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On the intervals between successive zeros 
of a random function 

BY M. S. LONGUET-HIGGINS 

National Institute of Oceanography, Wormley, Surrey 

(Communicated by G. E. R. Deacon, FR.S..-Received 13 February 1958) 

A new approach is suggested to the problem of the statistical distribution of the intervals 
between successive zeros of a random, Gaussian function. Hence is derived a sequence of 
approximations p(rT) (n=3, 4, 5, ...) to the desired probability density p(T). The third 
approximation p3 is already correct to order r4, and has the correct limiting form in the case 
of a narrow spectrum. The analysis also gives rise to an alternative approximation p*(r), 
less accurate for small values of T, but possibly more accurate for larger values. Numerical 
computation of both pa, P4, P5 and p*, p*, p5 is carried out for a low-pass spectrum, and the 
results are compared with observation. 

INTRODUCTION 

Let f denote a stationary random function of the time t, with mean value zero. 
What is the statistical distribution of the interval r between two successive zeros 

off, or between two successive maxima or minima ? 
The problem arises in connexion with the analysis of the sea surface, where f(t) 

may represent, for example, the height of the surface above a fixed point. It has 
also been considered by Rice (I945) in connexion with the analysis of noise in 
electrical circuits. 

As in a recent paper (I956),f will be assumed to be representable as the sum of an 

infinity of sine waves in random relative phase, and its energy spectrum will be 
assumed a continuous function of the frequency. Under general conditions (see 
Rice I944) the statistical distribution off itself is then normal. 

The distribution of r (which we denote by p(r)) has a mean value which is easily 
ound; it is reciprocal of the average number No of zero-crossings per unit time, and 
Rice (1944, I945) has shown this to be given by 

1 /T =o\ )I (0.1) 
N0o = 

where 1f, denotes the correlation function off, as defined in ? 1 below. 
To find the complete distribution of r is somewhat more difficult. In certain 

limiting cases p(r) is known: for example, when r is small an approximate expression 
has been given by Rice (I945, p. 59) and when T is very large it may be shown that 

p(r) decreases exponentially (Kuznetsov, Stratonovich & Tikhonov 1954). Further, 
in the important case of a narrow spectrum, whenf appears as a sine wave of slowly 
varying amplitude and phase, Rice gave an approximation to p(r) valid for a limited 

range of r around the mean value T (I945, p. 63). It is interesting to note that the 
same approximation may be derived by two alternative methods, either through 
the distribution off"/f (Longuet-Higgins i956) or through the distribution of the 

phase angle off (Longuet-Higgins I957, ? 2-10). 
[ 99 ] 7-2 



M. S. Longuet-Higgins 
The purpose of the present paper is to describe a fresh approach to the problem, 

by which successive approximations to p(T) may be calculated. The method depends 
upon a simple relation (equation (2-1) below) between p(r) and the function U(T), 
defined as the probability that f is entirely positive over a fixed time interval of 

length r. Since U(r) may be approximated by the probability Un(r) that f be 

positive at n suitably chosen points in the interval (where n is sufficiently great), 
we thus obtain a set of successive approximations to p(r), depending on n. 

It is found that the third approximation p3(r) already has the correct gradient, 
curvature and derivatives up to the fourth order at the origin; moreover, it tends to 
the correct limiting form when the energy spectrum is narrow. The next two 

approximations, p4(r) and p5(T) can be evaluated without difficulty, though higher 
approximations require one or more additional integrations to be performed. 
Numerical computation of pa, P4 and P5 is carried out for the case whenf has a low- 

pass spectrum. The results are compared with experimental data, with encouraging 
agreement. 

An alternative approximation p*(r) is also derived which is less accurate than 

Pn for small values of T, but more accurate for larger values. 

1. DEFINITIONS 

We assume that f(t) may be represented in the form 

f(t) = e cCos(ont+e), (1.1) 
n 

where the frequencies on of the individual sine waves are distributed densely in the 
interval (0, o); the phases en are randomly and uniformly distributed in (0, 21) 
and the amplitudes cn are such that over a small interval of frequency (<, a + do-) 

E c2 = E(r) dcr, (1.2) 
n 

where E(cr) is a continuous function which will be called the energy spectrum off. 
The moments of E about the origin, given by 

mr fE(ao)ordo (r=0,1,2,...) (1.3) 
Jo 

are assumed to exist up to all orders required. 
The correlation function off, defined by 

r(T) =f(t)f(t +), (1.4) 

where a bar denotes a mean value with respect to the phases or with respect to t, 
exists and is related to the spectrum by 

r(r) = J E(r) cos oTdr. (1.5) 

