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FIRST SESSION: PHYSICAL
Introduction
By G. E. R. Deacon, F.R.S.

A hundred years ago the Society often listened to papers about the ocean, but the
rapid growth of science, especially the development of those aspects that can be
carried through with the help of laboratory experiments, has led to some neglect
of large-scale natural processes, in favour of those that can be more readily formu-
lated and imitated in models. Although aiming at better understanding and use of
the world we live in, we have concentrated on the most approachable and profitable
aspects; in consequence, studies of the earth, oceans and atmosphere, have become
‘fringe subjects’. But they are staging a come-back. The application of modern
theoretical and practical methods to these problems brings results as exciting as
any that can be obtained in a laboratory, and just as suitable for Ph.D. courses,
which is one of the things that seems to matter, if they were better known. We
must be grateful to the Society for giving us this opportunity to talk about the
oceans. I am sure the papers will show the wide range of interest and excitement as
well as the difficulties.

The directional spectrum of ocean waves, and processes
of wave generation

By M. S. LoNcUET-HIGGINS

National Institute of Oceanography
[Plate 21]

This paper describes some recent observations of the directional spectrum of sea waves
and of air pressure fluctuations at the sea surface, and discusses their implications for theories
of wave generation.

The angular spread of the wave energy in the generating area is found to be comparable
with the ‘resonance angle’ sec'(ocU/g) (o0 = wave frequency, U = wind speed) but lies
slightly below it in the middle range of frequencies. The best fit to the directional spectrum
F(o, ¢) is shown to be a cosine-power law: F(o, ¢) «c cos?$(3¢), where s decreases as o in-
creases. Atthe higher frequencies the total spectrum satisfies the equilibrium law: F(o) oc 5.

The initial stages of wave generation are attributed to turbulence in the air stream, and
the main stage of growth to the shear instability mechanism described by Miles. At the
highest frequencies the form of the spectrum suggests that wave breaking plays a pre-
dominant part, as proposed by Phillips. The broadening of the angular distribution at the
highest frequencies may also be due partly to third-order ‘resonant’ interactions among
components of the wave spectrum.

The air-pressure fluctuations are nearly in phase with the vertical displacement of the
sea surface (over most of the frequency range) and are consistent with the shear-flow model
proposed by Miles. The turbulent component of the air pressure is much smaller than was
previously supposed.

[ 286 ]
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INTRODUCTION

The common observation that a wind blowing over a water surface may generate
travelling waves is so familiar to us that we are apt to forget how little we under-
stand of the actual process of wave generation. Not only is our lack of under-
standing philosophically unsatisfactory, but it is a practical hindrance when we try
to forecast sea waves and swell for shipping, coast protection and many other
purposes. The various empirical formulae which have had to be relied upon (for
example, Darbyshire 1955, 1959a; Pierson, Neumann & James 1955) appear to be
incomplete and often inapplicable outside the particular areas for which they were
designed.

Only a few years ago attention was drawn to the unsatisfactory state of our
theoretical knowledge by Ursell (1956). Since that time a number of promising
ideas on the generation of sea waves have been published, and we have the benefit .
of better and more complete wave observations made instrumentally in areas of
wave generation. The purpose of this paper is to review some of the recent ideas,
and to discuss some measurements of the directional spectrum made by a new
technique (Longuet-Higgins, Cartwright & Smith 1962). Some evidence on the
distribution of air pressure over the sea surface will also be discussed.

The statistical representation of the sea surface is introduced in §1; this is funda-
mental to all the more recent theoretical work, and some of the experimental results
supporting it is described. In §2 we discuss the theories of wave generation due to
Miles and Phillips, and the transfer of energy between different parts of the
spectrum due to non-linear interactions. The experiments relating to wave genera-
tion are described in §§3 and 4. A final section summarizes the conclusions and
makes suggestions for further research.

1. REPRESENTATION OF THE SEA SURFACE

In the classical theories of Airy (1842) and Stokes (1847) a gravity wave of small
steepness in water of uniform depth % is represented approximately by the equation
for the surface elevation ¢ = acos(k.x—ot), (1-1)
where x and ¢ denote the horizontal co-ordinate and the time. The wave number k
and frequency o are related by

0? = gktanhkh (k = |k|). (1-2)
For water so deep that e~*” is negligible this relation becomes
02 = gk. (1-3)

In the derivation of these equations it is assumed that the waves are of sufficiently
small steepness (ak < 1andak < (kh)3) to justify neglect of all non-linear terms in
the equations of motion and in the boundary conditions at the free surface.

So far from being regular and periodic, however, the sea surface generally pre-
sents a very irregular appearance, with short wave crests and undulations of
widely different scales. A more realistic representation of the surface was therefore

19-2



288 M. S. Longuet-Higgins (Discussion Meeting)

introduced by Longuet-Higgins & Barber (1946) in which the single sine-wave of
(1-1) was replaced by a sum

¢ =Xa,cos(k,.x—0,t+¢,), (1-4)

where the wave numbers k, and frequencies o, are related by
o2 = gk,tanhk,h (kn = |Ky|)- (1-5)

The phases ¢, are chosen at random. Thus the sea surface is considered as one of a
statistical ensemble of surfaces. Attention is confined to certain average properties
of the surface, as in other branches of statistical mechanics, the averages being
calculated over the distribution of the phases.t

At a late stage in the analysis the number of component sine waves is made to
tend to infinity and the amplitudes a,, to tend to zero in such a way that the sum
of the squares of the amplitudes in a small (but fixed) element of wave number

dk is given by et = E(k)dk, (1-6)
dk

where E(K) is a continuous function. This function summarizes the useful infor-
mation that can be obtained about the linear aspects of the surface. It is called
the spectral density, or energy spectrum. From (1-4) and (1-6) we have

& = siai - [[Booak, (1-7)

so that E(k)dk is the contribution to the mean square wave height from wave com-
ponents in the infinitesimal range of wave numbers dk.

The above type of formalism was used, notably by Rice (1944, 1945) for the
representation of random noise in electrical circuits, and has since been widely
employed in other branches of physics (for a recent list of references, see Tukey
1959). A thorough theoretical treatment is given, for example, by Doob (1953).
Thus ¢ might be considered as a stationary stochastic process, and (1-4) as its
spectral representation.

Actually we know that the phys’cal process is not quite stationary statistically,
for the horizontal extent of any storm is finite, and storms also grow and decay in
time. This limits the accuracy with which the spectral density E(k) may be
measured. Thus in equation (1-6) dk cannot be taken to be of smaller area 4-1,
where 4 is the area of the sea surface which is statistically homogeneous. Similar
limits are imposed by the development of the wave spectrum as a function of time.

