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On the intervals between successive zeros
of a random function

By M. S. LoNneUuET-HIGGINS
National Institute of Oceanography, Wormley, Surrey

(Communicated by G. E. R. Deacon, F.R.S.—Received 13 February 1958)

A new approach is suggested to the problem of the statistical distribution of the intervals
between successive zeros of a random, Gaussian function. Hence is derived a sequence of
approximations p,(7) (n=3,4, 5, ...) to the desired probability density p(r). The third
approximation p; is already correct to order 74, and has the correct limiting form in the case
of a narrow spectrum. The analysis also gives rise to an alternative approximation p¥(r),
less accurate for small values of 7, but possibly more accurate for larger values. Numerical
computation of both py, py, Ps and p¥, p¥, p¥ is carried out for a low-pass spectrum, and the
results are compared with observation.

INTRODUCTION

Let f denote a stationary random function of the time ¢, with mean value zero.
What is the statistical distribution of the interval 7 between two successive zeros
of f, or between two successive maxima or minima ?

The problem arises in connexion with the analysis of the sea surface, where f(t)
may represent, for example, the height of the surface above a fixed point. It has
also been considered by Rice (1945) in connexion with the analysis of noise in
electrical circuits.

Asin a recent paper (1956), f will be assumed to be representable as the sum of an
infinity of sine waves in random relative phase, and its energy spectrum will be
assumed a continuous function of the frequency. Under general conditions (see
Rice 1944) the statistical distribution of f itself is then normal.

The distribution of 7 (which we denote by p(7)) has a mean value which is easily
ound; it is reciprocal of the average number NN, of zero-crossings per unit time, and
Rice (1944, 1945) has shown this to be given by

1(—yo\}
(5 o
where ¥, denotes the correlation function of f, as defined in § 1 below.

To find the complete distribution of 7 is somewhat more difficult. In certain
limiting cases p(7) is known: for example, when 7 is small an approximate expression
has been given by Rice (1945, p. 59) and when 7 is very large it may be shown that
p(1) decreases exponentially (Kuznetsov, Stratonovich & Tikhonov 1954). Further,
in the important case of a narrow spectrum, when f appears as a sine wave of slowly
varying amplitude and phase, Rice gave an approximation to p(7) valid for a limited
range of 7 around the mean value 7 (1945, p. 63). It is interesting to note that the
same approximation may be derived by two alternative methods, either through
the distribution of f”/f (Longuet-Higgins 1956) or through the distribution of the
phase angle of f (Longuet-Higgins 1957, § 2-10).
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100 M. S. Longuet-Higgins

The purpose of the present paper is to describe a fresh approach to the problem,
by which successive approximations to p(7) may be calculated. The method depends
upon a simple relation (equation (2-1) below) between p(7) and the function U(7),
defined as the probability that f is entirely positive over a fixed time interval of
length 7. Since U(r) may be approximated by the probability U,(r) that f be
positive at n suitably chosen points in the interval (where n is sufficiently great),
we thus obtain a set of successive approximations to p(r), depending on n.

It is found that the third approximation p4(7) already has the correct gradient,
curvature and derivatives up to the fourthorder at theorigin; moreover, it tends to
the correct limiting form when the energy spectrum is narrow. The next two
approximations, p,(7) and p4(7) can be evaluated without difficulty, though higher
approximations require one or more additional integrations to be performed.
Numerical computation of p,, p, and p; is carried out for the case when f has a low-
pass spectrum. The results are compared with experimental data, with encouraging
agreement.

An alternative approximation p}(7) is also derived which is less accurate than
P, for small values of 7, but more accurate for larger values.

1. DEFINITIONS

We assume that f(!) may be represented in the form

f@&) =Xc,cos(o,t+€,), (1-1)

where the frequencies o, of the individual sine waves are distributed densely in the
interval (0,c0); the phases ¢, are randomly and uniformly distributed in (0, 27)
and the amplitudes ¢, are such that over a small interval of frequency (o, o +do)

3 305, = B(0)do, (1-2)

n

where E(c) is a continuous function which will be called the energy spectrum of f.
The moments of £ about the origin, given by

e}
m, =f E(o)ordoe (r=0,1,2,...) (1-3)
0
are assumed to exist up to all orders required.

