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ON THE TRANSFORMATION OF A CONTINUOUS
SPECTRUM BY REFRACTION

BY M. S. LONGUET-HIGGINS

Received 6 April 1956

When waves are propagated through a medium whose velocity of propagation
varies gradually from place to place, the wave direction and intensity vary according
to the laws of refraction. Although the geometry of ray-paths has been well
explored, and so also the laws governing the intensity of a coherent train of waves,
little attention has apparently been given to the variation in intensity of an
incoherent beam having a broad spectrum. The transformation of the energy
spectrum is of practical importance in branches of geophysics, for example, in the
study of sea waves entering shallow water, or of microseismic waves propagated
through inhomogeneous regions of the earth's crust. Accordingly, it seems worth
while to state and prove the rule governing the transformation of the two-
dimensional spectrum function of a wave disturbance undergoing refraction.

A coherent wave propagated in a homogeneous two-dimensional region may be
represented by the expression

£ = c cos (ux + vy + oi + e), (1)

where x and y are rectangular Cartesian coordinates and t is the time coordinate. Here
u and v are wave-numbers in the x and y directions:

u = WQOSB, v = wsind, (2)

where A = 2~n\w is the wavelength and 0 defines the direction of propagation. The
frequency a is assumed to be a function of the wavelength and the local properties of
the medium only. The amplitude c and the phase e are constants.

An incoherent disturbance may be represented (see Longuet-Higgins(i)) by

£= Sc n cos {unx + vny + crnt + en), (3)
n

where the wave-numbers (un, vn) are distributed densely over the (u, v) plane, the
phases en are randomly distributed with uniform probability in the interval (0, 2n) and
the amplitudes cn are such that if (u, u + du; v, v + dv) is any small region of the wave-
number plane then , „ „. . , , ...

2 * M = E(u,v)dudv, (4)
n

the summation 2* being over those values of (un, vn) which lie in the infinitesimal
n

region. E(u, v) may be called the energy spectrum of £.
Now suppose that the velocity of propagation varies, but so gradually that the

representation of a disturbance by (1) or (3) remains valid in any particular locality A.
We shall assume that the wave-numbers (u, v) of any particular wave component in the
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Transformation of a continuous spectrum by refraction 227
spectrum are transformed continuously. If we suppose that the energy originates in
a homogeneous region A' (say deep water in the case of sea waves) where the wave
numbers have the value (u', v'), then (u, v) are functions of (u1, v') and of the locality A.
Assuming that the medium is linear, each part of the spectrum is transformed inde-
pendently, and so the energy function E(u, v) depends upon the initial energy function
E(u', v') and upon A. The theorem we shall prove is that

E{u,v) = E'(u',v'). (5)

The result may be stated in geometrical language as follows. Imagine E(u,v) as a
surface, raised over the horizontal (u, v) plane. To find the height of this surface we

Fig. 1. Wave crests (full lines) and orthogonal trajectories (dotted lines) for
a single wave component.

merely take the height of the initial surface E' at the point (u', v') of which (u, v) is the
transform. In other words, to find the transformed spectrum E we simply transform
the coordinates (u', v') beneath the surface E'\ the shape of E' may be altered, but not
its height.

Proof. Consider a component sine-wave having initial wave-number («', v'). Let
the crests and the orthogonal trajectories of this wave be drawn and let (s, n) denote
coordinates measured along and perpendicular to the trajectories (see Fig. 1). Further,
let p denote the perpendicular distance between two neighbouring trajectories, just
as A denotes the distance between two adjacent crests.

Now the energy corresponding to a small region dS = dudv of the spectrum is equal
to EdS, by definition. Further, it may be shown that the energy in each part of the
spectrum is propagated along the corresponding trajectory with the group velocity
da/dw. The flux of energy between two neighbouring trajectories, given hyEdSpdo-jdw,
must be constant, i.e. independent of s. Therefore

EdSpdajdw = E'dS'p'da'jdw'. (6)

'5-2

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100032163
Downloaded from https://www.cambridge.org/core. IFREMER - Brest, on 08 Oct 2017 at 13:19:00, subject to the Cambridge Core terms of use, available at

https://domicile.ifremer.fr/core/,DanaInfo=www.cambridge.org,SSL+terms
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+S0305004100032163
https://domicile.ifremer.fr/,DanaInfo=www.cambridge.org,SSL+core


228 M. S. LONGUET-HIGGINS

Assuming that the frequency cr of any wave-component is unaltered by refraction, we
have cr = cr', da = da'. Also since w is a function of w' only and is independent of 6',
we have dS d(u> v) w d(w> 6) w dw dd

Therefore from (6)

dS' d(u',v') w'd{w',d') w'dw'dd1'
W vw dd

(7)

We shall show that the right-hand side of this equation is independent of s.
Some auxiliary formulae will be required. We have

dl--ldh (9)
ds ~ Xdn' y '

on pos

The first equation expresses the fact that the curvature of an orthogonal trajectory is
equal to the proportional rate at which the normals to the trajectory converge. The
second equation expresses a similar relation for the curvature of the crests. Since
Xccl/w equation (9) may also be written

Also let/denote any function (such as w or 6) which depends on both (s, n) and (w', 6').
Then if (x, y) are fixed local rectangular coordinates

——, l

(12)

and so on differentiating with respect to 6'

dd \dn/ \ dO dx dddy) \ dx dyj

_ \ J l .
dd'\dn) dn\dd') dsdO1'

Now let the right-hand side of (8) be differentiated with respect to s. On multiplying
by p'w'/pw we have

pwds\p'w'dd7)~\wds+pds)dd' + ds\ddj'

By equation (10) this equals
\dwW dddd d(dd\
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On putting/ = 6 in equation (14) we see that the last two terms in (17) taken together

can be written JL(??\-JL(}J!E\-1JL l™
W \wdn) ~ wdff' \dn)' { '

by (11), and since w is independent of 6'. Onputting/= win equation (15), and since
dwjdd' = 0, we see that (18) is equal to

ldwdd

Altogether, therefore, (17) vanishes and we have

(20)
ds\Ej

Thus E'jE is a constant with respect to s, and by travelling back along the trajectory
to the homogeneous region A' we find that this constant is unity:

E'\E = 1. (21)
This proves equation (5).

It has been assumed that it is always possible to return along a trajectory to some
part of the homogeneous region A', i.e. that no physical obstacles intervene to cut off
part of the spectrum. If it is not possible to reach A' along a certain trajectory, then
the energy function E(u, v) for that particular wavelength and direction must be zero.
Since trajectories passing through a particular region A may originate in different
parts of the region A', it is clear that A' must cover in general an area wide compared
with the area of A for which the representation (3) is valid. (In the case of sea waves
A' is the open ocean.) It has also been assumed that no energy is reflected from the
beach or from any other obstacle.

One consequence of equation (5) may be pointed out: contours of constant E'(u', v')
transform into contours of constant E(u,v). In particular, if the original spectrum
function E' has a maximum at the wave-number (u',v'), then the transformed
spectrum E has a maximum at the corresponding point (u, v), and conversely. Thus
there is a one-to-one correspondence between the maxima of E' and the maxima of E.
However, the relative importance of two distinct maxima of E is not necessarily the
same as that of the corresponding maxima of E'. For the total energy in the

neighbourhood of (u, v) depends on \Edudv, which in turn depends on the local

stretching of the coordinates.
The application of these results to the case of an incoherent beam of waves

approaching a straight coast is discussed in another paper (2).
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