Equations (1-4) to (1:6) may be called the linear model of the sea surface. To
satisfy the boundary conditions at the free surface more exactly one may add to
the right-hand side of (1-4) further terms proportional to the squares, products and
higher powers of the amplitudes a,. The nature of these higher-order terms will be
discussed in §2-3. In particular the third-order terms produce a small but ulti-
mately appreciable transfer of energy between different wave numbers, com-
parable with the rate of growth of the waves under the wind. Fortunately it

+ Phase averages such as (1-7) are assumed equal (with probability 1) to averages calculated
with respect to X or ¢ for a given member of the ensemble of surfaces.
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appears that for many purposes, though always for a limited duration of time, the
linear model is a good first approximation, and that the non-linear corrections to
the model are small.

By contrast, in the theory of homogeneous turbulence the non-linear inter-
actions between different parts of the spectrum cannot be neglected (see Batchelor
1953)-F

For sea waves, the linear model has been checked experimentally in a variety of
ways:

(1) The relation (1-5) between frequency and wave number has been verified
within about 59, even within the generating area (see Longuet-Higgins et al.
1962) at least for the range of frequencies containing most energy.

(2) The speed of propagation of wave energy outside the generating area has
been shown to be equal approximately to the appropriate group velocity in deep

water dojdk = g/20

(Barber & Ursell 1948). In some remarkable observations in California swell has
been received from distances of nearly 12000 miles, and the corresponding accuracy
in determining the speed of propagation is very great (Munk ef al., in preparation).

(3) A consequence of the linear model (1-4) is that, with only mild restrictions
on the order of magnitude of the a,, (see Rice 1944, §2-10) the probability density
of ¢ is normal with mean value 0. Under corresponding conditions the derivatives
of {, up to any order, are also distributed normally. An example of the Gaussian
distributions for ¢, 9¢/ox and 0£/0y being roughly satisfied is shown in figures 6(a),
(6), (c) of the present paper. Earlier (Longuet-Higgins 1952; Cartwright &
Longuet-Higgins 1956) the distribution of the heights of the maxima in a wave
record was shown to agree well with that corresponding to a Gaussian surface.
However, it should be borne in mind that these data do not take account of the
highest frequencies present in the sea surface, which have been filtered out by the
method of observation. Thus, if the distribution of surface slopes under a wind is
measured optically (Cox & Munk 1954, 1956) some skewness in the down-wind
direction is discernible. A slight skewness in the distribution of { is reported by
Kinsman (1960). The surface curvatures, measured optically, can be very non-
Gaussian (Schooley 1955).

In shallow water waves, where kh may be small, some evidence of departures
from the Gaussian distribution have been noted by Birkhoff & Kotik (1952) and
by Darbyshire (1959b). Such departures are less surprising in shallow water since
one of the conditions for linearity in the classical theory of water waves was seen
to be that ak < (kh)3.

In passing, we may note some of the other fundamental properties which make
the linear model, when applicable, most convenient in practical use.

(1) On passage through a linear filter the spectral density is multiplied by a
function of k and ¢ only, independently of £. For example, a pressure recorder

+ A spectral representation such as (1-4) can of course be defined for any absolutely con-
tinuous, statistically stationary process. However, the phases ¢, are then not independent,

and generally the Gaussian distribution, discussed below, does not apply. Nor does the
relation (1-5) between frequency and wave number.
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placed on the sea bed records a signal whose spectrum, in theory, would be that
of the surface elevation multiplied by the factor (pg/sinh kh)2. (However, at depths
of more than one-quarter of a wavelength this factor is so small that second-order
pressure fluctuations may predominate; see Cooper & Longuet-Higgins 1951.)

The motions of ships may be calculated in a similar way, the ship being treated
as a linear filter (Pierson & St Denis 1953; Cartwright & Rydill 1957). Each
harmonie component of the ship’s heave, for example, can be related to certain
harmonic components of the sea surface spectrum by factors depending on the
wave number and the speed and dimensions of the ship.

(2) The spectral density E(k) is transformed in a very simple way when energy
is freely propagated from one part of the ocean to another (see Barber 1958). A
simple transformation also applies when the waves are refracted near the shore by
water of varying depth (Longuet-Higgins 1957). Thus, though the wave number k
of a refracted wave varies along the ray path, the spectral density E(k) remains
a constant. As mentioned by Dorrestein (1960) this property constitutes part of a
deep analogy between the statistical mechanics of particles and of waves.

(3) Once the spectrum of any derived motion or property has been determined,
the corresponding statistical properties can be derived, as for example the distri-
bution of the maxima, the distribution of the intervals between successive zeros or
maxima, and so on. For a review of such statistical properties, see Longuet-
Higgins (1961). Many interesting statistical properties involve the corresponding
spectrum only through certain moments of the form

Mgy = f fE(k)kgg kgordk, (k,k,) = k.

Thus whereas the statistical distributions themselves do not transform directly by
any simple law, they are conveniently related to the corresponding spectra, which do.
The linear model defined in this section will be mainly relied upon as a basis for
the subsequent discussion. However, instead of the spectral density E(k) it is
slightly more convenient to define the directional spectrum F (o, ¢), such that
S ja} = Flo, ¢)dodg,

dodg

where o denotes the frequency and ¢ the direction of propagation of each harmonic
component. In other words F(o, ¢)dod¢ denotes the contribution to the mean-
square value of ¢ from frequencies in the range (o, ¢ +do) and directions in the
range (¢, ¢ +dg¢). We have

_ _ oy Oky,ky)
k = (k,,k,) = (kcosg, ksing); d) k,
Mk, k), dk 2k
and so F = a(o_’qs)E—k‘d?_E—?E

in deep water. Hence if £ is known, so also is F, and vice versa.
We shall use F(o) to denote the spectral density of { with regard to frequency
only. Thus F(o)do denotes the contribution to 2 from the range of frequencies

(o, 0+do), and o
F(o) =ff0 F(o, ¢)de.
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2. PROCESSES OF WAVE GENERATION

We now review briefly some of the more important theories of wave generation,
‘that have been suggested since Ursell’s review (1956).

2-1. Generation of waves by atmospheric turbulence

Suppose a turbulent stream of air begins to flow over a water surface which
initially is at rest. Associated with the turbulent eddies in the air stream are
fluctuations in the air pressure, which must act on the water surface so as to pro-
duce waves. The turbulent pressure fluctuations are assumed essentially indepen-
dent of any waves present at the time.