The correlation function of f, defined by
Y(r) = f(O) fE+7), (1-4)
where a bar denotes a mean value with respect to the phases or with respect to ¢,
exists and is related to the spectrum by

Y(7) =J?E(o‘) cosordo. (1-5)

The derivatives of  at the origin are given by

dryr {(—1)’3?’mr r even,}

drr 0 r odd.

(1-6)
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Thus if we write (in Rice’s notation)
Yr) =1y, dy,jdr =1y, (17)
we have Yo=my, Yo=0, Yo=—m, etc. (1-8)
The mean frequency in the spectrum may be defined by
T = my/my, : (1-9)

and the rth moment about the mean is then

M =f()E’(o‘) (c—7)ydr =m,— (i) My_1 T+ ... (—1)"myo". (1-10)
In particular, g, =1my, p; =0, My=my—myG?=myc20%, (1-11)
—_m2
where 02 = m_o”}17i2_7n_1_ (1-12)
1

0% is a non-dimensional parameter proportional to the variance of E(c); it may be
expressed also in the form

1 o0 [T00
o= %J 0 f B(02) Bloy) (03— 0)* doydoy (1-13)

When 6 <1 the spectrum will be said to be narrow, and we see that in that case
the energy is concentrated in a narrow range surrounding the mean frequency &.
The correlation function may then be expanded asymptotically in the following
way. In (1-5) let the term cos o7 be written

COSOT = €08 (0" —0)T co8 0T —sin (0 — )7 sin o7

— )22 [ T
= [1—- (0'2—?')7_'_ +...|cosoT— (o 1'0-)7—...] sinor. (1-14)
On multiplying by E(o) and integrating term by term we have
5 - _
Y(r) = [,uo—,uz;;!-l—... COSOT — 'uTl!T—...]sinE‘r. (1-15)

In the second bracket, , vanishes. Then assuming that x, is of order " and neg-

lecting (0o°7)® we have
Y(r) = A, cosoT, (1-16)

where A, = po—3psm% = Yro(1 —152726%). (1-17)

In other words, the correlation function then approximates to a sine wave of period
27r[7 and of slowly varying amplitude 4.

It has been mentioned that the distribution of f is in general normal. Thus if
tys...,1, are n given values of t, and if f(#,) ... f(t,,) are denoted for short by &;, ..., &,
then the joint-probability density of &, ... £, is of the form

1
P&y, .8, = Wiexp[—%%ﬂ%giél (1-18)
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In this expression the matrix (M;;) is the inverse of the matrix of mean values
(Ey), given by _ S

L= g ;85 f( )f( ) ?/ft "t wlj’ (1'19)
say; and A, =Wy | = | (M) |2 (1-20)

It may be shown that (J4;) is positive-definite (see, for example, Longuet-Higgins
1957).

2. A RELATION FOR (1)

Our method depends upon the following lemma: let U(7) denote the probability
that f is positive over an arbitrary time-interval of length 7; then the distribution
of the intervals between successive zeros is given by

2 d*U

P) = 5 g (21)

where N, denotes the average number of zero crossings per unit time (equation (0-1)).
To prove this, let ¢', " be any two instants of time separated by an interval
T =1"~t". Then we have

U(t"—t') = prob {f> 0 at all points in (¢, ¢")}. (2-2)
Now let
f >0 atall pointsin (#',¢")
V(" —t")dt" = prob Lo } (2-3)
Jf=0 at some point in (#",t" +d¢")
then U@ —t') = U@ +dt" —¢)+ V(" —t')dt”, (2+4)

for the possibilities represented in the right-hand side are mutually exclusive and
together exhaust the possibilities represented on the left-hand side. Taking the
limit as d¢” tends to zero we have
V" —t) = a?,, U@ —t). (2-5)
Similarly, if we define
f=0 atsome point in (¢',¢' +dt")
W(t"—t')dt'dt” = prob{ f > 0 at all points in (#'+d¢',t") 3}, (2-6)

f =0 atsome point in (t"," 4-dt")

we have V(" —t' —dt') = V(" ')+ W' —t')de’ (2-7)
and so Wi —t') = % V" —t'), (2-8)
" ! 82 U ” ’ 2

Now p(t" —t')d¢" is, by definition, the probability that f> 0 at all points in (t”,¢")
and that f = 0 at some point in (¢”,¢" +d¢"), given that ¢’ is an up-crossing of f, or
alternatively given that there is an up-crossing at some point in (#,¢ +dt’), no
matter where. (The probability of two or more zero-crossings in (', +d¢t’) becomes
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negligible as d¢'—0.) But the prior probability of an up-crossing in (#',# +d¢t’) is
$N,d¢’. Hence, by the rule of inverse probabilities,

" ' " o__ W(t” - t,) d¢'d¢” .
ivin t"—t') = 2 o v -t (2-11)
g g p( - = _lvo ot’ ot" ( - )

On substituting ¢" —¢" = 7, we have the relation (2-1).

