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On wave breaking and the equilibrium spectrum
of wind-generated waves

By M. S. LoxneueTr-HIicains, F.R.S.

Oregon State University, Corvallis, Oregon

(Recetved 3 September 1968)

A theoretical calculation is made of the loss of energy by wave breaking in a random sea state
in terms of the spectral density function. In the special case of the equilibrium spectrum
F(o) = ag?o—5 the proportion @ of energy lost per mean wave cycle is found to be given by

@ = o~1l/8x

irrespective of the low-frequency cut-off in the spectrum.

Assuming that in the equilibrium state the loss of energy by breaking is comparable to
that supplied by the wind, one can estimate the constant « in terms of the drag coefficient
of the wind on the sea surface. It is found that

a = _'%/]n[l6000‘(pair/pwater)]°

Taking a representative value of C one finds o == 1:3 x 10—2, which falls within the range of
observed values of &. The above equation for « is rather insensitive to the various assump-
tions made in the analysis.

There is some evidence, derived from observation, that « may not in fact be quite con-
stant, but may decrease slightly as the wave age (9¢/U) or the non-dimensional fetch (gz/U?)
is increased. It is suggested that the drag coefficient may behave similarly.

INTRODUCTION

The ‘equilibrium law’ for wind-generated surface waves, as first derived by Phillips
(1958) is that over a certain range of wave frequencies o the spectral density of the
surface elevation { is given by

F(o) = ag?c—® (1 < 0 < 0y), (1-1)

where g denotes the acceleration of gravity and « is an absolute constant. The fre-
quency-dependence of the spectrum (1-1) has been approximately verified by ob-
servations over a wide range of frequencies (Phillips 1966). Some experimentally
determined values of &, as quoted by Phillips, are shown in the last column of table 1.

Although there appear to be significant differences among the entries in the last
column, there is at least an order-of-magnitude agreement among them. However,
no independent theoretical estimate of a has yet been given.

Now the basic idea underlying Phillips’s derivation of the equilibrium law is that
over this range of frequencies the spectrum is limited by wave breaking. It seems
natural then to inquire how much energy is indeed lost by wave breaking in a
spectrum of the form (1-1), and to relate this to the energy input by the wind, which
can be estimated independently. This is the purpose of the present note.
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152 M. S. Longuet-Higgins

The estimate of energy loss must of necessity be somewhat rough, since we are
dealing with a nonlinear phenomenon. Fortunately, however, it turns out that the
appropriate value of a is fairly insensitive to the various assumptions that will be
made.

TABLE 1. VALUES OF & AS DETERMINED BY MEASUREMENTS OF
THE SPECTRUM OF SURFACE WAVES

x U
(m) (m/s) gz/U* a
Burling (1959) 70 3-9 180 1-48 x 10-2
Hicks (1960) 55 1-2 380 1-21 x 10-2
Kinsman (1960) 2500 56 800 1-04 x 10-2
Pierson (ed.) (1960) 3x10° 9-5 3300 1-33x 102
Longuet-Higgins, 5x 105 10-0 5x 10% 0-80 x 102
Cartwright & Smith
(1963)

The calculation is rendered remarkably straightforward by the demonstration,
givenin §2, that the proportional loss of energy per mean wave cycle in the spectrum
(1-1) is approximately given by

w = el (1-2)

independently of the frequency range o, < o < 0, provided ¢; € 5. On the other
hand, if we assume that the energy lost in breaking is comparable with that supplied
by the wind, we are led to the conclusion (see §2) that, to an order of magnitude

@ ~ 1600 Og(pair/pwater): (1-3)

where C is the ‘drag coefficient’ of the wind on the waves. On assuming the value
C = 1-5x 1078 and equating (1-2) and (1-3) we find

a=13x10-2, (1-4)

a value within the range of observation and moreover extremely insensitive to the
rough assumptions made in the analysis.

The question is raised in §4 whether « is an absolute constant or whether, on the
other hand, it varies throughout the development of a wave spectrum. There is
some evidence (derived from table 1) to suggest that o« may in fact be a decreasing
function of the ‘wave age’ as defined by Sverdrup & Munk (1947).