Following an earlier attempt by Eckart (1953), this theory was extensively
developed by Phillips (1957). In Phillips’s formulation U denotes the convection
velocity of the turbulence, that is to say the (horizontal) velocity of the frame of
reference in which the characteristic development time of the eddies appears
greatest. U is plausibly identified with the mean wind speed, at some height
comparable with the scale of the eddies. Phillips showed that in the main stage of
development of the waves (that is to say at times ¢ large compared with the de-
velopment time of the eddies) the directional spectrum of the waves was given by

F(a,¢)~2—(kg;0-7t)2fjﬂ(k;r)cos [(Uc:sqﬁ__l) o"r] dr, (2-1-1)

where p,, denotes the density of water; II(k, 7) denotes the spectrum of the pressure
‘fluctuations at the water surface at time 7 in the moving frame of reference;
0% = gk and ¢ = g/o. In (2-1-1) the chief approximation made, apart from the
linearization and neglect of vigcosity, is omission of a term of much smaller
magnitude than the right-hand side, corresponding to waves propagated in the
opposite sense.

If the pressure spectrum II(k, ¢) is fairly isotropic, with no preferential directions
for k, it can be shown that the integral on the right of (2-2-1), considered as a
function of the azimuth ¢ for fixed o, is greatest when the coefficient of o7 vanishes,

that is to say when Ucos¢ = ¢ = gfo. (2-1-2)

The interpretation of this is very simple. Let us confine attention to the pressure
fluctuations which have a certain scale £ = |k|. These fluctuations tend to produce
waves of the same scale k, travelling at various angles ¢ to the wind. Generally
the wind speed will be different from that of the corresponding waves. However,
if the component of the wind speed resolved in the direction of the waves just
equals the speed of a free gravity wave (g/o), then there is a matching between the
pressure input and the free mode of oscillation; a kind of resonance takes place,
and the wave amplitude builds up more quickly. The corresponding angle

¢ =a = secH(UJc) (2-1-3)
may be called the ‘resonance’ angle.
On this theory, then, we might expect, at least for U > g/o, that the wave

energy in each frequency band would be found travelling mostly in two directions
¢ = ta (figure 1) to either side of the mean wind direction.
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At the time that this theory was proposed (1957) very little was known about
the turbulent pressure fluctuations in the atmosphere, especially over the sea, and
in the later part of his paper Phillips made the estimate

p® = 0-1p2U, (2-1-4)
where p, is the density of the air. With the aid of some rough approximations to the
integral (2-1-1) this brought the theory into order-of-magnitude agreement with the
observed heights of storm waves. But we now have direct evidence, to be de-
scribed later in this paper, that the estimate (2-1-4) is too high by a factor of the
order of 102

Ficure 1. The pattern of waves generated by an isotropic travelling pressure
disturbance of fixed scale.

This does not necessarily disprove Phillips’s (1957) theory; the approximations
involved in the later part of his paper, involving the equality of a differential and
integral time-scale, may not be correct. However, a more serious objection has
been brought forward by Miles, in the course of a theory which is described next.

2-2. Generation of waves by shear-flow instability

The physical model suggested by Miles (1957) was quite different. He considered
the flow of air over a fluid boundary in which there was already present a small
sinusoidal displacement. He then estimated the pressure on the water surface
resulting from the perturbation of the original flow. The component of the pressure
in phase with the surface elevation, imparts no energy to the waves; but the com-
ponent in quadrature generally results in work being done on the water which, if
it exceeds the loss due to molecular or eddy viscosity, causes the wave amplitude
to grow (figure 2).

In some respects the theory bears a resemblance to Jeffreys’s theory of wave
generation by sheltering (1925, 1926). However, there are some essential dif-
ferences: in Jeffreys’s theory the sheltering coefficient s is not known @ priori and

1 In Eckart’s rather different formulation of the problem (1953) the assumed pressure
pulses on the surface were also found insufficient to account for all the wave energy.
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must be estimated from observational data; in different circumstances widely
different values of s are found (Ursell 1956). On the other hand, theory in Miles’s
the sheltering coefficient is calculated from the physical model.

For Miles’s theory it is necessary that the wind profile be non-uniform; the
energy input into a wave of phase velocity ¢ is related to the curvature of the
velocity profile at the height where U = ¢. By contrast, the mechanism for wave
generation suggested by Kelvin and Helmholtz, which depends on the in-phase
component of the pressure, is not effective till much higher wind speeds; see
Miles (19595).

\

\

—»c

P - -

A S e T

W\ﬁ% Z Uiy

FiaurE 2. The pressure distribution due to shearing flow over a wave.

The estimated phase shift (and hence the sheltering coefficient) depends critically
on the velocity profile of the air stream. Some presently available observations
(Roll 1948; Hay 1955) support a logarithmic form for the velocity profile

U = U,log (2/z,), (2-2-1)

where U, is a reference velocityf and z, is a roughness parameter. Empirical
formulae quoted by Sheppard (1958) for conditions of neutral thermal stability give

U, = (U,/K)(0-08 +0-0011407,)} x 10-3, (2-2-2)

where U, is the ‘anemometer wind speed’ in ecm/s. In typical cases U] is of order
1U,. The roughness parameter z, is conveniently expressed as

2y = QUiJg, (2-2-3)

where Q is a non-dimensional parameter. The data of Hay (1955) indicate a value
of Q consistently around 1-3 x 10-2; but Roll’s data (1948) suggest that it can
differ from this by a factor of 2 or 3.

Assuming a logarithmic wind profile, Miles (1957, 1959a) calculated the quad-
rature component of the pressure] and hence the energy input into the waves.
He showed that the rate of growth by instability could account for the observed
energies of storm waves.

1 U, = U*/K, where U* is the ‘friction velocity’ and K is von Kdrman’s constant.
1 At least the more appreciable non-viscous part; see also Brooke Benjamin (1959).
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More recently (1960) Miles combined the two theories of wave generation by
turbulent pressure fluctuations and by shear-flow instability. He showed that the
effect of the instability on the main stage of growth of the waves is to multiply
Phillips’s expression (2-1-1) by the factor

MT _
p— 1 =7, (2:2-4)
say, where M="a (Ul COS¢) Z
c (2-2-5)
T= gt/U,

and f is given by the calculation. Now initially, that is to say as { — 0 the factor
f tends to unity ; thus Phillips’s expression (2-1-2) still holds. But as # grows large
(MT > 1) so f increases exponentially, indicating that the instability mechanism
is dominant. Miles calculated f for a few typical values of the parameters appro-
priate to ocean waves, and found that it could lie between 1 and 108, depending on
the ratio of wind speed to wave speed, the angle ¢ and the total time ¢. The impli-
cation is that although the waves may be started by turbulent pressure fluctuations,
the most rapid stages of growth are due to shearing instability and not to turbu-
lence, except possibly when Ulc = 1.