The relation is proved, in the first place, only when 7 denotes the interval between
an up-crossing and the next down-crossing. But since f(t) is symmetrical about zero,
the relation holds also for the interval between a down-crossing and the next up-
crossing, and so when 7 denotes the interval between any two successive zeros.

The relation between p(7) and U(7) is sketched in figure 1, assuming a fairly
narrow spectrum. U(7) is always a positive function, tending to zero at infinity.
Also, since there is an even chance that in any given small interval of time f will be
positive we have U(0) = }. At the origin p(7) vanishes (as will be shown), and has
a finite gradient. Hence the curvature of U(7) is zero at the origin.

¢-5

U P

o
Ficure 1. The relation between p(7) and U(7) for a typical random function.

Since p(7) can never be negative it is clear from (2-1) that the curvature of U(r)
is always positive or zero.

3. AN EXPRESSION FOR U(7)
By the preceding lemma our problem is now reduced to the evaluation of U(7).
Taking » points ¢,,, ...,#, between ¢’ and ¢", with ¢, = ¢ and ¢, = ¢”, let
U,(ty, ..., t,) = prob{f(t,) >0, ..., f(t,) > O} (3-1)
Then if n tends to infinity in such a way that the largest interval between the
points tends to zero it is reasonable to assume (if f(¢) is continuous) that

Lm Uy (ty, ..., t,) = U@E" —¢'). (3-2)
n—>oo
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An expression for U, may be written down immediately. For

O =" [0t ) 1 6 (33)
where &; denotes f(t;). So from equation (1-18)
| (M) |E (= (=
, =Ef;—%n—fo I DAL (3-4)
Since (M;;) is positive-definite we may, by a real linear substitution
n
= $am; 35)
]:
transform the integral into the form
1
U, = ny...fexp[—%(ﬂ%+...—!—n?z)dnl...doyn, (3-6)
where V denotes the solid angle
n
.21 awﬂj > O. (3'7)
j=
This in turn may be written
1 ©
U, = Wfo exp [ — 2] r*-1drS,, (3-8)

where 72 = 93+ ... +72 and S, (or S) is the region of the unit hypersphere
PBt...+9h =1

bounded by the hyperplanes Xa,;7; = 0. Integration with respect to r gives

_ (3n— 1)!8

T T omdn (3-9)

4. PROPERTIES OF S,

When n = 2 or 3, S, denotes the angle contained by two straight lines, or the solid
angle contained by three given planes, respectively. For general values of n, S, is
obviously a function of the }n(n — 1) angles between the » bounding hyperplanes
of (3-7). Denoting the interior angle between the ith and jth hyperplanes by 6,;
we have

% Wit Vg v
cosf,; = — . =— Ho (4-1)
’ (% aF)? (% ag;)t (Frasthys)®
and so 05 = cos™ (= vry[Yro) (0< by <m). (4-2)
In the case n = 2, S, =8, =0, (4-3)

and when n = 3 the well-known formula for the area of a spherical triangle gives

8y, = 83 = Op3+ 03, + 05— 7. (4-4)
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Schlaefli (1858) has shown that in general 8, may be expressed in terms of functions
of the type S,_4,8,_3; .-, S; whenever = is odd, but not when » is even. There is in
fact no reduction formula for S, which is valid for all integral values of n, although
for particular values of the angles 0;; it is sometimes possible to express S, in finite
terms (see Schlaefli 1860; Coxeter 193 5; Anis & Lloyd 1953).