The derivatives of f at the origin are given by 

dr {f(-1)mlrm reven, (6) 
drf o r odd.6) dTr 0 ~~~~~~~~~~~~r odd. 
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Intervals between successive zeros 101 

Thus if we write (in Rice's notation) 

/(T) = 2r7, dfr/d7 = 3dr, (1.7) 

we have -o 
= mn, 1% = 0, ' = -m2, etc. (1.8) 

The mean frequency in the spectrum may be defined by 

r = ml/mo (1-9) 

and the rth moment about the mean is then 

1 = fE(o)(- _-)rdr= mr- (l)mr_ + ...(-1)m . (110) 

In particular, Iuo = tmi, i, = 0, /2 = m2-moJ2 = moc2&2, (1.11) 

where 82 = mo-2_m (1.12) m' 1 

82 is a non-dimensional parameter proportional to the variance of E(o-); it may be 

expressed also in the form 

1 ro~ c? 
82 = 

2m1J J0E(o(r) E(r2) (cr- Cr2)2 daldc2. (1.13) 

When 6< 1 the spectrum will be said to be narrow, and we see that in that case 
the energy is concentrated in a narrow range surrounding the mean frequency cr. 
The correlation function may then be expanded asymptotically in the following 
way. In (1-5) let the term cos rr be written 

cos or = cos (o - r)r cos Cr - sin (r- -)r sin rr 

=[1- (2+ 
- 

J +- ] COS o-r- 1 - ... sin mT. (1-14) 

On multiplying by E(or) and integrating term by term we have 

f(T) = 1 00-2 2- +] cos - - . ...] sin Tr. (1.15) 

In the second bracket, a, vanishes. Then assuming that a,r is of order 8r and neg- 
lecting (8Tr)3 we have 

2(T) = A7 cos r, (1.16) 

where A2 = to( - 2T2 = fo0(1 - i2rT282). (1.17) 

In other words, the correlation function then approximates to a sine wave of period 
27TI/ and of slowly varying amplitude A,. 

It has been mentioned that the distribution off is in general normal. Thus if 
t, ..., tn are n given values of t, and iff(tl) ...f (t.) are denoted for short by l1, ..., n, 
then the joint-probability density of 1 ... n is of the form 

P(l,',n)-- - 27rAexp[-?S2 , g ](1.18) 
n ~?,,=(n~aep Yij,i 



M. S. Longuet-Higgins 
In this expression the matrix (Mij) is the inverse of the matrix of mean values 

(6Ej), given by 
g..vjn j = f (t) f(tj) -= ~(ti- tj) - iy (1.19) 

say; and A = I (fri) | = (Mi) -. (1.20) 

It may be shown that (Mij) is positive-definite (see, for example, Longuet-Higgins 
I957)- 

2. A RELATION FOR p(T) 

Our method depends upon the following lemma: let U(r) denote the probability 
that f is positive over an arbitrary time-interval of length T; then the distribution 
of the intervals between successive zeros is given by 

2 d2U 
rN d2' (2.1) 

where No denotes the average number of zero crossings per unit time (equation (0 1)). 
To prove this, let t', t" be any two instants of time separated by an interval 

r = t"-t'. Then we have 

U(t" -t') = prob {f> 0 at all points in (t', t")}. (2-2) 
Now let 

V(t"-f) dt" = probf 
> 0 at all points in (t', t") 

(23) 
f = 0 at some point in (t", t" + dt") 

then U(t" - t') = U(t" + dt" - t') + V(t" - t') dt", (2-4) 

for the possibilities represented in the right-hand side are mutually exclusive and 

together exhaust the possibilities represented on the left-hand side. Taking the 
limit as dt" tends to zero we have 

V(t"-t') = - U(t"- t'). (2.5) 

Similarly, if we define 
f = 0 at some point in (t', t' + dt') 

W(t"-t')dt'dt" = prob f > 0 at all points in (t' +dt',t") t , (2.6) 

f = 0 at some point in (t", t" + dt")J 

we have V(t" - t' - dt') = V(t" - t') + (t" - t') dt' (2-7) 

and so W(t"-t') = -t V(t"-t'), (2-8) 

or W(t"-t = t' U(t-t'). (2.9) 

