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ABSTRACT

A locally steep surface gradient or “‘jump’’ may be expected on any steady surface current whose strength U
decreases horizontally from supercritical (U > c¢p,) to subceritical (U < cpip ), Where ¢y is the minimum phase
velocity of linear capillary—gravity waves. On the downstream side of the jump, the flow is similar to that in a
capillary —gravity wave of solitary type. Suitable conditions for a capillary jump can occur on the front face of
a steep gravity wave, near the wave crest. The jump may either trap energy in its neighborhood or leak energy
down the front face of the wave. In the latter case, it becomes a source of parasitic capillary waves.

The conclusions are supported by recent boundary—integral calculations of the deformation of steep

surface waves.

1. Introduction

Profiles of short steep gravity waves often show a
feature such as illustrated in Fig. 1, with an asymmetric
“‘bulge’’ at the crest and a steep-sloping forward face.
Ahead of this there is often a train of ripples (‘‘parasitic
capillaries’’). Figure 1, taken from Ebuchi et al.
(1987), also indicates a region of turbulence immedi-
ately below the wave crest. Such a feature has been
named a capillary ‘‘roller’’ or ‘‘bore’’ by Longuet-Hig-
gins (1992), who showed that the turbulence could
originate from vorticity shed by the ripples ahead of
the forward edge or ‘‘toe’’ of the bulge. It was also
shown (Longuet-Higgins 1994 ) that the shed vorticity
could give rise to a shear layer that was unstable and
would break up into turbulence.

The question of how the bulge came to exist in the
first place can be considered as a problem in irrotational
flow. Purely irrotational, unsteady gravity waves are
known to be unstable and to develop plunging features
on their forward slopes spontaneously, as shown nu-
merically by Longuet-Higgins and Cokelet (1978).
However, when the overall wavelength L of the gravity
wave lies between say 10 and 100 cm, the shorter-scale
features near the crest must be strongly influenced by
capillarity. The question then arises, is it possible for a
surface feature such as shown in Fig. 1 to exist in a
steady state in irrotational flow if we take account of
gravity and capillarity but ignore viscosity?

For convenience we may refer to such a feature, in
irrotational flow, as a ‘‘jump,’’ to distinguish it from a
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fully turbulent flow, which is called a ‘‘roller”’ or
“‘bore.”” The purpose of this note is to suggest, by phys-
ical argument, a way in which such a traveling jump
can occur.

It is suggested that the phenomenon is related to the
existence of solitary ripples on deep water. (Longuet-
Higgins 1988, 1989; Vanden-Broeck and Dias 1992).
These are nonlinear waves whose phase speed depends
on their steepness, or total crest-to-trough height (see
section 2). It is pointed out in section 3 that on a non-
uniform current a ‘quasi-steady wave may exist in
which the wave height in the upstream direction differs
from that in the downstream direction. Moreover, such
conditions will readily be found on the forward face of
a steep progressive gravity wave (see section 4). It is
necessary only that the particle speed in the crest of the
gravity wave, in a reference frame moving with the
phase speed, be slightly less than the minimum speed
of linear capillary—gravity waves (about 23 cm s '),
The ripple energy at the jump itself may be either
“‘trapped’’ or ‘‘leaky.”’” In the latter case the jump is a
nonlinear source of parasitic capillary waves.

Some confirmation of this suggestion is provided
by recent results obtained by Yao et al. (1995) using
a computational program that follows the develop-
ment of a wavy free surface by numerical time step-
ping. These results are described in sections 5 and
6; see also Figs. 13—18. A comparison of the par-
ticle velocities above and below the toe of the
jump confirms the validity of our physical interpre-
tation.

2. Solitary capillary-gravity waves

Capillary—gravity waves of solitary type on rela-
tively deep water were originally predicted on physical
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FiG. 1. (after Ebuchi et al. 1987). Schematic diagram
of a capillary roller.

grounds (Longuet-Higgins 1988) and then calculated
i-numerically over a certain range of wave speeds (Lon-
guet-Higgins 1989). Figure 2, taken from the latter pa-
per, shows some typical surface profiles, in which the
maximum angle of slope ay,, ranges from over 90°
down to about 34°. In Fig. 3 the maximum slope @,
is shown as a function of the phase speed. It will be
seen that the speed of these waves is always less than
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FIG. 2. (after Longuet-Higgins 1989). Computed profiles of solitary
waves on deep water (a) ¢ = 0.9276, (b) ¢ = 1.00, (c) ¢ = 1.10, (d)
c=120,(e)c=125and () c = 1.30 (when g = T = 1).
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Fic. 3. (after Longuet-Higgins 1989). The maximum surface slope
in a solitary wave as a function of its phase speed c.

the minimum phase speed of linearized (small slope)
capillary—gravity waves, which is given by

Cmin = (4gkT)"* =~ 1.414(gT)"*. (2.1)
Here g and T denote gravity and surface tension re-

spectively. Moreover, the steeper the waves, the slower
is their phase speed. These numerical calculations in
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FiG. 4. The phase speed of a solitary wave as a function of its crest-
to-trough height H. Circular plots: from Longuet-Higgins (1989);
crosses: from Vanden-Broeck and Dias (1992); dashed curve: as-
ymptote (2.3).
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FiG. 5. Sketch illustrating capillary jumps on a stream of
nonuniform velocity: (a) a trapping jump and (b) a leaky jump.