However, there exists a fundamental differential relation, first proved by
Schlaefli (1858; see also Plackett 1954), namely

08, 1

—n _ __— Qe > .

a@pq n_ZS (’i?// 4)’ (4 5)

where S®? denotes the simplex S,_, corresponding to the (n—2) x (n—2) matrix

MED which is derived from (M;;) by deleting the pth and gth rows and columns.
The relation (4-5) reduces the number of consecutive integrations to be performed

in evaluating S, to $» or $(n — 1) according as » is even or odd. S, involves essenti-

ally one integration since
dz
015 = —
192 = COS™ ¢'12/§00) J wn/%(l ——mz)%

We shall make frequent use of (4-5) in the following work.
From the definition of S®2 it will be seen that the (r, s)th angle of S®?is given by

(e 23

(4-6)

cos P = — 3 i (0629 <), (4:7)
(02 )) (e«
where (p q ::) denotes the 3 x 3 determinant
Yoo Voo Vos
(p q 2) = wqp ¢qq ‘l)&qs . (4-8)
?ﬁrp qu ?/frs
5. APPROXIMATING TO p(T)
From (2-1) and (2-11) it follows that
" —t) = -2 % tim U (1 by .. 1) (51)
PO =) = = § 5,4, Jm n
2 d2
or lim U, (¢ . 52
p(1) = N a2 i U (s - ty) (5-2)
Assuming that the order of differentiation and of letting » tend to infinity may be
reversed, we have either p(7) = lim p, (1), (5'3)
n—>ow
or p(7) = lim pi(7), (54)
n—>ow
where ) = 2 U,(ty... 1) (5-5)
pn(T - _"_Zvoatlatn n\"1 " "n
2
and pE 2 d U, ...1,) (5-6)

(1) = N&'a?g i
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We have therefore two alternative approximations to p(r), namely p,(7) and p¥(r).
In the first of these, U, (¢, ...,t,) is differentiated partially with respect to ¢, and ¢,
only, ¢, ...,1,_; being kept constant. In the second, each of ¢, ... ¢, is considered to
be a function of 7, and in fact the most natural assumption is that the ¢; are all
equally spaced: ;

= e, (57)

n—1
Differentiation with respect to 7 then involves all the points.
We shall examine both types of approximation and compare their merits.

6. Pu(7)
From (5'5), (3-9) and (0-1) we have
_ Gn=D)!{ ¥y )% 25, ,
pn(T) - %n 1 ( w,g atlatn' (6 1)
The first interesting case is n = 3. Substituting from (4-4) we have
Ps(T) = ( gjfl/‘;f;) o, o1, (O + 031 + b1 —). (6-2)
Since 0,;; depends only on ¢; and #; and since
f.. = COS“l(_wm) — cos—l(_l'&’) , 63
s Vo Vo )
: ‘WO i d? -1 ‘WT .
it follows that Pg(T) = 2( ) 208 ( T ) (6-4)
On performing the differentiation we have
71#0 )2 d ’/f; .
=}_( wo )71/f7 ?/IO*WE)—.Q[’TW;Z. (6'6)
2\—=¥s (Ws—ynt

It will be noticed that this distribution is quite independent of the choice of the
middle ordinate #,. We now examine some of the properties of the distribution.
Small values of T. By straightforward expansion of ¥ in powers of 7 we find

N2 I
T 2070 70 o4 O(13). 6-7
p3( ) 8 T,ﬁo 7)0_0 T (T ) ( )
Thus p; vanishes when 7 = 0, and the gradient there is
dps Loy — g
() =5 (%)

This agrees with Rice’s approximation (1945, p. 59). Now from (1-8) and (1-3)

we have )
Yoy — g2 = momy—m3 (6-9)

1 fo [ ’
=3/ [ "B Be 01— ot a0, a0, (6:10)

1 [ [fo
B §f0 fo (oy) B(0) (0 + 0)* (0, —0p)* dory dory, (6-11)
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showing that, when the spectrum is narrow, the above quantity is almost propor-
tional to 02, the variance of the spectrum (cf. (1-13)). Hence, the narrower the
spectrum the smaller is the gradient at the origin.

In general, the gradient at the origin is closely related to the parameter €2
defined by

—m2
2 = MMMy (6-12)
MoMy
(see Cartwright & Longuet-Higgins 1956). In fact
dp, 1 momy—m3 | ..., €
—* = — " = -1
(dT)T=0 8  mymy 37N 1—e¢2 (6-13)

(where IV, denotes the number of zero-crossings per unit time. It is shown, in the
paper just referred to, that ¢ lies between 0 and 1, and its exact value, together with
the value of m,, determines the statistical distribution of the heights of the maxima
of f(#).