Now p(t" -t') dt" is, by definition, the probability that f> 0 at all points in (t", t') 
and that f = 0 at some point in (t", t" + dt"), given that t' is an up-crossing of f, or 

alternatively given that there is an up-crossing at some point in (t',t'+dt'), no 
matter where. (The probability of two or more zero-crossings in (t', t' + dt') becomes 
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Intervals between successive zeros 

negligible as dt' - 0.) But the prior probability of an up-crossing in (t', t'+dt') is 
-No dt'. Hence, by the rule of inverse probabilities, 

o-t'd"=W(t" 
- t') d' dt" 

W(t("t t') dt" 
d 

(2.10) 
'N0dt' 

2 32 I 
giving P(t - t) = -U(t - t'). (2.11) 

On substituting t" -t' = , we have the relation (2 1). 
The relation is proved, in the first place, only when r denotes the interval between 

an up-crossing and the next down-crossing. But sincef(t) is symmetrical about zero, 
the relation holds also for the interval between a down-crossing and the next up- 
crossing, and so when r denotes the interval between any two successive zeros. 

The relation between p(r) and U(r) is sketched in figure 1, assuming a fairly 
narrow spectrum. U(T) is always a positive function, tending to zero at infinity. 
Also, since there is an even chance that in any given small interval of time f will be 

positive we have U(0) = ?. At the origin p(r) vanishes (as will be shown), and has 
a finite gradient. Hence the curvature of U(r) is zero at the origin. 