Since also f varies with the angle ¢, and is greatest at small angles (that is, for
waves running nearest the direction of the wind) one may conclude that the effect
of the instability is to increase most strongly those wave components which travel
in directions nearest to the wind. Thus the instability tends to narrow the direc-
tional spread of the energy in any particular band of frequencies.

9-3. Third-order wave interactions

Consider two harmonic components having wave numbers k,, k, and frequencies
gy, 05 (not necessarily in the same direction). Each individually will satisfy, to the
first order, the condition of constant pressure at the free surface provided that

=gk |, 03 =gk (2-3:1)

In the first approximation the two waves do not interact; their sum also satisfies
the linearized boundary condition.

In the second approximation (taking into account squares and products of the
wave slopes) the boundary conditions are equivalent to a perturbation on the first-
order solutions; the forcing function in the perturbation can be split up into terms
with frequencies 20y, 207, (0,+0,), (0;—0,) and corresponding wave numbers
2Kk,, 2k,, (k; +K,), (k;—k,). However, the relations (2:3-1) imply

(2002 # g|2ky|, (01+09)? + g]k1+k2|,}

(202)% % g|2Ks|, (07— 02)? # glk; — K|,
except in the trivial case when o or o, vanishes. Hence the perturbations do not
produce a resonant response, and the second-order interactions are bounded.

However, Phillips (1960) has pointed out that in the third approximation the
situation is very different. For example, there are perturbation terms with

(2:3-2)
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frequency (20, — 0,) and wave number (2k,; —K,), and for a suitable choice of wave
numbers it 4s possible to have

(207 —07p)% = g2k, —Kk,|, (2-3-3)
consistently with (2-3-1). In that case the interaction between the two primary
waves produces a resonant response which grows linearly with time; there is a
small but (after a time) appreciable transfer of energy from the two primary wave
numbers k;, kK, to the tertiary wave number (2%, —k,). The characteristic time for
the transfer of energy is of order (s;s,)~! wave cycles, where s; and s, are the
steepnesses of the two primary waves.

Ficure 3. Relation of the wave numbers k,, K,, involved in the resonant
interaction of two trains of waves.

Let k, be fixed. Then in order to satisfy (2-3-1) and (2-3-3) Phillips (1960) shows
that k, must lie on a figure-of-eight with centre k; and extremities — 1k, and 2Kk,
(see figure 3). The interaction wave number is found by joining k, to the point 2k,
the image of O in the centre k;. The figure is symmetrical, and if k, lies on the curve
then so also does (2k, —Kk,), and vice versa.

In the special case when k, coincides with k; then the interaction wave number
is also k;, and no new wave number is produced. In this case, and this case only,
can the interaction be considered as equivalent to a small perturbation of the
original wave frequency. Generally it appears that a transfer of energy must take
place.

Such transfers of energy from one part of the frequency spectrum to another are
recognized, for example, in the theory of turbulence. By analogy with turbulent
flow we may conjecture that any spectrum that is non-isotropic will tend slowly
towards isotropy. Moreover, the only absolutely stable spectrum (in the absence
of external generating or dissipative forces) may be an isotropic spectrum.

2-4. Transfer of energy by breaking

Regular waves of a given length are capable of attaining only a certain amplitude
before they break. One possible condition for breaking appears to be that the
particles at the free surface shall attain a downwards acceleration equal to g. When
this stage is reached, some at least of the wave energy must be lost or transferred
to other parts of the spectrum.
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Phillips (1958) has suggested that over a certain range of frequencies the
spectral density may, for sufficiently high wind speeds, approach a saturated state
determined by the process of breaking alone. This being independent of the wind
speed and air density, and more or less independent of viscous dissipation, dimen-
sional arguments show that F(o) = Cgo—>, (2:4-1)

where C is an absolute constant. Phillips showed that some data of Burling (1955)
for rather short waves on a reservoir fitted this law well, provided

C =148 x 10-2. (24-2)
We shall see below that the same law applies to sea waves of much lower fre-
quencies, and so much longer wavelengths, than Burling’s original observations.

2-5. Additional effects

Among other processes affecting the waves may be mentioned the transfer of
energy by ‘tangential’ wind stress; this is shown by Miles (1957) to be only a small
part of the energy input from the shearing instability; the dissipation of wave
energy by molecular viscosity, which is negligible for wave periods greater than
about 1-5 s, except in shallow water; and the scattering of wave energy by turbu-
lence (Phillips 1959) which also appears to be small.

3. OBSERVATIONS OF THE DIRECTIONAL SPECTRUM

The question of how to measure the directjonal spectrum F(o, ¢) is interesting
in itself. A theoretical discussion of the use of linear arrays of wave records has
been given by Barber (1957). The optimum spacing of such arrays depends some-
what on the wavelengths measured, and to the author’s knowledge the only
published example of such a measurement is for a single band of frequencies
(Barber 1954).1 A quite different but very neat suggestion is to use an aerial
photograph of the sea surface as a diffraction grating for monochromatic light
(Barber 1949); but the estimate of the spectrum thus obtained is only qualitative.
The most complete evaluation of F (o, ¢) so far has been by the use of aerial stereo-
photography (Cote et al. 1960). However, this method requires considerable
organization—involving two aircraft—and clear weather. In principle, the
quantity finally obtained is not F(o, ¢) itself but [F(o, ¢)+ F (o, ¢ + )], for the
method does not distinguish between waves travelling in directly opposite senses.

The observations to be described depend upon yet another method, first pro-
posed by Barber (1946) and with developments by the present author (1946, 1955).
This method makes use of the recorded motions of a freely floating buoy. A full
account of both the theory and the observations is given in the paper by Longuet-
Higgins et al. (1962); here we summarize only what is needed for an understanding
of the results.