A narrow spectrum. We have seen in §1 that for a narrow spectrum

¥, = Yo(1 — $6%5%72) cos o1 + O(0%0474). (6-14)
It follows that Yo = — o021+ 62) (6-15)
and therefore, from (0-1), N, =§(1 + 0%t (6-16)

The mean interval 7 is therefore given by

-1 7 .

Tyt (6-17)
neglecting 2. In the neighbourhood of this mean interval let us write

T = T+1, (6-18)

where 7 is of order d. Then from (6-14) we have

Y = o[l — §(n* +726%)] + O(6%) (6-19)
o1 1
and so (6-7) becomes P4(7) =§%m% (6-20)

(terms of order 62 are neglected). This expression is equivalent to the expression
obtained by Rice (1945, p. 63) for a narrow spectrum and also to the results found
by two independent methods (Longuet-Higgins 1957, §2-10 and 1958). The dis-
tribution is symmetrical, about 9 = 0 or 7 = 77/, and it diminishes like (2 + 7202)~%.

Large values of 7. Assuming that i, and its derivatives tend to zero at infinity,
we have Pe(1) >0 (T->00), (6-21)
unlike Rice’s approximation, which tends to a positive value (1954, p. 60). How-
ever, neither approximation can be considered valid when 7 is large.

In fact, p,(7) cannot be expected to give a good approximation to p(r) when 7 is
greater than about (n — 1) 7; for U, is only an approximation to U provided that the
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probability of f being negative between two positive ordinates &;, §;,; can be neg-
lected; and this is not so when (f,,, —¢;) is greater than 7.

Therefore we shall not be surprised to find p4(7) becoming erratic or even negative
when 7 is greater than about 27.

Higher approximations

Returning to the general formula for p,, (equation (6-1)) we see that, since S, is
a function of the angles 6,;,

oS o 0S8 90, '
oy {<500; oty (6-22)
Since 6,; is a function of (¢, —¢;) only, the above reduces to
08 _ 2 08 06y
&I j= 28(91] atl (6 23)
oS _ 06y,
o ap 713 .
by (4-5). Hence
028 1 00 1 = 28uNpg,.
— (1n) 1n Y15 .
ot ot,, n—QS " atlatn+n_2j=2 ot, ot (6-25)
and so, from (6-1),
( ) (An—2)! ( Yo \} 2 080000,
= Samp 24, 6-26
Pal7) W)= %) P Y

When 7 is small it can be shown (see the appendix) that the dihedral angles
604%™ of the spherical simplex S all approach 7; hence S81™ approaches half the
content of a hypersphere in (n— 2) dimensions, that is

rin—1
Sam = T2y o+ 0(7). (6-27)
Thus the first term on the right of (6-26) becomes
Ps(7)+O(7?) (6-28)

(since p4 itself is O(7) at the origin). In the second group of terms we have

00y 40 ( - 1)”2’;)%
b - = +0(r2 6-29
o Wit g, ) 00 (©29)
n 38134, . —yn\E n g8an
and so 2 = ( 0) +0(72). 6-30
j=2 ot,, 0Ot Yo ] =2 Oty ™) ( )
It is shown in the appendix that
)
357 o (6:31)
i=2 Oty
and so finally Pp(T) = pa(7) +O(72), (6-32)

from which we conclude that p,(r) has both the correct value and the correct
gradient at the origin.¥

1 Also the correct curvature. For p,(7) involves only odd powers of 7, all coefficients of
even powers being zero.
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We saw in § 4 that S, can be evaluated in terms of known functions up to and
including » = 3. Since S8 is of degree (n—2), it follows from (6:26) that p,(7)
may be evaluated as far as n = 5.