2. THE LOSS OF ENERGY BY WAVE BREAKING

A rough estimate of the energy lost to the breaking waves may be made in the
following way. It is well known that in a standing wave, the maximum downward
acceleration is equal to g (see Taylor 1953). It is less well known that in a progressive
wave, whose limiting form at the crest is the Stokes 120° angle, the acceleration is
equal to }g, directed away from the crest in all directions (Longuet-Higgins 1963).
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This is illustrated in figure 1. In a typical sea state, where the energy is directed
mainly within about 30° of the mean direction, it is reasonable to suppose that white-
caps appear whenever the vertical acceleration at the crest approaches — 3g.

Ficugre 1. The limiting acceleration near the crest in a Stokes 120 ° angle.

If for a moment we assume that the wave is adequately described by the linear
expression ¢ = acos (kx— at) (0% = gk), (2-1)
it follows that the condition for breaking is simply

ac? = }g. (2-2)

It might be thought unacceptable to use the linearized theory of small-amplitude
waves for an obviously nonlinear effect. But we note that on the same basis the maxi-
mum wave slope would be given by

(@) max, = (@02 [9)min, = 0-5 (23)
compared to the actual value
arctandm = 1/,/3 = 0-547 ..., (2-4)
and that the ratio of the wave height to the wavelength would be given by

2¢ ak ac? 1
f=—7r—=ﬂ—g=%=0‘159..., (25)
compared to the computed value 0-142...(Michell 1893). Hence in adopting the
criterion of equation (2-2) we may be in error by some 10 9.
Now in a sea state a narrow frequency spectrum it has been shown (Longuet-
Higgins 1952) that the distribution of wave amplitudes a is theoretically a Rayleigh
distribution:

p0) = 2 oxp {~atfa3) (2:6)

and, moreover, this distribution has been found to fit the observed distribution of
wave heights remarkably well even when the spectrum is not narrow (Longuet-
Higgins 1952; Watters 1953 ; Cartwright & Longuet-Higgins 1956). This distribution
is shown in figure 2. It has a maximum density at a/a@ = 1/,/2, and it decreases ex-
ponentially as a/a — co. The parameter @ represents the root-mean-square wave
amplitude, which for a narrow spectrum is related to the mean energy density E of

I0-2
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the wave field per unit horizontal area by

E = }pga>. (2'7)
Now let us suppose that all those waves of amplitude greater than the critical
amplitude a, will break, where 0,52 = g (2-8)

and @ is a mean frequency which may be determined from the spectral density
F(o) by

72 f * Flo)do = f * 02F (o) do (2+9)
0 0
p(a)
A
1-0—
0-5—
0 a agp »a

Fiaure 2. The probability density p(a) of the wave amplitude a, given by
p(a) = 2(a/a?) exp {—a®/a®}

(the Rayleigh distribution). Here @ denotes the r.m.s. wave amplitude and a, the critical
amplitude for breaking waves.

If determined in this way, & has the property that the curve { = @ cos &t has the
same mean number of zero-crossings per unit time as the record with spectrum
F (o) (see Rice 1944). Let us further assume that if the wave amplitude a exceeds
@, then wave breaking reduces the amplitude to a, exactly, so that the amount of
energy lost is $pg(a?—ag). With these assumptions it follows that the mean loss of
energy density in one wave cycle 7' = 277 is given by

f;—%—pg(az —ag)p(a)da = —f; $pg(a—a3) d(exp { — a?/a?})

= fw exp { —a?/a?} d(§pga®)

Q,
= }pga*{exp { — aj/a®}

= Eexp{—Hy/E}, (2:10)

where B, = }pgag. (2-11)
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In other words, the proportion w of wave energy lost per mean wave cycle is simply

w = exp{— Hy/E}. (2-12)
But B =pgl® = pgfOo F(o)do. (2-13)
0
So from (2-8) and (2-11) this can also be written
—g? _
w = exp {8—774/]1?(0-) do‘}. (2-14)

To make further progress we need to make a specific assumption as to the form of
the spectral density F(o). Let us assume first that ¥ (o) is the equilibrium spectrum
with sharp low-frequency cut-off:

0 (o<oy),
F(o) = ag?o—5 % { } (2-15)
1 (o> 0y).
In this case we find w ag?
fo F(o)ydo = e (2-16)
fw ag?oc—3do
and o= = 20%. (2-17)
f ag?oc—Sdo
Hence w = exp{—1/80}, (2-18)

a result independent of 0.
If, on the other hand, F(o) has a smooth cut-off as suggested by Neumann & Pier-

son.(1966): F(0) = ag?c~8exp{— f(o/oy)4}, (2-19)
where £ is an absolute constant (= 0-74) and o, = g/U, U being a representative
wind-speed, we find then
f F(o)d 4ﬂ 1355 (2-20)
[ oexpi-pooryas
and =" = (mp)t ol (2-21)
[ o exp - piejorydo
0
Hence w = exp{—1/2na}, (2-22)

independently of both £ and o;.
The two results (2-18) and (2-22) are quite similar. For the purpose of discussion
we shall adopt equation (2-18).

3. AN ESTIMATE OF &

Some of the energy lost to a wave through breaking will doubtless be transferred
to other parts of the gravity wave spectrum. A small but significant part may also
be transferred to capillary waves (Longuet-Higgins 1963). However, the visual
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observations of breaking waves in a laboratory flume certainly suggests that the
greater part of the wave energy lost through breaking normally goes directly into
turbulence.

Because of these turbulent energy losses it follows that the energy involved in
wave breaking must be comparable with, though in equilibrium less than, the total
energy supplied to the sea surface by the wind. Thus if W denotes the mean rate of

working by the wind, BT ~ W, (31)

where K denotes the total wave energy density per unit area and 7' the mean period
as defined in §2.

On the other hand since the equilibrium spectrum is limited by wave breaking,
if we assume that the wind puts energy mainly into the longer wave components
that are about to be limited by breaking, it is arguable that the loss of energy through
breaking should be comparable with the rate of growth of the total wave energy:

wE|T ~ dE/dt. (3-2)

Of these two inferences, (3-1) appears the better founded. But if both inferences
are correct, then it follows that
W ~ dE/[dt (3-3)
as suggested on other grounds by R. W. Stewart (1961). Of course it is always true
that the left-hand side of (3-3) is greater than the right.
To estimate the rate of working of the wind we may adopt more than one method.
Perhaps the simplest is to assume that

W ~ Tu,, (3-4)
where 7 denotes the wind-stress and u* the friction-velocity, defined by
T = oyt (35)
Since it is known empirically that
7 = Cpy;, U3, (3-6)

where U denotes the mean wind-speed at a height 10 m above the sea surface, and
C ~ 1-5x 1073, it follows that, on this basis, 42 = CU? and so

W~ pa.iru?k = O%pair Us. (3:7)

Alternatively we may adopt the suggestion of Stewart & Grant (1962) and as-

sume that, since energy and momentum are transferred to a wave in the ratio of the

phase velocity, then W = 16, = Cpys U, (3-8)

where ¢, denotes the phase velocity of the waves that are receiving most of the energy.
The two estimates are the same if it is supposed that

¢, ~ CYU ~ 0-040. (3-9)

Without making this assumption we shall simply adopt equation (3-7), which is
almost certainly correct to within an order of magnitude.
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Now w, by equation (3-1), is given by
o~ TWI|E. (3-10)
We need then to estimate typical values of 7' and E. Referring to the observations
of Sverdrup & Munk (1947) we take the phase speed ¢ of the dominant waves to be

equal to U nearly, so that ome  2nlU

T="2A022 311
7~y (3-11)

and we take the ‘significant wave height’ H to be equal to 0-25U2/g approximately.
Since for a Rayleigh distribution H = 2-83@ (Longuet-Higgins 1952) we have

@ ~ 0-08802/g and so E = Ypga® ~ 3:9x 10-3pU%/g. (3-12)

On substituting into equation (3-10) from equations (3-11), (3-12) and (3-7) we find
that the terms in U and g cancel each other identically, giving

W~ 16000%pa1r/pwa,ter (3-13)
or, with the values C = 1-5x 10~ and p,;,/pwater 1°3 x 1073,
@~ 1:0x 104, (3-14)

Having now estimated the numerical value of @ we are in a positionto find « from
equation (2-18): 1
%% — e =135 1072 (3-15)

We notice that this value of « falls within the range of the experimentally deter-
mined values of « as shown in table 1. However, we may remark that if any of the
relations between W, E, T' and U were to be altered by a factor of 2 this would change
the value of Inw by only one part in 12. Hence the corresponding value of « given
by (3-13) would only vary by this amount and so would still be within the range of
observation.