0.5 

\^ / \PW 

~~~~O .?R"-~~~~~ - 

FIGuRE 1. The relation between p(r) and U(r) for a typical random function. 

Since p(T) can never be negative it is clear from (2-1) that the curvature of U(r) 
is always positive or zero. 

3. AN EXPRESSION FOR U(r) 

By the preceding lemma our problem is now reduced to the evaluation of U(r). 
Taking n points t, t2, ..., tn between t' and t", with t1 = t' and t, = t", let 

U(t..., t) = prob{f(t)>0, ...,f(t) > 0}. (3.1) 
Then if n tends to infinity in such a way that the largest interval between the 
points tends to zero it is reasonable to assume (iff(t) is continuous) that 

limn Un(t, ...,t) -- U(t="-t'). (3-2) 

103 

n-->.oo 



104 M. S. Longuet-Higgins 
An expression for U~ may be written down immediately. For 

o Jo 
n . .oP(6l, ...,jd6 ... d n, (3.3) 

where i denotesf(ti). So from equation (1*18) 

Un = i(2))t SJu ?... exp- : -Mlij i j] d6l **d6n. (3 4) un 
=(2T)jn 2J 

Since (Mij) is positive-definite we may, by a real linear substitution 

n 
6 = aij]j, (3-5) 

j=1 
transform the integral into the form 

(=Un 
(21)n 

. xp[ - 2 (I 
- -.. 

+2 )dl... d n (3.6) 

where V denotes the solid angle 
n 
L aijjj >? O. (3.7) 

i=1 
This in turn may be written 

Un= (2)^ rJ exp[ - r2] rn-ldrSn, (3.8) 

where r2 = y+ + ... + 2 and Sn (or S) is the region of the unit hypersphere 

^21+ ... + /2 =_ 1 

bounded by the hyperplanes EaijS^ = 0. Integration with respect to r gives 

Un = (i 1)!. (39) (7 W = = 
2 7T -ff n 

4. PROPERTIES OF Sn 

When n = 2 or 3, Sn denotes the angle contained by two straight lines, or the solid 

angle contained by three given planes, respectively. For general values of n, Sn is 

obviously a function of the -n(n- 1) angles between the n bounding hyperplanes 
of (3 7). Denoting the interior angle between the ith and jth hyperplanes by 0i 
we have 

E aikakY 
cos Oij = iJ (4.1) = 

- 
- 

(4.1) 

k k 

and so Oj = cos-1 (- 3fi/fo) (0 < 0i < ). (4-2) 

In the case n = 2, S = S = 012 (4-3) 

and when n = 3 the well-known formula for the area of a spherical triangle gives 

Sn = S3 = 023 + 31+ 012- 7r. (4.4) 
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Schlaefli (I858) has shown that in general S. may be expressed in terms of functions 
of the type Sn_l, Sn_, ..., S2 whenever n is odd, but not when n is even. There is in 
fact no reduction formula for Sn which is valid for all integral values of n, although 
for particular values of the angles Oij it is sometimes possible to express Sn in finite 
terms (see Schlaefli i860; Coxeter i935; Anis & Lloyd I953). 

However, there exists a fundamental differential relation, first proved by 
Schlaefli (1858; see also Plackett I954), namely 

8 = 1S(pq) (n > 4), (4-5) 
apq n- 2 

where S(Pq) denotes the simplex Sn_2 corresponding to the (n-2) x (n- 2) matrix 
M(pq) which is derived from (Mij) by deleting the pth and qth rows and columns. 

The relation (4.5) reduces the number of consecutive integrations to be performed 
in evaluating S to -n or (n- 1) according as n is even or odd. S2 involves essenti- 

ally one integration since 

012 = COs-' ( - 12/fO) =jf1 (416) 

We shall make frequent use of (4-5) in the following work. 
From the definition of S(Pq) it will be seen that the (r, s)th angle of S(q) is given by 

q 
cos (~p) =- (0 n p(vq) < ?J), (4-7) 

( (\ q r ( q s 

where ( q s denotes the 3 x 3 determinant 

Vpp fpq /fps 

( q 
r 
) p = qq s . (4-8) 

frp tfrq fTrs 

5. APPROXIMATING TO p(r) 

From (2-1) and (2-11) it follows that 

2 a2 
p(t"-t') =- a at lim Un(t... t) (5.1) 

o atTn n-> oo 

2 d2 
or pQ)= lim U (t. tn) (5.2) 

N0odT2 n-_ co 

Assuming that the order of differentiation and of letting n tend to infinity may be 

reversed, we have either p(T) = li n(T) (5.3) 
n->x oo 

or p(T) = lim *(r), (5.4) 
n-> x) 

2 n 
where Pn(r) = a t U(tl ... t (5.5) 

2 d (56) and *() ... t). (5.6) 
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We have therefore two alternative approximations to p(r), namely p2(r) and p*(T). 
In the first of these, UQ(t, ..., tn) is differentiated partially with respect to t, and t, 
only, t2, ..., tn_ being kept constant. In the second, each of t. .. tn is considered to 
be a function of r, and in fact the most natural assumption is that the ti are all 

equally spaced: i 
ti = n-- (5-7) 

Differentiation with respect to r then involves all the points. 
We shall examine both types of approximation and compare their merits. 