Thus for n = 4, for example, we find

_Y L (Yo \*[02801, 0301 5730;14] .
p‘l(T)“n%(T)_E?r(— g) [8)54 ot, ' 0t, 0, oty oty |’ (6:33)

e 2 Y 9
S R (IR e

e Y+ D6+ )]

In carrying through the computation certain relations between the determinants

w

o

Do

(p q :) are found useful. These arise from the fact that each determinant depends

only on the correlations ¥,,, ¥, ... and therefore on the magnitudes |p—g¢]|,
|p—s],.... Thus we have

(p q Z)=(q P Z)=(p q i) (6-35)
and (p q :):(p 7 g):(r q 1;) (6-36)

If, for convenience, the points f; are equally spaced at intervals of 7/(n— 1) apart,
we also have relations such as

7 r+1 n—r
(p q 8)=(p+1 g+1 8+1)—(n—p n—q n——s) (6-37)

which greatly reduce the number of quantities to be calculated.
The computation of p, for » = 3,4, 5 has been carried through for the case of a
low-pass spectrum:

1 (0<o<l),
E(o) = { } (6:38)
0 (I<o).
The correlation function in this case assumes the simple form
Y, sinT :
tr 27, 6-39
Vo 7 ( )

The results for p,, are shown in figure 2. It will be seen that p3, p, and p; all lie very
close together up to about 7 = 3-5, suggesting that the third approximation is
accurate up to this point. In fact the numerical results show that (p,—p;) and
(p5 —p,4) both behave like 75 near the origin, so that p, is very probably correct as
far as the term in 7.

Aswe should expect, p; begins to differ appreciably from the next two approxima-
tions when 7 exceeds 77, that is, half the cut-off period 27. When 7> 6, p, becomes
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negative, which is of course impossible. p, also becomes negative at about r = 7-3,
though to a lesser extent. However, p; is positive until 7 = 12-5 and shows the
interesting phenomenon of a second maximum at about 7 = 10, also observed
experimentally. The observations of Campbell quoted by Rice are also shown in
the figure. It should be borne in mind that in the observational material the cut-off
frequency was not well defined, and that this has probably affected the position of
the two maxima; the presence of any additional energy beyond the theoretical
cut-off frequency might be expected to increase the number of short intervals in
the distribution and so to shift both observed maxima towards the left. The
theoretical cut-off frequency was chosen so that the first maximum of ¢, coincided
with the observed maximum, but the correct position of the second maximum is
somewhat uncertain.

7. pi(T)
From equations (5-6) we have in general
n—1)! 3 dzs,
pi( ) = ( 77%7"—1 (_w_g;//) de . (7-1)
G
When n = 3 this becomes
pa(T) = 2( Vo ) 5 (Oog + 031 + 015 — ). (7-2)

In contrast to the previous case, all three angles 0,3, 05, 6, make non-zero con-
tributions. Supposing that the points ¢, ¢,, {3 are equally spaced, then #,—¢, and
t;—t, are both equal to 7 and hence

D3 (1) = ps(7) + §03(37); (7-3)

where p4(7) is the approximation considered in § 6.
Gradient ot the origin. On differentiating with respect to 7 and putting 7 = 0

we find () -3(iz) ,
dr ).y dr ), (7-4)

Therefore, the gradient of p5 at the origin is not equal to the true gradient, but
exceeds it by 25 %,.

A narrow spectrwm. On making the same approximations as before we find,
when 7 is in the neighbourhood of 7, that p4(37) is small; hence

P3(T) = ps(T) (7-5)

and the approximations have the same limiting form for a narrow spectrum.

At infinity, p¥ like p, tends to zero.

Computation of p§ for a low-pass spectrum shows (figure 3) that although the
approximation is not so good as p; near the origin, yet it is somewhat better for
values of 7 greater than about 4.

Higher approximations of the same type may be obtained by computing

as, 38 40, 1 —,
(47) _ W .
O, dr =22 g (7-6)

’b]
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at regular intervals of 7 and then differentiating numerically in equation (7-1).
Since 8@ is of degree n— 2, this may be done up to and including # = 5.

The above procedure was carried out for a low-pass spectrum (given by (6-38))
and the results are shown in figure 3. It will be seen that the gradient of p§ and pZ
at the origin differs from the gradient of p¥, and all in fact differ from the correct
gradient. On the other hand, none of the approximations p}; becomes as negative
as the corresponding approximation p%, and from the observed points (which are
the same as in figure 2) it appears that, for the larger values of 7, p¥ is somewhat
more accurate than p,,.

8. CONCLUSIONS

Two sequences of approximations to p(7) have been derived, namely p,(7) and
p¥(r). Of these, the sequence p,(7) is the better approximation near the origin.
Indeed the third approximation py(7) is remarkably accurate over the lower half
of the distribution, so that we have

dz —1
p(T)#gﬂlﬁa;Ecos‘l( ?/IOT) (T1<71,), (8-1)

where 7,, denotes the median value of 7. The alternative sequence p}(7), however,
appears to be more accurate for larger values of 7, and for a low-pass spectrum
p¥ and pf¥ give secondary maxima in accordance with observation. Both types of
approximation tend to the correct form when the spectrum becomes narrow.

