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A boundary-layer argument shows that, paradoxically, a variable tangential stress which is greatest
at the wave crests and least in the wave troughs produces a thickening of the boundary layer on the
rear slopes of the waves and a thinning on the forward slopes. In deep water, a variable tangential
stress r is precisely equivalent to a normal stress ¢7 in quadrature with the tangential stress. The cor-
responding rate of growth of the waves is calculated.

A problem which is of interest in the theory of
wave generation by wind is the following: A tan-
gential stress is supposed to act on the surface of
already existing waves in water of constant depth.
The stress is applied unequally over the surface of
the waves, being greatest at the wave crests and
least in the wave troughs. What is its effect on the
rate of growth of the waves?

If the flow is purely laminar, the problem may be
treated by the methods of classical hydrodynamics';
the rate of growth is given simply by the imaginary
part of the complex frequency. However, this solu-
tion does not provide a satisfactory physical expla-
nation of the wavegrowth, nor does it cover the
case when the flow is turbulent.

Clearly the tangential stress must create, in
the first place, a shearing motion in a thin boundary-
layer close to the surface. How then is it possible
for this shear to increase the energy of the potential
flow in the interior of the fluid?

In a recent review” Stewart has intuitively seen
that the explanation lies in the convergence of the
tangential motion in the surface boundary layer
producing a small additional component of velocity
normal to the free surface. Unfortunately, however,
he has given an analytical solution which is certainly
incorrect since it does not satisfy the requirement

! H. Lamb, Hydrodynamics (Cambridge University Press,
Cambridge, England, 1932), 6th ed. See especially Sec. 349.
*R. W. Stewart, Phys. Fluids Suppl., 10, 854 (1967).

of energy conservation (see below). In the following
we give a boundary-layer discussion differing signifi-
cantly from Stewart’s. We then show that this
boundary-layer solution is consistent with the classi-
cal solution, and so satisfies the conservation of
energy. Thirdly, we indicate how Stewart’s analysis
may be modified so as to bring it into agreement
with the other two approaches.

Consider a progressive wave in which the surface
elevation is approximately given by

¢ = a exp [ilkz — ot)], s/k = ¢, 1

where o denotes the amplitude, and the wave-
number & and frequency ¢ are related by the dis-
persion relation for free waves in water of finite
depth A:

o® = gk tanh kh. 2)
A small tangential stress of the form
T =74 7, exp [slkx — ot)], 3)

having a maximum at the wave crests and minimum
in the troughs, is now applied to the upper surface
of the water; the normal stress remaining constant.
In time, the mean stress 7 will produce a mean
current in the direction of wave propagation. We
are not concerned with this here. On the other
hand, the fluctuating part of the wind stress
71 exp [¢(kx — of)] which we denote by +/, can be
expected to produce a thin boundary layer whose
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Fia. 1. The boundary layerat the free surface induced by a
tangential stress in phase with the surface elevation. The
boundary layer is thickest on the rear slope of the wave.

thickness is of order (v/¢)"?, as described, for
example by Lamb.!

 We need not enter into the details of the boundary-
layer solution but deal only with the integrated
properties of the motion. Let 4’ denote the addi-
tional velocity in the boundary layer produced by
the tangential stress and define the mass flux M
in the boundary layer by®

M= fpu’ dz, @)

the integral being taken across the layer. If at first
we neglect the tangential stress beneath the layer,
then by the conservation of momentum parallel to
the boundary we have simply

oM
2t = 7. (5)

Now, if D denotes the local thickness of the boun-
dary layer, conceived as always consisting of the
same marked particles, and if w’ denotes the addi-
tional eomponent of velocity normal to the boun-
dary, we have
oD

2~ - [wl] —

ow’
at d

ou'
2 = — f % dz (6)

by continuity. But since the motion is progressive,
d/0x ~ — (1/¢) 9/3t. Hence,

ob 1o ( ,, _ 1M _ 7
ot “caid W= = ™
by Eqs. (4) and (5). Since 7’ is proportional to
exp [{(kx — ot)] it follows on integrating with re-
spect to time that

T’

D = g -+ const. (8)

Thus, the boundary layer is thinnest on the forward
slopes of the waves, and thickest on the rear slopes.
We may interpret this result physically (see

3 Here z and z denote horizontal and vertical coordinates;
more exactly they may be taken as tangential and normal to
the surface. See M. 8. Longuet-Higgins, Phil. Trans. Roy. Soc.
(London) A245, 535 (1953).
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Fig. 1) by remarking that the greatest acceleration
in the boundary layer is where the stress is greatest,
that is, on the crests of the waves. Hence, the
forward velocity is greatest just affer the crests
have passed, that is, on the rear slope of the waves,
and is least on the forward face. Hence, the rate of
convergence of the horizontal velocity «', which
coincides with the rate of thickening of the layer,
is greatest between these two positions, that is to
say, at the wave crests. Lastly, the layer is thickest
just after the crest has passed, that is, on the rear
slopes, in accordance with the analysis.

Now, the pressure at the free surface, or more
strictly the normal component of the stress, is as-
sumed to be constant. The thickening of the layer
is equivalent, in its effect on the waves, to an addi-
tional pressure dp on the upper surface of the wave,
given by

!

9T 4 const. 9
—10¢

op = pgD =

Neglecting the constant, whose significance is ir-
relevant here, and using Eq. (2) we find

dp = 27’ coth kA (10)
or in deep water (¢ >> 1) simply
op = ', (11

In other words a fluctuaiing tangential stress  applied
at the free surface is dynamically equivalent to a normal
pressure fluctuation it lagging in space 90° behind
the tangential stress.