6. Pn(T) 
From (5.5), (3-9) and (0-1) we have 

(6'1) P.()=- 
2 

-1 ) (I ) a (6.1) 

The first interesting case is n = 3. Substituting from (4-4) we have 

p3(T) = - 
(--) att3(023+031+012- 7). (6-2) 

Since Oij depends only on ti and tj and since 

O0 =cos- (- 13) = cos(- '), (6.3) 

it follows that p3(T) = (- co-)dr2 ( ) (64) 2 - Vf~ 'd-rCO- (6 

On performing the differentiation we have 

I ( d ? '(65) 
P3(T) =2 ([ n) d- (2 3-) (6 5) 

- _ ( ) 

( 
~ -( L22f 2) (6-6) 

It will be noticed that this distribution is quite independent of the choice of the 
middle ordinate t2. We now examine some of the properties of the distribution. 

Small values of r. By straightforward expansion of rf in powers of r we find 

p3(T) = +f- 0O(T3) (6.7) 

Thus p3 vanishes when T = 0, and the gradient there is 

(d ] -o8? -^ ffog ' (6.8) 

This agrees with Rice's approximation (I945, p. 59). Now from (1-8) and (1-3) 
we have 

I^o _r r Mom4-2-m (6-9) 

= jE(o-1)E(o2) (2-(r')2do-ldo2 (6.10) 

2= Jf rjE(or) E(o2) (oc + o2)2 (-1-.0-2)2 dcrdo-2, (6-11) 
2/ 0 * 
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Intervals between successive zeros 107 

showing that, when the spectrum is narrow, the above quantity is almost propor- 
tional to 82, the variance of the spectrum (cf. (1-13)). Hence, the narrower the 

spectrum the smaller is the gradient at the origin. 
In general, the gradient at the origin is closely related to the parameter 62 

defined by 
62 = mM4-m2 (6.12) 

mom,e 

(see Cartwright & Longuet-Higgins I956). In fact 

(dp3\ _ 1 mom4-m| -8 mdm. 2= m 7T2NN 2 (6.13) 
d,r ] 8 ~0M2 

8 0 
m 1 _p2 

(where No denotes the number of zero-crossings per unit time. It is shown, in the 

paper just referred to, that e lies between 0 and 1, and its exact value, together with 
the value of mn, determines the statistical distribution of the heights of the maxima 
of f(t). 

A narrow spectrum. We have seen in ? 1 that for a narrow spectrum 

f = f0o(l - 182272) cos C-r + 0(8347r4). (6.14) 

It follows that 0 = - fo2( 1 + 82) (6-15) 

and therefore, from (0.1), N =-(1 +2). (6-16) 

The mean interval T is therefore given by 

1 hr 
r-- (6.17) No . 

neglecting 82. In the neighbourhood of this mean interval let us write 

T,r = 7r +l, (6.18) 

where v is of order 8. Then from (6-14) we have 

r = O[ - ([2 l_+7T+282)] + 0(,3) (6-19) 

1 1 
and so (6-7) becomes p3(r) 2 (1+ ) 20) 

2;T5(1I + ?y2/T282)6 

(terms of order 82 are neglected). This expression is equivalent to the expression 
obtained by Rice (i945, p. 63) for a narrow spectrum and also to the results found 

by two independent methods (Longuet-Higgins I957, ?2-10 and I958). The dis- 
tribution is symmetrical, about y = 0 or r = 7r/, and it diminishes like (y2 + r262)-I. 

Large values of T. Assuming that VY and its derivatives tend to zero at infinity, 
we have p3(r)->0 (r-oo), (6.21) 

unlike Rice's approximation, which tends to a positive value (I954, p. 60). How- 

ever, neither approximation can be considered valid when T is large. 
In fact, pn(r) cannot be expected to give a good approximation to p(r) when r is 

greater than about (n - 1) T; for Un is only an approximation to U provided that the 
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probability off being negative between two positive ordinates gi, i+l1 can be neg- 
lected; and this is not so when (ti+ - ti) is greater than T. 

Therefore we shall not be surprised to find p3(r) becoming erratic or even negative 
when r is greater than about 2f. 

Higher approximations 

Returning to the general formula for p, (equation (6*1)) we see that, since Sn is 
a function of the angles Oij, 

as e aso ats (6'22) t1 -- i<jij at, 

Since Oij is a function of (ti - tj) only, the above reduces to 

as =n as ao6 
at1 = a1 8 jat1 ' (6.23) 
as n ) 

or S(1=) a j) (6-24) at, n-2j.2 at1 
by (4-5). Hence 

a2S 1 SanSa 1 a aS(lJ)01 al - 1 ) +^ 1C I S(6.25) atLatn n-2 at1atn n-2j=2 atn ati 
and so, from (6.1), 

pn(r) = S(n)P3(T)?- 0) j (6.26) 
7TJn--1 ' - 2,~7T?ffn-1 -o- ,fr, j=2 atn at1 

When T is small it can be shown (see the appendix) that the dihedral angles 
6Asn) of the spherical simplex S(n) all approach 7T; hence Sln) approaches half the 
content of a hypersphere in (n- 2) dimensions, that is 

T/~n--1 
(ln) = 2)+(T). (6.27) 

Thus the first term on the right of (6.26) becomes 

P3(r) + 0(r2) (6-28) 