3-1. Theory of the method

From the motions of the buoy it is possible to obtain (within the framework of

the linear theory) a record of the vertical displacement § of the free surface as a

T However, there is an ambiguity in the measurements which is resolved by assuming that
the energy comes from one side of the array only.
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function of the time ¢, in the neighbourhood of a fixed point with horizontal co-
ordinates (x, y); and simultaneously a record of the two components of surface
gradient, 9¢/ox and 9¢/dy. Thence, by calculating the auto-spectra and cross-
spectra of §, 0§/ox and 9/0y one derives the first five Fourier coefficients of F (o, ¢)
with respect to ¢, namely a,, @, b;, @y, by, Where

1 (2
a,(o) = —f cosngF (o, ¢)de,
mJo ] (3-1-1)

b, (0) = % f:”sinnngE(O', ¢)d¢.J

The higher coefficients (a,, b,,; #» > 2) can be found only if the higher derivatives,
0%¢/0x?, 02¢/ox dy, ete., are measured s multaneously.

One can make use of the information so obtained in various ways. In the first
place, one can form the finite sum

F (o, §) = }a,+ (a,c08¢ + b, sing) + (a,c0s 2¢ + bysin 2¢), (3-1-2)
which, by (3-1-1), can be expressed as
2m
Fi0,$) =3 | Plo.#) Wit -p)ag’ (3:1-3)
_ ’ ’ _ sin §(¢,-¢) .1.
where W, =1+2cos(¢p’—¢)+2cos2(d —¢)_sinz(¢’—¢)' (3-1-4)

Thus F, is the smoothed average of F by the weighting function W,. Since W, may
be negative it is possible that F, takes some negative values, whereas F itself is
essentially positive. Accordingly one may prefer to take some alternative approxi-
mation to F, for example )

Fy(0, §) = bap+3(ay cosg +bysing) + §(ageos 2 + bysin2g),  (31:5)
which corresponds to the weighted average of F(o, ¢) by the weighting function
Wy(¢'—¢) = 1+5cos(§'— ) +Fcos2(¢’—¢) = §eos' }(¢'—¢).  (3:1-6)

W3 is not only non-negative, but it is also a decreasing function of |¢' —d|.

Apart from these weighted averages F;(o, ¢), one can use the coefficients a,,
@y, by, a9, by to provide useful parameters of the actual distribution F(o, ¢).

The simplest of these is a,, which is proportional to the total energy per unit of
frequency summed over all directions; in other words a, (o) oc F (o).

Secondly, as a measure of the directional properties at each frequency we may
define the two directions, ¢,, ¢, which ‘best’ fit the distribution in the following
sense. Consider the integral

= %f:ﬂ 163in2¢—_2—¢lsin2qi:;£2ﬁ’(a', ¢)dg, (3-1-7)

where ¢, and ¢, are, in the first place, arbitrary angles. I may easily be expressed
in terms of ¢, and ¢, the five known coefficients a,, a,, b, a,, by. We choose ¢, ¢, so
as to make I a minimum. When the spectrum is not too broad it can be shown that

B1 = $(P1+P2) (3-1-8)
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is approximately the mean direction, while

Yy = %‘|¢1_¢2| (3-1-9)
is approximately the r.m.s. angular width of the directional distribution.
Finally, if /,,;,, denotes the minimum value of (3-1-7) (corresponding to the two
‘best’ angles ¢,, ¢,) then I,;, [a, is an indicator of the shape of the directional dis-
tribution. For example, very small values of I, ;, /a, imply that practically all the
energy in that frequency band is being propagated in the directions ¢,, ¢,. In
general, I,,;, [a,is related to the fourth moment of the distribution of energy about
the mean direction.
3-2. The observations

The apparatus consisted of a flat, circular buoy, 6 ft. in diameter and about 2 ft.
in depth (see figure 4(a), plate 21). The total weight (about 11 cwt.) was adjusted
so that, when floating, the buoy was submerged as far as the upper rim of the
vertical sides. Contained in the buoy were instruments to record the two angles
of inclination, the ‘pitch’ and ‘roll’, and the vertical acceleration—which was
integrated twice electronically so as to give a measure of the vertical displacement.

The response of the buoy to waves of different wavelengths was calibrated in the
30 ft. wide wave channel at the Ship Hydrodynamics Laboratory, Feltham. It
was found that the buoy responded linearly to the surface displacement, with
response factors and phase shifts dependent on frequency.

The buoy was kept in line with the local wind by a simple arrangement of drogue
and pellet.

Simultaneously with the buoy’s motions, the air-pressure fluctuations on the
upper surface of the buoy were also recorded (see §4).

TABLE 1
number wind speed and
of time direction (ship’s
record date G.M.T. position anemometer)

cruise I 1 31.v. 55 0915 to 0935 41°08' N 14°37W 19 kt from 340°
31.v. 55 1435 to 1455 41°08' N 14°37"W 14 kt from 350°
3. vi. 55 0910 to 0930 39°16' N 11°53'W 17 kt from 320°

2
3

cruise II 4 30. x. 56 1450 to 1510 50°58' N 12°15'W 8 kt from 080°
5 1. xi. 56 1525 to 1545 50°19'N 11°54’W 23 kt from 065°

Sixteen records of the buoy’s motions, together with the air pressure fluctuations,
were obtained during 1955 and 1956 ; but only five were sufficiently complete to be
suitable for a harmonic analysis. Data relevant to these five records are shown in
table 1. The windspeeds ranged from 8 to 23 knots. The corresponding weather
charts at about the times of recording are shown in figure 5. In most of these the
weather situation is not simple, and there is a possibility of swell being recorded
from other than local winds. Fortunately, however, in one case (figure 5(d)) the
wind system was very simple; an anticyclone centred off the west coast of Scotland
remained practically stationary for 2 days before the time of recording, and re-
sulted in a steady north-easterly wind at a point off the south coast of Ireland where
the waves were recorded. The corresponding record is no. 5 (windspeed 23 knots).
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Fieure 6. Histograms of (a) heave, (b) pitch, (c) roll of the buoy in record
no. 5 (wind speed 23 knots).
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Ficure 4. (a) Exterior view of the wave recording buoy; (b) the
instrument panel.

(Facing p. 300)
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3:3. The frequency spectra
The total frequency spectra F(o), regardless of direction, are shown for each
record in figure 7, (i) to (v). The scales are logarithmic, and the straight line which
has been inserted in each diagram represents the limiting or equilibrium spectrum
given by Phillips’s law (2-4-1) with the constant C' determined by Burling’s data.
It will be seen that the closest agreement is obtained at the highest wind speed -

(figure 7(v)). The results show that Phillips’s law holds good for much lower fre-
quencies than the data to which it was originally fitted.

C(o) (ft.2 8)
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Ficure 7. The total frequency spectra F(o).