To compute higher approximations it would be necessary to carry out numerically
some further steps of integration; though rather long, this might be done on the
lines suggested by Plackett (1954).

From equation (8-1) some simple conclusions may be drawn. On integrating
from the limit 7 = 0 (that is to say over the range of 7 for which the approximation
is most accurate) we have

d AT
-1 .
f (r)dr= 2N[d cos ('ﬁo )] (8-2)
The expression on the right, evaluated at 7 = 0, is
m Ve (25
lim = o) =7N, 83
-y ) T (59)
1 d —yN .1 [T
R -1 T = .
and so 2ﬂNochos ( 7 ) =3 fop(r) dr. (8-4)

At the first minimum of ¢,, we have ¥, = 0, and so the left-hand side vanishes,
giving

f}mw=g (8-5)

0

In other words, 7 = 7,,, the median of the distribution; or the median of p(7) is
approximately at the first minimum of the correlation function ..
Further, from (8-4)

2771N dr -l(zg) = mep(T) dr = F(r), (8-6)

8 Vol. 246. A.
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where F(7) is the distribution function of 7 measured from the median. Hence

¥, o= cos [QWMf;F(T) dT] . (87)

This serves to give ¥, [, very simply in terms of F(r), which in turn may be found
from the observed distribution of 7.

Thus by measuring the distribution of intervals between zeros we have a simple
Monte Carlo method to determine the correlation function ¥,. The method is valid
for values of 7 less than the median of the distribution.

ApPENDIX. THE BEHAVIOUR OF P NEAR THE ORIGIN

To prove the assertions which were made in § 6 regarding the behaviour of p,,(7)
at the origin, we must examine the nature of S and 298%9/o¢, for small values of 7.
From (4-7) the (r, s)th angle of 819 is given by
Vi
Y
’gb.’l‘s
Y

cos 1) = —

. (A1)

Y

‘9&7212 lﬁiﬂl

Y Vs

(whefe for convenience only the diagonal element of each determinant is written).
Now

i~
vy = wt—t) = v (;=7) (A2)
a function which, by hypcthesis, may be expanded in even powers of 7. Thus we
may apply the following lemma: If F(z)is any function expansible in a power series
about z = 0, and if #,, ..., 2,, ¥y, ..., Y, are proportional to 7, the first term in the
expansion of

F(ey—y) Fl@i—y) ... Fl@—y,)
F(xz'— Y1) F(xz._ Ya) .- F(xz— Yn) (A 3)
F(xn'_ yl) F(xn— ?/2) e F(xn_ yn)
F(0) F'(0) ... F@1(0)
is E(xz_xg) (yj_yz) FI'(O) F//.(O) . F(n.)(o) ) (A 4)
[t 2! ... (m—1)!? 7 a : H
n=D(0) F®™(0) ... F@r3(0)
For example
140 Yo 0 Yy
127 FHb—t) (=) (= 1)- (=) (G—8) (G —28) | O g 0 | (A5)
Vs Yo O YV
the remainder being of order 78. Applying this in (A 1) we find
cos O = — (ty,—t,) (t,— 1) (6, —1,) (6, — 1) (A 6)

| (b1 —1,) (b —1) (Fs— 1) (£~ 25) |
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According as ¢ does or does not lie between r, s we have
cos %) = +1; 0% =0 or m. (A7)

Hence the first of our assertions is proved.
To examine £08%9[o¢, (which we denote by @), we have first

1:011 7:”11 1)&11 2
Vi 2% - 127
sin2 07(*13?') _ wrr wss wrs ) (A 8)
Y Y
Vi Vi
¢‘9'7‘ w‘SS
By Jacobi’s theorem on the minors of a determinant the numerator may be written
¥ ;