Note that the mean rate of working by the tan-
gential stress on the waves is given by

W =1+,
where w and w denote the components of the orbital

velocity in the wave at the surface. If the waves
are already well developed, we may assume that

(12)

@ <« u. Using the relation that « = ac coth kh
exp [i(kx — ot)] we find
W = 17,00 coth kh. (13)

Likewise, the work done on the waves by the addi-
tional normal pressure §p is given by

r = 5 98 =

W' = é& Frie

from (1) and (10). Clearly, W’ == W, implying that

the loss of energy in the boundary layer is negligible.

This conclusion depends directly on our assump-
tion that ' < w.

Now consider the rate of growth of the wave

ir.a0 coth kh, (14)
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amplitude. We fix our attention on the deep-water
case when the boundary layer at the bottom can
be neglected. The mean density of energy per unit
horizontal area being given by

E = }pga’; (15)
clearly we must:have
dE
that is,
d
pgad—‘t’ < irao an
or
do o 71
dt — 2pc (18)

If the work done by the surface stress is much larger
than®the internal dissipation due to viscosity, then
in {16)—(18) equality signs are appropriate.

It will be noted that we have neglected the stress
on the boundary layer due to the shear associated
with the wave motion in the interior of the fluid.
This stress is given by

_Py(au + QQ) ’

’
T =

oz ax (19)
where 4 and w are the eomponents of the orbital
veloeity in the interior. Since the motion in the in-
terior is irrotational, we have du/dz = dw/dzx and so

0w, 8
pv_26.’l:— axat“z"kf

(20)

from Eq. (1). To include this effect in the previous
analysis we simply have to replace 7’ by (' + )
giving, instead of Eq. (11),

dp = iz’ — 2pvoki). (21)

To the same order, we must include the viscous
part of the normal stress component p,, at the sur-
face. This 1s given by

200 CL 2wkw = —2ipvak{

% (22)

[see Ref. (2) Sec. 348]. Altogether then the applied
stress 7/ and the action of viscosity are equivalent
to an additional pressure

op = (v’ — 4pvak{) (23)

applied at the free surface. Instead of (18) we
now have

739
da _ 1
dt  2pc

When the applied stress 7* vanishes, we have r, = 0
and so Eq. (24) reduces to

— %ka. (24)

da .2
i k*a (25)
giving the classical law of viscous decay
a « exp (—2vk*) (26)

[see Ref. 1, p. 624]. In this case the tangential stress
beneath the boundary layer acts to produce a
thickening on the forward slopes of the waves, which
combines with the normal stress to produce the
wave damping.

By adopting a boundary-layer approximation we
have implied that the thickness (v/0)* of the layer
is small compared with the wavelength 2x/k, and
hence that (vk°/¢) << 1. However, detailed solutions
of the full (linearized) equations of motion and
boundary conditions including an applied tangential
stress at the upper surface, can readily be obtained
by the techniques implicit in Lamb’s treatment of
the problem,’ not only for small values of (vk*/c)
but for all nonzero values. Thus, if ¢ denotes the
stream function, satisfying the vorticity equation

(v’ - %)vw =0, @7
a solution satisfying the condition that ¢ — 0 as
z — — o ig of the form

v = {4 exp (k2) + B exp [(do/»)"/%]}

-exp [ikz — ot)], (28)

where A and B are complex constants, which can be
chosen so as to satisfy the conditions

Pz = 0) Pas = T (29)

when z = ¢ = —[ (¢/dx) di. For a given k the
solution to this problem yields a value of the fre-
quency o which is, in general, complex giving a
rate of wave growth (or decay) in agreement with
(24) when (vk*/o) < 1.

On the other hand, Stewart, in the paper referred
to previously,” found, instead of (18), the result

da _ i
di ~ pec
This is clearly impossible, for by Eq. (18) it would
imply a rate of growth of the wave energy in excess of
that supplied by the wind. The explanation appears
to le in the fact that Stewart’s solution does not

(30)
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satisfy the requirement of constant pressure at the
free surface. To his expression for the potential ¢ in
the interior must be added another term, in quadra-
ture with the first, which can be determined by
applying Bernoulli’s theorem. This gives an addi-
tional term to his second expression for the vertical
velocity W, (his notation), so that on equating it to
his first expression and comparing coefficients of
cos kx and sin kx one obtains

da 7 _ _da

dt ~ pc  dt
in place of (30). Equation (31) now agrees sub-
stantially with (18) above.

Because of the integrated boundary-layer argu-
ment used here and by Stewart’ it can be seen that
the simple results (11) and (18) are quite insensitive
to the actual value of the viscosity or of the eddy
viscosity, if the flow is turbulent. Therefore, they
should be very useful in discussing certain aspects
of wave generation.*

One may easily generalize the conclusions so as
to include surface tension by noting that the

3D

¢ M. 8. Longuet-Higgins, Proc. Roy. Soc. (London) (to be
published).
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boundary layer produces an additional normal stress
—T #°D/d2” in quadrature with the surface eleva-
tion, where 7T is the surface tension constant.

In addition, one can consider the effect of an
applied stress r which is not necessarily sinusoidal in
space, acting on a wave field that contains more
than one wave component. To find the work W,
done by the stress r on a particular wave component
having wavenumber % it will be seen by Fourier
decomposition that, provided the wave motions are
linear and superposable, the rule

W, = ru, (32)

is always valid, where u;, denotes the tangential
velocity corresponding to that particular wave com-
ponent. Thus, even if 7 were independent of u;, the
work done by the stress on a particular Fourier
component would depend on the energy already
present in that component.
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