3-4. Angular width of the spectrum

The parameter i which defines the angular width of the directional distribution
F(o, ¢) was computed for each frequency band in records 3 and 5, that is to say
for the two records in which the wind direction was most nearly constant. The
results are shown plotted in figure 8. The abscissa is the non-dimensional ratio

UyJc = oU,Jg

which is proportional to the frequency, in each record. In the same diagram have
been plotted curves corresponding to the resonance angle (2-1-3), assuming that the

convection velocity U can be identified with the mean velocity at a height
z = 2m|k, where k = o?/g. Writing z = 27k in (2-2-1) gives

U U, 2m
Seca—? —?IOgmiz’ (34 ].)

where Q is given by (2-2-3). The full curve in figure 8 corresponds to the assumed
value Q = 1-3 x 10~%; the upper and lower broken curves correspond to values of

20

Vol. 265. A.
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Q five times less than this and five times greater respectively—or equivalently to
values of z five times greater or less.

It will be seen (1) that the angular width tends generally to increase with the
ratio U,/c (the points in brackets at the lowest frequencies may correspond to
external swell); (2) that the resonance angle is not critically dependent on the
assumed parameters in the wind profile; (3) that the observed width of the spectrum
is quite comparable with the resonance angle, but tends to lie somewhat below it
in the middle part of the frequency range.

90°

60°

0° | 1 1 1 1
0 02 04 0-6

U,/c

Ficurk 8. The angular width of the spectrum, compared with the
theoretical resonance angle.

Recalling the effect of shear instability mentioned in §2-2, namely, that it may
tend to produce a narrowing of the directional distribution of the wave energy,
we have calculated the values of the parameter M as a function of ¢ (see equation
(2-2-5)) assuming values of U, appropriate to record 5. Thus we have chosen

U, = 23 knots = 1180 cm/s, U, (from equation (2-2-2)) = 134 cm/s,
U,/c = oU,lg = 0-1360 (o in rad/s).

Using Miles’s values of f, and taking Q = 1-3 x 10~2 as before we obtain the values
of M shown in figure 9.

To calculate the distortion factor f of equation (2-2-4) we must also estimate the
duration ¢. According to the weather charts, the time since the wind began to blow
was about 45 h. However, the fetch L being only 300 miles, this was the limiting
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factor at the lower frequencies. We have taken ¢ < L+ group velocity = 20L/g
and so

gt . [0-72x 1050,
T=7,x n{1~28 x 105,
With these values, the factor f is as shown in figure 10.
10° | | | T ]
~Ui/c=0'5 -

1

60°
¢
Ficure 9. M as a function of the angle ¢ (taking
Q = 1:3x10-2).

At the lowest frequencies, and so the lowest values of U,/c, the distortion factor
is practically unity at all angles. As the frequency increases, so also does the dis-
tortion factor, for any particular angle but the factor is greatest at small angles and
falls off at the larger angles. At o = 2-0 s~! the waves in the direction of the wind
are amplified relative to those at an angle 60° by a factor 10%. No doubt it is this
effect which has caused the reduction in angular spread below the resonance angle
already seen in figure 8.
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However, at the highest frequencies the distortion factors become so large that it
would not be surprising if the energy at each wave number were limited by break-
ing. That this is indeed so is suggested by the fact that F(o) oc 05, as seen in
figure 7(v).

If the amplification factor f in figure 10 is bounded roughly at the value 10°,
say, it can be seen that with increasing frequency the corresponding curve for the
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Freure 10. The distortion factor f associated with the
shear instability : record no. 5.

distortion factor becomes somewhat broader with increasing frequency. How-
ever, the width never exceeds about 65°. At the highest frequencies in figure 8
even this width is exceeded.

Now we saw in §2-3 that non-linear interactions between different parts of the
spectrum may tend to broaden the directional distribution of energy, and that this
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effect will be most pronounced at the highest frequencies, when the characteristic
time for the non-linear transfer of energy is the least. Thus it seems not unreason-
able to attribute some of the boundary of the spectrum at the highest frequencies
to non-linear (i.e. tertiary) interactions among the different parts of the spectrum.

1-0; T T

[N

0° ) 30° 60° 90°

Figure 11. A joint plot of two parameters I /a, and ¢, indicating the shape of the
directional spectrum. x, record 3; @, record 5. Curve a, quasi-normal; b, cosine power;
¢, square-topped ; d, two delta-functions.

3-5. The shape of the angular distribution

It was seen earlier that an indicator of the shape of the spectrum is the ratio
Ipin |y In figure 11 this ratio has been plotted against the corresponding angular
half-width ¢ for the two records 3 and 5 for which the wind system was simplest
(greater weight should perhaps be given to record 5, the data for which are indi-
cated by circles).

For comparison the same figure shows the locus of values of Iy, /a, and ¢ cor-
responding to some very simple distributions:

(1) The line drawn along the yr axis corresponds to an ideal distribution con-
sisting of at most two narrow bands of long-crested waves

F(o, §) oc 8(p —$1) + (¢ — B5).- (3-5-1)

For such a distribution we have seen that I,;, /o, vanishes.
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(2) The lowest of the three curves corresponds to a ‘square-topped’ angular
distribution, of width 2¢,

1 (|¢| < @), K.
e, ¢)°°{0 (19| >¢c>.} (8:5:2)

(The corresponding values of ¢, are indicated along the curve.)
(3) The middle continuous curve corresponds to the cosine-power distribution

F(o, ¢) oc (1 + cos¢)® oc cos® (3¢). (3-5-3)

(The value of the index s is indicated along the curve.) When s = 0 the distribution
is independent of ¢, and as s increases the distributions become more and more

8
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Ficure 12. The closest values of the parameter s corresponding to the plotted points of
figure 11 (data from record 5).

concentrated about the mean direction ¢ = 0. When s is large, the distribution is
approximately normal, with angular variance 2/s.
(4) The uppermost curve corresponds to the ‘quasi-normal’ distribution

F(o, §) oc e=247*sin §g, (3:5-4)

which when A is small also approximates a normal distribution. (In general, the
Fourier coefficients a,, of (3-5-4) involve simple Bessel functions of A—2.)

Of the four laws considered, it appears that the cosine power (3-5:3) gives on the
whole the best fit to the observations (though not necessarily for any individual
frequency). Corresponding to each observation a corresponding value of s may be
allotted by going to the point on the ‘cosine-power’ curve which is nearest to the
plotted point. The values of s so obtained for record 5 have been plotted in figure 12
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against the value of U,/c for each observation. It is seen that generally s decreases
with Uj/c, as would be expected from the fact that the angular width s generally
increases with U, /c.

