velocity is forwards, than in the troughs, where it is backwards.

c

z
| !
I |
@~ TR I x
I ~ I
i U |
| [
! !
| |
Twave

(b)

!
: |
| |
| |
| I
1 L

X

F1cURE 4. (@) A long wave of amplitude a, passing through a train of short waves of ampli-
tude a,, when the short waves do not break. (b) The virtual stress 2pv(a,k,)? oy of the
short waves.

Suppose now that the short waves are subject to viscous damping, but that the
rate of working by the wind is such as to keep the wave amplitude a, steady and given
by equation (6.1). The net work done by the long wave against the radiation stresses
in the short waves is then zero.

From equations (5.1) and (6.1), the virtual stress 7, of the short waves is given

by 7, = 20v(@,k,)2 T, (1 + dayky cos (kg — 04t)) (6.4)

to order (ayk,). Now the work W done by a small tangential stress 7, on the energy
of a wave motion in which the orbital velocity is a, is given by

W =1,u, (6.5)
the bar denoting the mean value with respect to timet. But near the surface,
Uy = @505 COS (kyt — Oy t).

+ This can be justified by a simple boundary-layer argument (see Longuet-Higgins 1969b).
24-2
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So on substituting from (6.4) and taking mean values we find

W = 8pv(a@,k,)2 T, adkyory (6.6)
and denoting the energy density 3pga? of the long waves by E, we have
E, 8 _ -
E: ~ 7 (@, k,)? 0103 (6.7)

If we take, say (@, k;)20; ~ 10~20, where 7, is the cut-off frequency for the short
waves, ca. 10% rad/s, then we have, in c.g.s. units,

E,|E ~ 10-%03 (6.8)

This rate of growth depends rather critically on the frequency of the longer waves.
For waves of period 6s (o, = 1) it is negligible, but for waves of period 0.5 s we have

E,JE ~ 2x10-3 (6.9)

which corresponds to a time constant of 250s.

7. THE BREAKING OF SHORT WAVES ON LONG WAVES

We have so far assumed a small steepness for the longer waves (a,k, < 1). If
ayk, is no longer small, it can be seen qualitatively from equation (6.2) that the
steepening of the shorter waves becomes much more drastic. For example, on putting
asky = 0.5 in (6.2) we find r = 81.

Hence the short waves must frequently be forced to break on the forward slopes
of the longer waves, and to give up a large part of their momentum to the latter. In
fact, when the long waves are on the point of breaking they are incapable of support-
ing any further gravity waves near the crest. The short waves then lose presumably
all their energy in breaking on the forward face of the long waves.

This is confirmed by the visual observation that long steep waves are often very
smooth on their rear faces, while their forwards faces are quite rough.

One might say that a long, steep wave passing through a field of short waves
tend to ‘clean up’ the short waves by causing them to break in the forwards face of
the long waves (see figure 5).

Now when the short waves give up their momentum to the longer waves they
contribute to the energy of the latter at a rate proportional to the orbital velocity
in the long waves. Since this is forwards on the upper part of the wave, the short
waves supply a positive amount of energy to the long waves.

Meanwhile between the crests of the long waves the momentum of the short waves
is replenished, mainly by the wind, and to a less extent by the radiation stresses.

Let us attempt a quantitative estimate of this effect. Suppose that on passing
through each crest of the long waves the short waves lose on the average a propor-
tion y of their energy (or momentum) where y is’of order 1. We suppose that the
proportion of momentum lost over the remainder of the wave is small compared
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to y. It follows that nearly all of the momentum supplied by the wind to the short
waves is ultimately imparted to the long waves on the forwards faces of the long-
wave crests.

Cy
short waves S—— short waves g
breaking breaking
A : / ,
(@) a: - x
| ~— I
] Uy ;
! I

|
|
(®) : Twave
|
1 1 x

Ficure 5. (@) The breaking of short waves on the forward face of a longer wave.
(b) The distribution of the virtual stress.

- If the wind-stress 7 is assumed to supply momentum solely to the shorter waves
it follows that the rate of energy supply to the longer waves is given by

W~r |u2| (771)
where |u,| = a,0, denotes the orbital velocity of the longer waves.

It is important to show that the energy supplied to the longer waves in this way
is not appreciably reduced by the work done by the long waves against the radiation
stress.t Now if B, denotes the energy density of the short waves per unit distance,
the momentum density per unit distance is £, /c,. Hence the momentum lost to the
short waves, per unit time in one wavelength of the long waves, is

V(B /) cq (7.2)
The energy supplied to the long waves per unit time, per wavelength, is thus
V(B /ey) cq|us| (7.3)

On the other hand the rate of working by the long waves on the short waves through
the radiation stress, per wavelength, is of order

S%%z / oy ~ S]] (7.4)
where S, = LE, denotes the radiation stress in the shorter waves. Comparing this
with (7.3) we see that the latter is negligible provided that

¢yfes <y (7.5)
which is true by hypothesis, since y = O(1).