However, the replacement of equation (2-18) by equation (2-22) would put «
just beyond the upper limit of the observed range.

4. Is ¢ REALLY CONSTANT ?

For the appropriate values of £ and 7' we selected, in the above analysis, the
values given by Sverdrup & Munk (1947) for large values of the nondimensional
fetch (g/ U?), say (gx/U?) > 10% In a sea state which is still growing under the action
of the wind, smaller values of (gx/U2) would be appropriate and hence smaller
values of both & and 7'. The variation of 7' under different wind conditions is gener-
ally less marked than the variation of £. Hence w, which is proportional to 7'/E,
might be expected to decrease with (gz/U)?, and so a, by (3-15), would also decrease
with (gx/U?).

This inference gains some support from the data in table 1. In the second and
third columns are shown the logarithmic-mean values of the fetch x and the wind
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speed U for each of the observations quoted, and in the fourth column the logarith-
mic-mean value of (gx/U2). The values of o in the last column do indeed decrease
as the parameter (gz/U?) increases, with the exception of the value attributed to
Pierson (1960). This was derived from measurements with a vertical wave pole, the
calibration of which was uncertain (see Chase et al. 1957). Apart from this observa-
tion all the values of & decrease monotonically with (gx/U?2).

That « should be a decreasing function of the nondimensional fetch or of the ‘ wave
age’ (gt/U) is in accord with the common observation that when a breeze suddenly
starts to blow white caps appear initially to be more numerous, indicating a tem-
porarily increased value of a.

The equation whether the wind-stress coefficient C is also a function of the time
would be worth investigation. Some of the scatter in the experimental determina-
tions of C (see Phillips 1966, figure 4-18) may perhaps be explained in this way.

Some further light is thrown on these conclusions by some recent observations of
fetch-limited waves by Barnett & Wilkerson (1967). The observations were made
in a practically uniform wind-field U = 16 m/s at distances from the shoreline rang-
ing from 50 to 300 km, so that

2000 < gx/U? < 12000.

The most striking observational conclusion was that as the fetch x increased, so
the peak energy density in the spectrum (which occurs at the low-frequency end of
the equilibrium range) first rose to a value 1-5 to 3 times greater than its final,
equilibrium value. The authors suggest, in fact an equilibrium spectrum of the form

F(o) = ag’o—>f(a]oy), (41)

where o, is the radian frequency of the maximum spectral density. This frequency
diminishes as the fetch is increased. Clearly, if an attempt were made to make a best
fit of the equilibrium law (1-1) to a typical spectrum, the constant & would have to
be adjusted differently according to the fetch, the highest values necessarily occur-
ring at the shortest fetches. This is apparently consistent with our conclusions.}
Nevertheless an examination of the original spectra summarized in table 1 shows
that many of them do not exhibit such a spectral peak as found by Barnett &
Wilkerson, even at quite small values of (gx/U?). We therefore prefer not yet to
adopt any particular form of f(o/o,) apart from that implied by equation (1-1).
There is no reason in principal why the calculation of @ in terms of F (o) given in
§2 should not be adapted to a function f(a"/d,) of any reasonable form.

This paper is partly based on a contribution to the Symposium on Turbulence
in the Ocean, held at the University of British Columbia, Vancouver, B.C. on
11-14 June 1968. It was completed at the Woods Hole Oceanographic Institution
during August 1968. The research has been supported under NSF Grant GA 1452

+ If the peak values of the spectral density are neglected, Barnett & Wilkerson find a
rather low value of &, namely 0-6 x 102,
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and ONR Contract 241-11. The author is indebted to Dr N. P. Pofonoff, Dr C. S.
Cox and to other colleagues at the Woods Hole Summer School for stimulating
discussions.
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