Other types of distribution cannot necessarily be ruled out, but they must
differ from the cosine-power distribution only in the third and higher harmonics
of ¢.

If wave generation by turbulent pressure fluctuations (§2-1 above) were the
only mechanism involved, one would expect a ‘bimodal’ distribution with maxima
at ¢ = +oa—but only at the higher values of U,/c; for there would in any case be
some spread of energy about the critical directions, and if these were close together
the combined distribution F(c, ¢) could still have a single maximum at ¢ = 0.

Thus the fact that the distribution approximates to a unimodal curve is not
conclusive evidence against the generating mechanism being turbulence alone, at
the lower frequencies; but it is strong evidence at the higher frequencies.

4. THE ATMOSPHERIC PRESSURE FLUCTUATIONS

4-1. General remarks

In both of the mechanisms of wave generation discussed in §§2-1 and 2-2, the
transfer of energy to the waves is associated with fluctuations in the air pressure
on the surface of the water. If the pressure fluctuations are due mainly to atmo-
spheric turbulence they will be almost uncorrelated with the surface elevation {;
if they are coupled to the existing waves, as in Miles’s theory, there should be a
high correlation with . The variances of the coupled and uncoupled components
of the pressure fluctuations are additive.

TABLE 2. VARIANCES OF THE ATMOSPHERIC PRESSURE FLUCTUATIONS

record U, 0-09 Ua/g® (P/9pa)?
no. (ft./s) (£t.2) (ft.2)
1 32 91 73
2 24 29 8-2
3 29 62 5-2
4 14 3 98
5 39 203 131

In the wave observations discussed in the preceding section, a simultaneous
record was made of the air-pressure fluctuations on the upper surface of the buoy.
Here we shall discuss only the results; for a description of the microbarograph and
other experimental details, see the paper by Longuet-Higgins ef al. (1962).

The pressure fluctuations are conveniently expressed in terms of the equivalent
vertical displacement in still air, at a standard atmospheric density. The observed
variances of the pressure fluctuations are shown in the last column of table 2. In
the preceding column is shown the turbulent fluctuations according to Phillips’s
estimate (2-1-4). It will be seen that the observed pressure fluctuations are
generally much the smaller.
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In the following section it will be shown that a substantial part of the observed
pressure fluctuations can be attributed to the flow of air over the undulating
surface of the sea.

4-2. Calculation of the non-turbulent pressure spectrum
In Miles’s (1957, 19592) model the aerodynamical pressure exerted on a sinusoidal
boundary )
¢ = Raeik.x—oh (42-1)
by an air stream in the direction of wave propagation has the form
p = Z(a+ip)p,Uskael®-x~ot), (4-2-2)

where  and /3 are real, non-dimensional quantities depending on the wind profile.
To (4-2-2) we must add the static pressure term —gp,{. Thus the total pressure
measured by an apparatus floating in the surface is

P = Z—gp 1 —(a+ip)(Uyc)® ae®-x—b (4-2-3)
The phase lag x of the pressure relative to the surface depression (—{) is given by

2
x = tan—! l_—ll‘%(oc_U(llZ/lc)vz (4-2-4)
From the numerical values given by Miles (1959) for the logarithmic profile we
have computed y (see figure 13).7 It appears that over the range 0 < U,/c < 0-5
the phase angle does not exceed 0-35, or cos™10-94. Hence the amplitude of the
pressure fluctuation is due almost entirely to the in-phase component of the
pressure [ .

2

P\ = 1 (U, fe)? (4-2-5)

9P

with an error of at most 6 %,.

We have computed the right-hand side of (4-2-5) (denoted by w) from the
numerical values given by Miles (1959a) and the results are shown in figure 14, for
representative values of Q. It will be seen that @ has a minimum at around
U,/c = 0-11, that is, at around U,/c = 1.

The behaviour of w can be understood if we consider the Kelvin—Helmholtz
model in which the wind velocity U is constant. In that case (see Lamb 1932,
p- 370) it is easily found that

@ =14+(Uc—1)2 (4-2-6)

which is clearly a minimum when U = ¢, that is to say when the wind speed just
equals the phase velocity of the waves.
More generally, Brooke Benjamin (1959) has shown that an approximation to

the in-phase component of the pressure is given by

wy =1 +J:° (Ule—1)2e~*1d(ky) (4-2-7)

T Miles’s figure 6 gives the angle tan—14/(—a).
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Ficure 13. The theoretical phase angle between the air pressure and the depression
of the surface, on Miles’s shear-flow model.
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FicUurE 14. The theoretical in-phase component of the pressure in flow over a single sine wave:
———, Miles (1959); ------- , Brooke Benjamin (1959).
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(we have added the statical term), where 7 is a co-ordinate orthogonal to the free
surface. On substituting for U from equation (2-2-1) and replacing z by # we find,
on evaluating the integral,

2
w, = 1+ [1 +% In (yQ U%/c2)] + 33U, Jc)?, (4-2-8)

where y = exp (0-5772...). The curves for w, have been plotted in figure 14 for
comparison with Miles’s numerical results. It will be seen that w, somewhat
exceeds w, but that the general behaviours of w and w, are very similar.

Consider now the more general case of a sine wave travelling at an arbitrary
angle ¢ relative to the wind. By Squire’s theorem the component of the wind
parallel to the crests has no effect on the pressure perturbations, which may thus
be calculated as though the mean wind field were equal to U cos¢ in the direction
of wave propagation. Returning to (2-2-1) we see that the effective wind profile
U cos ¢ remains logarithmic; but to maintain the form of the results the parameter
Q) must be multiplied by sec?¢. Since the dependence of w upon (2 cannot be
readily expressed analytically,f we use as an approximation equation (4-2-8),
generalized to arbitrary directions of propagation; that is to say

w, =1+ [1 + % cos¢ In (yQU%/c2)]2+ %712(@5)2. (4-2-9)

Let the right-hand side of (4-2-9) be denoted by w,(o, ¢). We see that the

spectrum of the pressure is then

Cuu(0) = f:"F<o,¢)wl<cr,¢)d¢, (4210)

and since w,(c,¢) involves only the fourth power of cos @, Cy,(0) may be expressed
in terms of the coefficients a,, b, up to n = 4. On division by

Culo) = [ Fo.9)dg = ma, (4211)

we have the ratio Cy,/Cy, in terms of a,,/a, and b, /a, up to n = 4. In particular for a
symmetrical spectrum (b, = 0) we find