(since p3 itself is 0(T) at the origin). In the second group of terms we have 

aolj = __ 
_ _ - -p 

)dlj) 

and so ___ a%. (-u )N - as 0 (6.30 

E = 
O(-0(r2) (6.31) 

=t2 _tn 

8(1 0- C, i \ 0o / 

It is shown in the appendix that 

n aS(1?) 
S - == 0(72) (6-31) 

j=2 atn 

and so finally pn(T) = p3() + 0(r2), (6-32) 

from which we conclude that p3(r) has both the correct value and the correct 

gradient at the origin.t 

t Also the correct curvature. For p,(r) involves only odd powers of r, all coefficients of 
even powers being zero. 
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Intervals between successive zeros 109 

We saw in ? 4 that S. can be evaluated in terms of known functions up to and 

including n = 3. Since S(1) is of degree (n-2), it follows from (6.26) that pn(T) 
may be evaluated as far as n = 5. 

Thus for n = 4, for example, we find 

P4(T) P37 
Y __ O_ aa WU_1 a13 +fao14 (6.33) TP4( 27T - -fl)- at4 at- at4 atl at4 tl (633) 

where ca = =2)=cos-[-(1 2 ) (( 2 3)(1 2 

^ ?>-oo,- [-(l 3 ^)/y((l 3 ^(l 3 ^],> (6.34) 
f = 02(l4= cos- [ - 3( 4 1 3 2)/J( 1 3 4)(1 3 (6434, 

=0-(214) os-[-(l 4 2)/!(( 1 4 2)(1 4 ) 

In carrying through the computation certain relations between the determinants 

pq ) are found useful. These arise from the fact that each determinant depends 

only on the correlations pq, Vps, .. and therefore on the magnitudes p - q , 
p -s I,.... Thus we have 

q(P )(q P )=(P q r) (6-35) 

and ( q r)= (P r ) (r q p) (6.36) 

If, for convenience, the points ti are equally spaced at intervals of r/(n-1) apart, 
we also have relations such as 

Pq )=(+1 q+1 = ) n- n-q n_) (6-37) 

which greatly reduce the number of quantities to be calculated. 
The computation of pn for n = 3, 4, 5 has been carried through for the case of a 

low-pass spectrum: 

E() = { (0<<.1) (6.38) 

The correlation function in this case assumes the simple form 

?If, sin r - 
T-*. (6-39) 

Ih ru 
The results for pn are shown in figure 2. It will be seen that p3, p4 and p5 all lie very 
close together up to about r = 3 5, suggesting that the third approximation is 
accurate up to this point. In fact the numerical results show that (P4-p3) and 
(P 5-P4) both behave like T5 near the origin, so that P3 is very probably correct as 
far as the term in 74. 

As we should expect, p3 begins to differ appreciably from the next two approxima- 
tions when r exceeds 7, that is, half the cut-off period 27r. When r > 6, p3 becomes 
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FIGuRE 2. Graphs of p3(T), p4(T) and p5(T) for a low-pass spectrum with cut-off period 2ir. Experimental data ( 0) are shown for comparison. 
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negative, which is of course impossible. p4 also becomes negative at about r = 7.3, 
though to a lesser extent. However, p5 is positive until r = 12-5 and shows the 
interesting phenomenon of a second maximum at about r = 10, also observed 
experimentally. The observations of Campbell quoted by Rice are also shown in 
the figure. It should be borne in mind that in the observational material the cut-off 
frequency was not well defined, and that this has probably affected the position of 
the two maxima; the presence of any additional energy beyond the theoretical 
cut-off frequency might be expected to increase the number of short intervals in 
the distribution and so to shift both observed maxima towards the left. The 
theoretical cut-off frequency was chosen so that the first maximum of /r coincided 
with the observed maximum, but the correct position of the second maximum is 
somewhat uncertain. 

7. pn(r) 

From equations (5-6) we have in general 

p(T) = n-1 (- ) dr2 (7.1) 

When n = 3 this becomes 

p*(r) = 
(-) (o23+O31+o2-Tr). (7.2) 

In contrast to the previous case, all three angles 03, 031, 02 make non-zero con- 
tributions. Supposing that the points t1, t2, t3 are equally spaced, then t2- t and 

t3 -t2 are both equal to IT and hence 

P*(r) p3(T) + ip3(-T), (7.3) 

where p3(T) is the approximation considered in ? 6. 
Gradient at the origin. On differentiating with respect to r and putting r = 0 

we find (dp \ ( d \ 
( dT)__ k5 dT8 J=(7.4) 

dz/=0 =d/=o' 

Therefore, the gradient of p* at the origin is not equal to the true gradient, but 
exceeds it by 25 %. 

A narrow spectrum. On making the same approximations as before we find, 
when r is in the neighbourhood of Y, that p3(-2T) is small; hence 

P*(T) *.p3(T) (7.5) 