+ Phillips (1963) has taken into account only the work done by the radiation stresses and
so concludes that the long waves are damped.
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It may be noted that equation (7.1) is the same relation that would have been
obtained had we assumed that all the wind stress were applied tangentially at the
crests of the longer waves. But we emphasize that this is not the present assumption.
Rather, the longer waves sweep up the momentum that was imparted to the short
waves (possibly by normal stresses) over the whole extent of the longer waves.

In practice the amplitude of the long waves is variable (having a Rayleigh dis-
tribution; see Longuet-Higgins 1952) and in equation (7.1) %, must be replaced by
some mean value L

W ~ 1|ty| ~ Tayk,c, (7.6)
to first order. However, the greater the value of a,k,, the higher the proportion of
energy swept up by the long wave, so that (7.6) may be an underestimate.

The mean value of the wave steepness (a,k,) may be determined either from
observation or from theoretical considerations (see below) to be of order 101, if
the highest waves are breaking. Hence we have

W ~ 0.17c, (7.7)

where ¢, denotes the velocity of the longer waves.
This last estimate of the energy input may be compared with the estimate

W ~ Tu, (7.8)

where u, denotes the friction velocity, defined by u% = 7/p,;,. The two estimates

(7.7) and (7.8) are equal if
Uy ~ 0.1c, (7.9)

If we denote by C the drag coefficient, defined as u2/U?2. where U denotes the wind
velocity at some standard height, then the condition (7.9) is equivalent to

C ~ 10-2(c, U)? (7.10)

which is consistent with observation (see Phillips 1966, p. 144).
To show theoretically that (a,k,) is of order 10—! we may note that in the equili-

brium spectrum F(0) = agio—s (7.11)
the ratio of the breaking wave amplitude a, to the r.m.s. amplitude @ is given by
@ 1
S~ 10 (7.12)

(see Longuet-Higgins 1969a). Assuming that the value of (ayk,) appropriate to a
breaking wave is 0.5, this gives

(@3 ko) p me. ~ 0.5 % 10~} = 0.16 (7.13)
Then assuming that the slope (a,k,) has a Rayleigh distribution it follows that
Ej"z = %ﬂ%(a?kz)r.m.s. ~0.13 (7°14)

which is of order 10— as stated.
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8. DiscussioN

Let us explore some of the consequences of equation (7.1) for wave generation.
We shall deal only with orders of magnitude.

Assuming that the long waves are steep enough for equation (7.1) to apply, but
not so steep as to be limited by breaking, then their rate of growth, in a spacially
homogeneous ocean unlimited by the fetch, will be given by

d 1 2
g (2P90%) ~ Tao (8.1)
that is to say
de 71
T~ Lo (8.2)
This represents a linear rate of growtht for the wave amplitude:
a~Lot (8.3)
Py
and for the wave steepness
ak ~ (T—k) ot —T—z ot (8.4)
Py pe

at least before dissipation of the long waves by breaking becomes important.
Let us consider the order of magnitude of this growth rate. Since 7 = Cp,;, U?,
equation (8.4) can be written

( Pair U\2(t
sl (2 ()
“ . (pwa.ter 4 T ( )

where T' = 270 denotes the wave period. Thus (¢/7") denotes the number N of wave
cycles. On substituting the numerical values

C=15x10"% and (0u,/Pwater) = 1.3 x 1073
we obtain
ak ~ 1.2x10-%(U/c)2N (8.6)

Now the maximum value of ak corresponding to breaking waves is, as we saw earlier,
of order 101, Hence if we consider the growth of those waves whose phase speed ¢
is equal to the wind-speed U the number N of wave cycles required for them to
achieve their maximum steepness would be, according to equation (8.6), of order
104, This is in agreement with wave observations at sea (see, for example, Sverdrup
& Munk 1947).

In a situation where the wave field is limited by the fetch « rather than by the
duration ¢ we may substitute for ¢ in equation (8.3) using the relation x/t = group
velocity = ¢, that is to say ¢ = 2z/c. This gives

27 U\2
a~ g~ 20ﬂ(—) x (8.7)
pe Pwater \ €

t If o is assumed constant. If, on the other hand, o is allowed to decrease gradually with
the time ¢ then (8-3) represents a lower bound for the wave amplitude.



386 M. S. Longuet-Higgins

or with the same numerical values as before,

@~ 0.4x10-5(Ulc)2w (8.8)
This formula may be compared with the recent observations of Barnett & Wilker-
son (1967) who contoured spectral density (in m?/Hz) against fetch x and frequency
f (Hz) for a wind-speed U of about 15 m/s (see figure 6). Consider, for example, the
situation when x = 200km = 2 x 105m. Formula (8.8) then gives

a ~ 0.8 (U/c)2metres (8.9)
The peak frequency for this distance in figure 6 is about 0.105 Hz, corresponding to

a wave period of 9.5s and hence a phase velocity ¢ = 15m/s. Hence (U/c) ~ 1, and
(8.9) gives a ~ 0.8 m. On the other hand, the total mean-squared surface elevation,

0.20

015(—

frequency (hertz)

010—

distance from coast (km)

F16URE 6. (From Barnett & Wilkerson, 1967.) Contours of spectral density as a
function of fetch (distance from shore) and frequency.

from the section of the contour map at x = 200km, is about 0.5 m?2. Equating this
to a2 we should have ¢ = 1.0m. Hence the order of magnitude of the total energy
transfer predicted by (8.8) appears to be correct.