044 = 4 2 2 t)
O 4+ SPa0+(4P +2¢ )(1 +%)
+P(P2+Q2)(30ﬁ+“—3)+%(P2+Q2)(3+49—2+9i‘), (4-2-12)
@y O ORI
2 772
where P= % In (yQU2/c?), Q = %% (4-2-13)

1 Also the numerical values of @ and £ are probably sensitive to actual departures from the
logarithmic wind profile.
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The curves drawn in figure 15 illustrate the ratio (C,/Cy;)}, computed for the
cosine-law spectrum (3-4-3). The (constant) values of U, and Q are those appro-
priate to the data of record 5. It appears that the behaviour of the observation
(a minimum at around U,/c = 0-11) corresponds quite well to the behaviour of the
theoretical curves. It should be borne in mind that at larger values of U,/c the
theoretical curves may be somewhat high, since w, generally exceeds w. Never-
theless, there is qualitative agreement even in this part of the range of U, /c. There
is a tendency for the equivalent value of s to diminish with U,/c, as shown inde-
pendently in figure 12.

6

(Caa/Cr)}

U, /e

Ficure 15. Values of (C,,/Cy;)} for record 5, giving the ratios of the spectral densities of
pressure (in feet of air) and of surface elevation.

From this comparison it appears that for the most part the pressure fluctua-
tions at the surface are simply the aerodynamical pressure changes due to the flow
of air over the undulating surface, together with the statical pressure changes
arising from the buoy’s vertical displacement.

4-3. The phase angles between p and §

Confirmation is provided by considering the phase-differences between the
pressure and the surface elevation. If the pressure fluctuations were due only to
uncoupled turbulence, there would be no definite phase relation between p and §
If, however, the pressure fluctuations were due mainly to the local shear flow, and
not to the turbulence, then from figure 13 we expect the phase differences between
p and —¢ to be small.

Owing to the combined uncertainties in the phase calibrat'ons of the micro-
barograph, the accelerometer and its integrating circuit, and of the heaving motion



312 M. S. Longuet-Higgins (Discussion Meeting)

of the buoy, the phases could be determined only to within about 10° for o < 3-2
and within wider limits at higher frequencies. The estimated phase differences are
shown in table 3.

TABLE 3. PHASE LAG OF PRESSURE BEHIND WAVE HEIGHT (RECORD 5)

phase lag instrumental corrected
o(rad/s) on film corrections phase lag
0-4 214° —50° 164°
06 220 —36 184
08 210 —30 180
10 209 —26 183
1-2 207 —24 183
14 207 —23 184
16 210 —22 188
1.8 202 —22 180
2:0 205 —22 183
2:2 206 —22 184
24 213 —22 191
2:6 211 —22 189
2:8 197 —23 174
30 230 —23 207
32 224 —22 202
34 221 —13 208
3-6 222 +14 236
3-8 221 38 259
4-0 225 86 311

It will be seen that over the most energetic part of the spectrum, p and { are
about 180° out of phase.

From this it may be concluded that over the most energetic part of the spectrum
not more than 109, of the observed pressure fluctuations can be attributed to
turbulence in the air stream ; so that the variance of the turbulent pressure fluctua-
tions cannot be more than about 1%, of the observed variance.

4-4. Discussion

The above measurements of the air-pressure fluctuations, though they set an
upper limit to the turbulent component of the pressure, do not rule out the possi-
bility that turbulence contributes the greater part of the wave energy at the lower
wave frequencies in record 5. At the higher frequencies such a possibility is
ruled out by the directional distribution.

The mean rate of work done by the normal pressures depends on the value of
po¢jot and hence on the component of air pressure that is in quadrature with &.
Owing to the small phase angle between p and —{ the quadrature component
could not be determined with accuracy sufficient to assign a significant{ value to

pogjot. However, even supposing that the phase angles could be roughly deter-
mined, still further measurements might be necessary to determine the relative
importance of turbulence and shear instability. For the phase angles, even on Miles’s
simplified model, depend critically on the profile of the wind velocity.

1 A claim to have measured 555/7% was made by Kolesnikov (1960) at the Helsinki meeting
of the U.G.G.I. The details of this work are not yet available.
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An accurate measure of pol/ot could, however, serve to confirm that normal
pressures, of one kind or another, do not play a negligible part in generation of sea
waves.

5. CONCLUSIONS

The observations available at present of the angular distribution of wave
energy, and of the pressure fluctuations in the atmosphere, are consistent with the
following description of how sea waves are generated.

The initial disturbance of the water surface may be due to turbulent pressure
fluctuations in the air flow, as described by Phillips. Although the pressure
fluctuations are much weaker than was first estimated, it is still conceivable that
such a process may account for most of the energy at the lower frequencies in the
wave spectrum, for which UJc differs little from unity. The main stage of wave
growth appears to be due to the shearing flow in the air, as described by Miles;
this would tend to produce the observed reduction in the angular spread of the
energy. At the highest frequencies, the spectrum is probably controlled by the
breaking of the waves; this is strongly indicated by the dependence of the spectrum
on the fifth power of the frequency. Concurrently with the last two processes
there is probably a slow modification of the spectrum due to the ‘resonant’ third-
order wave interactions.

Fundamental to the processes of wave generation are the profile of the wind
velocity and the amplitude and scale of the turbulent pressure fluctuations. Of
these our knowledge is very incomplete, and further efforts to observe them might
be well repaid. Moreover, significant observations of the wave spectrum itself are
very few, and all those in existence contain important ambiguities. Further
observations of the directional spectrum by one or other of the techniques de-
scribed in §3 would be valuable; it may prove possible, for example, to extend the
measurements with the floating buoy so as to obtain the higher angular harmonics
of F(o, ¢). Observations with a linear array of buoys would be useful over a
certain range of frequencies.

On a model scale, it is clear that experiments in wind tunnels will be of limited
value unless the wind profile is accurately reproduced and the turbulence correctly
scaled. However, experiments with free waves should be worth while. For
example, it would be of great interest to measure the tertiary wave interactions
described in §3. Similarly, a model study might provide information on the
transfer of energy by wave breaking.
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Auto-suspension of transported sediment; turbidity currents

By R. A. Baag~orp, F.R.S.
In association with the U.S. Geological Survey

It has been apparent for some time past that fine sediment material carried in
suspension by a turbulent water stream flowing by gravity is apt to behave incon-
sistently with conventional theory. This demands that the concentration of
suspended solids, which being heavier than the fluid tend to fall through it, must
always increase downwards towards the bed. In fact, however, the concentrations
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