and the approximations have the same limiting form for a narrow spectrum. 
At infinity, p* like P3 tends to zero. 

Computation of p* for a low-pass spectrum shows (figure 3) that although the 

approximation is not so good as p3 near the origin, yet it is somewhat better for 
values of r greater than about 4. 

Higher approximations of the same type may be obtained by computing 

dSn 
aS d6Oj - 

1 - 

111 



N-I 

FIGURE 3. Graphs of p (r), p(Tr) and p*(r) for the same spectrum as in figure 2 (and with the same experimental data). 
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at regular intervals of 7 and then differentiating numerically in equation (7.1). 
Since Si is of degree n- 2, this may be done up to and including n = 5. 

The above procedure was carried out for a low-pass spectrum (given by (6.38)) 
and the results are shown in figure 3. It will be seen that the gradient of p* and pf 
at the origin differs from the gradient of p*, and all in fact differ from the correct 
gradient. On the other hand, none of the approximations p* becomes as negative 
as the corresponding approximation p*, and from the observed points (which are 
the same as in figure 2) it appears that, for the larger values of r, p* is somewhat 
more accurate than Pn. 

8. CoNCLUSIONS 

Two sequences of approximations to p(T) have been derived, namely pn(r) and 

pn(T). Of these, the sequence n(7r) is the better approximation near the origin. 
Indeed the third approximation p3(7) is remarkably accurate over the lower half 
of the distribution, so that we have 

1 d2 d, _/ 
p() 1 dC (7 Tm), (8.1) 2nN0 d2 f 0 

where Tm denotes the median value of T. The alternative sequence p*(z), however, 

appears to be more accurate for larger values of r, and for a low-pass spectrum 
p* and p* give secondary maxima in accordance with observation. Both types of 

approximation tend to the correct form when the spectrum becomes narrow. 
To compute higher approximations it would be necessary to carry out numerically 

some further steps of integration; though rather long, this might be done on the 
lines suggested by Plackett (1954). 

From equation (8-1) some simple conclusions may be drawn. On integrating 
from the limit T = 0 (that is to say over the range of 7 for which the approximation 
is most accurate) we have 

Tr 1rd -1d T \1 
p(T) dr cos- T (82) 2JNo [dr fo \ (8 2) 

The expression on the right, evaluated at r = 0, is 

lim P''- (R')=No (8-3) 

and so os1 afr 1 f0 and so 2N d o s( 8 ) - ) d (8.4) 

At the first minimum of r7, we have - = 0, and so the left-hand side vanishes, 
giving 

p(Tr)dr= (8.5) 

In other words, 7 = 7m, the median of the distribution; or the median of p(r) is 

approximately at the first minimum of the correlation function ./ 
Further, from (8-4) 

2Wo cos -1( f JP(T7) dT = F(T), (8.6) 
S 
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where F(r) is the distribution function of r measured from the median. Hence 

fT/O * cos [2No Fr(T) dr. (8.7) 

This serves to give b//oi very simply in terms of F(T), which in turn may be found 
from the observed distribution of r. 

Thus by measuring the distribution of intervals between zeros we have a simple 
Monte Carlo method to determine the correlation function #T. The method is valid 
for values of r less than the median of the distribution. 

APPENDIX. THE BEHAVIOUR OF Pn NEAR TI-E ORIGIN 

To prove the assertions which were made in ? 6 regarding the behaviour of pn(r) 
at the origin, we must examine the nature of S(in) and Z3S(li)/3at for small values of r. 

From (4-7) the (r, s)th angle of S(li) is given by 

*11 

Va 

coS O(' rrs - (Al) rs V11 ~ t1 

f rr V rs 

(where for convenience only the diagonal element of each determinant is written). 
Now 

?-ij V -= (t - t= ( (A 2) 

a function which, by hypothesis, may be expanded in even powers of T. Thus we 

may apply the following lemma: If F(x) is any function expansible in a power series 
about x = 0, and if x1,..., x, Y1,..., Yn are proportional to r, the first term in the 

expansion of 
F(x - y) F(x1 - Y2) ... F(x - y) 

F(x2-yl) F(X2-y2) ... F(x -y ) (A3) 

F(n- Y1) F(xn-y2) ... F(x* - Yn) 

F(O) F'(O) ... (n-1)(0) 

is (i<ji- )(-) '(O) "(O) ... )() (A 4) 
[1! 2! ... (n- )!]2 : : : 

F(n-I)(0) F(n)(0) ... F(2-2(0) 

For example 

11 to0 o fO' 
fii - t (tl - - ti) (t -tr) (ti-). (-t) (ts-tl) (s- ti) 0 ~'0 0 (A 5) 

Vtrs V t' 0 WV 