Since the wave-number % is equal to g/c?, equation (8.8) also predicts that before
the waves are limited by breaking

akoc (Uc)? (gx/c?) (8.10)

Hence the distance x at which the wave steepness ak achieves a given value is pro-
portional to c%. Since ¢ = g/o, we might expect the frequency f = 270 corresponding
to the peak spectral density in figure 6 to be proportional to z—*. Such a curve has
been drawn in figure 6. The constant of proportionality has been adjusted so as to
give the best fit to the spectral peaks. One sees that the fit is fairly good, though the
curve is evidently rather too high for the shorter fetches and too low for the longer
fetches.

On the high-frequency side of the spectral peak, the spectral density is presumably
limited by wave breaking. But on the low-frequency side, before the waves are
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limited by breaking, it may be justifiable to assume that the spectral density is given
by a formula analogous to equation (8.8), namely

d U

4 2

=T aey=K(Z
F(U)_do‘(za) K(c) - (8.11)
where K is a constant. For fixed values of U and z this give,
F(o)oc o® (8.12)

Although such a conclusion is not inconsistent with the spectral densities at the
shorter fetches in figure 6, nevertheless the very steep lower face of the spectrum in
the lower right-hand corner of figure 6 suggests that the rapid rate of growth on the
low-frequency side of the peak is probably due to the operation of another mechan-
ism.

We suggest that this mechanism may be as follows. The phase velocity of a wave
of finite amplitude is somewhat greater than that of a small-amplitude wave of the
same length, by an amount of order (ak)%c. It is thus plausible that such a wave
should interact with a lower wave of slightly greater length (and lower frequency)
but travelling with the same phase velocity—particularly if the wave groups are
of finite length. In other words here may be a transfer of energy to a lower frequency.

A manifestation of this same mechanism is the instability of surface waves dis-
covered by Benjamin & Feir (1967) in which the main wave gives up energy to each
of two side-bands. For steep waves, the side-band of higher frequency would be
limited by breaking, more than the side-band of lower frequency. Hence the energy
would appear to be shifted continually towards slightly lower frequencies. This
effect will be further investigated in a subsequent paper.

An interesting consequence of the maser mechanism described earlier is that the
phase velocity of the longer waves is not limited to be less than the wind velocity,
as it would be if only the resonance or shear instability mechanisms were operating.
For, in order that energy be imparted to the longer waves by maser action it is
necessary only that the wind generate short waves at some point on the long-wave
profile, and this it can theoretically do no matter how great the phase speed of the
long waves.

We see also that some damping of long waves by an adverse wind is also to be
expected by the maser action of the short waves. For, the momentum of the short
waves will be in the same direction as the wind and therefore opposite to the orbital
velocity u, at the crests of the longer waves. So in breaking, the short waves will
take energy away from the longer waves.

The damping action of an adverse wind may in fact be more pronounced than the
generating action of a following wind. For by considering the waves in a frame
of reference moving with the velocity of the longer waves, the longer waves are
reduced to a steady stream in the same direction as the wind. The shorter waves are
propagated on the stream in the same direction as the stream. However, because of
the orbital velocity of the long waves the speed of the stream varies with distance.
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(according to Bernoulli’s law). Now if the adverse velocity in the stream exceeds
the group velocity ic, of the shorter waves the latter cannot be propagated against
the stream, and must be reflected or break (see, for example, Longuet-Higgins &
Stewart 1961). In either case they give up their momentum to the stream, so that
the maser action is clearly very effective.

It will be seen that some explanation is still required for the generation of the
short gravity waves. These can be attributed to the maser action of even shorter
gravity waves, and so on down to capillary wavelengths. The latter may be due
to shear instability, essentially as described by Miles (1962).

It would be interesting to record instrumentally the form of the surface elevation
¢ in ocean waves under the action of wind. If it can be established that the short
waves on the forward faces of long wave crests are significantly steeper than those
on the rear faces, so that the proportion y of the energy difference is of order unity,
one of the critical assumptions of the present theory would be verified.

Some indications of this effect, though on a small scale are already given by the
observations of Cox (1958) in a laboratory flume. These need to extend to oceanic
scales. Cox indeed observed steeper capillary wave action on the forward faces of
longer, gravity waves than on the rear slopes. Some capillary waves were found
even in the absence of the wind—a phenomenon attributable to the action of surface
tension at the sharp gravity wave crests (Longuet-Higgins 1963). However, in the
presence of the wind the shorter waves were of far greater amplitude.

This paper is partly based on a contribution to the Symposium on Turbulence
in the Ocean, held at the University of British Columbia, Vancouver, B.C. from
11 to 14 June 1968. It was completed at the Woods Hole Oceanographic Institution
during August 1968. The research has been supported under NSF Grant GA-1452
and ONR Contract 241-11. The author is indebted to Dr N. P. Fofonoff and to other
colleagues at the Woods Hole Summer School for stimulating discussions.
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