Y Vi A
9
| Ve (&9

] ¢‘SS

and on using the lemma we find

7oV v2
sin? ) = * o Vol mv A10
k5 g L e o

Since 6D lies between 0 and 7 by definition, we have, assuming » <s and so ¢, <{,,

sin G0 = G(t —1,), (A11)
LT Yoo Y5 — o) ]
where G = —[ 0 L. A12)
3| L vi (
) t,—t)+0 <1<8),
Hence e ={ Glt, 1) +O(r) - (r<s )} (A13)
7—G(E,—1,)+0(T3) (i<r<s).
Writing s = n we have
86§1S")_={ G +0(2) (7”<%)a} (A 14)
‘ ot,, —G4+0(1?) (i<7);
and writing ¢ = n (so that neither r nor s = n) we have
(1n)
a@rs — 0(7.2). (A 15)
ot,,
It follows from the last equation that
o8am 08am pHLm 0
5, = 2 a0 a, 0T (A16)
and hence, neglecting terms of order 72,
n o8N  n—1p8a)  n-1 Qi) 30%)
Y=E TE w00 o, (R4
i+

T A geometrical interpretation of this result is given in another paper (in preparation).
8-2
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When n = 4 we have simply Su) = 64 (A 18)
(12) (13)
and so Q= 005> | 00" _ Q-G =0. (A 19)
Aty oty
When n = 5, we have S = O 4 08D + 61D —r, (A 20)

where ¢, k, [ denote 2, 3, 4 in any order. Then

L oW

Q=3 Z% o, (A21)
sj=2 Ol
1]

since for every pair (¢, ) with ¢ <j there is another pair (j, 7) and these give contribu-
tions + G which cancel. So again @ vanishes.
When n > 6 we have from (4-5) and (A 17)

Q=1 nil gaiin 0

n—4;5=2 atn
%]

(A 22)

with an obvious notation. To show that this expression is of order 72 we may
examine the dihedral angles 6%%™ of S@im_These are given by

Y
Vi
Vs
wnn
144 zﬁ'rs
cos LM = — . (A23)
(2% By ¥
2% : Vi
Vi Yis
w’nn wnn
¢W wSS
Using the lemma, we find that when 7 =0
6%im = 0 or m, (A 24)

according as the pair (r, s) does, or does not, separate the pair (¢,7). Now if any one
of the angles 6™ vanishes, then 8" vanishes. The only cases in which this is
not possible is when 7, j are consecutive, or if (4,5) = (2,2—1) or (rn—1,2); then
S@im equals half the surface of a hypersphere in (n—4) dimensions. In all cases,
interchanging ¢ and j leaves the value of S®%™ unaltered, but reverses the sign of
00490t and so the sum (A 22) vanishes, when 7 = 0. To the first order, therefore,
this expression equals

Q=3 Qrlres (A 25)
k=1

1 n—1 gSQiin) gHdN
here —_ mn
wher Qk n—4 i,5=2 atk 6tn
_ 1 n—1 oS zin) a@%ﬁn) a@%{)
n—4 ;522 r<s a@;lsijn) atk atn )

(A 26)

(A 27)
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Now by considering sin 6%%™ as before we find that

paiin - {H (t,,—t,)  if (r,s) separate (¢, j),} (A 28)
m—(t,—t,) if not;
where H is a positive constant, and therefore
26%iim {—H if (r, s) separate (7,7),
ot, ~ | H if not;
. . (A 29)
ogLim { H if (r, s) separate (¢,7),
o, ~\—H if not;
(terms of order 72 being neglected). Further
06 Liin)
—5— = 0(1?) (k%7,s). (A 30)
When n = 6 we have S@iin) = Glijn) (A 31)
13 06Li35) 9O
and so Q= 51}12 D TR TR (A 32)

Interchanging ¢ and j has no effect in the first term, but reverses the sign of the
second, and so on summation

Q= 0. (A 33)
Similarly when n = 7. When n > 8 we have by (4-5)
1 n—1 PO 5ed
— Qigrsn) 7S wm_ A 34
Z (n—4)(n—6) i’j2=2 ,gs ot, ot, ( )

By the same argument as before, the (p,¢)th angle of S®is® approximates to 0
or 77. The only non-zero S4%sm are those all of whose angles are 7, and these are
unchanged by interchanging ¢ and j. But 06%9™/ot, is unaltered also, whereas
00%D o4, is reversed in sign. Therefore, the terms in the summation again cancel in

pairs and Q, = 0. (A 35)

This shows that @ is of order 72, as was to be proved.

I am indebted to Miss D. Greenwood and Miss D. B. Catton for assistance with
the numerical computation for figures 2 and 3.
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