the remainder being of order 78. Applying this in (A 1) we find 

co s OMi) = - (t-t) (t - t) (t (t- ts)\ (A 6) 
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According as i does or does not lie between r, s we have 

cos0(i) 1; (+ i) 0O or r7. (A7) rs rs 

Hence the first of our assertions is proved. 
To examine zS(li)/atn (which we denote by Q), we have first 

7'/11 f111 2 

1fr11 ?ii1 - fii ?ii 
- 

?ti 

*s in2 OMi)Vrr _ ss Vfrs 
sin2 ri = (A 8) 

?I r ii 

r 

?iii 

Vfrr ?Vss 

By Jacobi's theorem on the minors of a determinant the numerator may be written 

111 

@rll Ij:ii Y.I \ (A 0 (A 9) 

and on using the lemma we find 

sin2 0(J) (tt --)2 o i -_ 1' (A 10) sin 9 6 rs f Vf -v - _ Vjlu 

Since MO1) lies between 0 and Tr by definition, we have, assuming r < s and so tr < ts, 

sin Mil) =- G(t - ts), (A 11) 

1 [ 0(Vf ?r?If 
vi 

?f?) ] where G= -[ --]f .. (A 12) 

Hencet ) G(ts-tr) +(T3) (r < i < (A 13) rs 
-G(ts- tr) + 0(T3) (i < r < s). 

Writing 8 = n we have 
G + O(T2) (r <i), 

tn { -_ + 0(T2) (i< r); 
and writing i = n (so that neither r nor s = n) we have 

ao/on) 
t_ -0(T2) ) (A 15) 

atn 

It follows from the last equation that 

as(ln) aS(ln) aO( c " =0(?p2) (A1 6) at_ a(n) at- 0(T2) (A 16) 

and hence, neglecting terms of order T2, 

n aS(1) n-1 aS(1?) n-i as(lj) ao8(g ) 
Q = 2Z - _- _ = 2 = E 2_i (A 17) 

j=2 atn j=2 at i,j=2in) 
i#j 

t A geometrical interpretation of this result is given in another paper (in preparation). 
8-2 
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When n = 4 we have simply S(j) = a() (A 18) 

ao1(12 ao213) and so Q = 4 24 G-G = 0. (A19) 
at4 at4 

When n = 5, we have S(1i) 
= j) + OJ) + (j) 7T (A 20) 

where i, k, 1 denote 2, 3, 4 in any order. Then 

Q= E 2 =0, (A21) 
i,j=2 at5 

i+j 

since for every pair (i,j) with i <j there is another pair (j, i) and these give contribu- 
tions + G which cancel. So again Q vanishes. 

When n > 6 we have from (4-5) and (A 17) 

1 n-1 /0(1j) Q- 4 E, S(lijn) an (A 22) 

i+j 

with an obvious notation. To show that this expression is of order T2 we may 
examine the dihedral angles O(rijn) of S(liin). These are given by 

f11I 

/rs 

ii f 

lf jj j Vf 
fnn 

COS0lj)= _ . (A 23) 

Wtt Wii 

Vnn Vnn 
Yf rr f ss 

Using the lemma, we find that when r = 0 

O(ijn)-0 or 1 (A24) 

according as the pair (r, s) does, or does not, separate the pair (i,j). Now if any one 
of the angles 6O(1in) vanishes, then S(liin) vanishes. The only cases in which this is 
not possible is when i, j are consecutive, or if (i,j) = (2, n-1) or (n- 1, 2); then 
S(liin) equals half the surface of a hypersphere in (n-4) dimensions. In all cases, 
interchanging i and j leaves the value of S(lijn) unaltered, but reverses the sign of 

a(lt)/atn and so the sum (A 22) vanishes, when r = 0. To the first order, therefore, 
this expression equals n 

Q = E Qktk, (A 25) 
k=1 

1 n-1 aSalijin)^ ao( 
where Qk S ., .:i (A 26) n - 4 i,j=2 atk atn 

1 n-1 as(liin) ao(sin)" a0( (A27) 
n4 ,- i,j=-2 rc<s vrs atk atn 
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Now by considering sin 0(ljn) as before we find that 
n H(tf -t,) if (r, 8) separate (i,j), (A28) 

n) 7r-(t,-ttr) if not; (A28) 

where H is a positive constant, and therefore 

ari8_ __n) f-H if (r,s) separate (i,j), 
atr H ifnot; 

(A 29) 
o(ri9j> n) H if (r, s) separate (i,j), 
at8 - -H if not; 

(terms of order T2 being neglected). Further 

fo(lijn) 
rs- 0(r2) (k r,s). (A30) 
atk 

When n = 6 we have S(lin) = (n) (A 31) 

1 5 a 1i5) a0("j) 
and so Qk = E s i5 (A32) 

i,j=2 r<s Atk at5 

Interchanging i and j has no effect in the first term, but reverses the sign of the 
second, and so on summation 

Qk = 0. (A 33) 

Similarly when n = 7. When n > 8 we have by (4 5) 

1 n--l (ijin) ao(lj) 
Qk = (n4)(n6) S(iirsn) rs 

n 
(A 34) 

J=-2)(n6 8- <s atk atn(A 3 

By the same argument as before, the (p, q)th angle of S(lirsn) approximates to 0 
or 7r. The only non-zero S(iirsn) are those all of whose angles are ir, and these are 

unchanged by interchanging i and j. But 0(irj)latk is unaltered also, whereas 

ao0(i)/atn is reversed in sign. Therefore, the terms in the summation again cancel in 
pairs and 

Qk = 0. (A 35) 

This shows that Q is of order r2, as was to be proved. 

I am indebted to Miss D. Greenwood and Miss D. B. Catton for assistance with 
the numerical computation for figures 2 and 3. 
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