Figs. 2 and 3 were confirmed and extended by Vanden-
Broeck and Dias (1992).!

The waves are all symmetric. The wave height H may
be defined as the difference in level between the surface
at x = *oo and the central trough at x = 0. Figure 4 shows
the speed c/(gT)"* as a function of H(g/T)'?. As the
wave height H tends to zero, the width of the solitary
wave increases, and the wave comes to resemble an ‘‘en-
velope soliton,”” in which the carrier wave has wavenum-
ber (g/T)"2. Also the number of waves visible in the
““tail’” of the packet tends to increase without limit. An
asymptotic expression for the phase speed was derived
by Longuet-Higgins (1993), namely,

1,

clepin=1— o Cmax- (2.2)

Since in the limit of small amplitude the wavenumber
is (g/T)""*, we have ‘

H(g/T)"* (2.3)

Umax =

SRR

very nearly. This yields a relation between ¢ and H,
which is indicated by the dashed curve in Fig. 4. This
asymptotic formula is valid only for very small values
of o,y (see Longuet-Higgins 1993).

3. Waves on a varying current

Now imagine a steady horizontal current (to the right)
whose speed U varies in a horizontal direction as in Fig.
5. If the current decreases toward the right but is every-

! It should be noted that Figs. 6¢ and 6d of their paper have been
revised; see Dias et al. (1995).
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where less than c,;;,, then it may be possible for a steady
wave to be superposed on the stream such that on the left
it has the character of a solitary wave of greater speed c,
= |U,| and therefore of lower height H,, and on the right
it has the character of a solitary wave of slower speed ¢,
= |U,|, and therefore of greater height H,. If the waves
are joined smoothly at a trough near x = 0, then the dif-
ference in level between the two sides at large distancess
from the origin will be

A=H,-H,. (3.1)

In an extreme case, the solitary wave on the right
could have the limiting form shown in Fig. 2a, when

H, = 1.49(T/g)">. (3.2)

In this case a ‘‘bubble of air’’ might be formed. At any
rate, this would represent a theoretical maximum to the
jump height A.

If the current speed U, on the left is also less than
Cmin, WE may expect the wave energy to be trapped near
x = 0, as in Fig. 5a. On the other hand, if U, exceeds
Cmin t a point not far from the origin, there may occur
an unlimited train of capillary waves extending to the
left; see Fig. 5b. In such a case we may call the jump
“leaky,”” as opposed to Fig. 5a, which illustrates a
‘‘trapping jump.”’

4. Capillary jumps on water waves

A common situation in which to find a velocity gra-
dient of the kind described in section 3 is on the forward
face of a progressive water wave; see Fig. 6. Seen rel-
ative to an observer moving to the left with the phase
speed ¢, the flow reduces to a steady current moving
to the right. We denote the magnitude of this current
by gq.

For a steady gravity wave g can easily be found from
the Bernoulli equation
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FIG. 6. A steep Stokes wave (AK = 0.376) progressing to the left.
Seen relative to an observer moving with the phase speed c; the par-
ticle speed g is to the right.
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FiG. 7. Particle speed g at the surface of Stokes waves of steepness
AK = 0.25, 0.30, 0.35, and 0.40, as a function of the distance s from
the wave crest, measured along the free surface. Units with g

=K=1

where y is the vertical displacement of a point on the
surface. We may choose the origin of y so as to make
the constant vanish. Figure 7 is a plot of g versus the
tangential distance s for some steep Stokes waves,

1
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g* = const — gy,

N =

(4.1)
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Fi1G. 8. The velocity gradient dg/ds for the Stokes waves in Fig. 7,

as a function of s.
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FIG. 9. The surface velocity g as a function of s
in an almost-highest wave.

measured along the surface. The wave crest is at x
= 0. In being carried back over the crest, a particle
in the free surface behaves as if it were going over a
switchback; its speed g is a minimum at the highest
point. In addition, the velocity gradient is greatest at
a point not far from the crest. Figure 8 shows the
gradient dq/ds, where s denotes distance measured
along the free surface, as a function of x. The curves
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FiG. 10. The velocity gradient dg/ds as a function of s in an
almost-highest wave. Units: g = 1,/ = g2./2¢g = 1, € = KL
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Fi1G. 11. The critical steepness (AK), for Stokes waves
of a given length L.

are antisymmetric about x = 0. The limiting forms of
q and dqg/ds for steep waves are shown in Figs. 9 and
10, respectively. It is clear that there always will be
a maximum in dq/ds on the forward face of the wave,
not far from the crest. The points of maximum ve-
locity gradient are marked in Figs. 8 and 10 by cir-
cular plots.

Whether the particle speed g will be less than the
minimum phase speed ¢, of capillary—gravity waves
depends not only on the wave steepness ak but also on
the wavelength L. This question was investigated by
Longuet-Higgins (1995), account being taken that a
short ripple riding on a longer gravity wave will re-
spond to the apparent local gravitational acceleration
g', given by

(4.2)

Here a denotes the angle of tilt of the surface and « the
local curvature. The result is shown in Fig. 11. The

g’ = gcosa — kq>.
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FiG. 12. Sketch of a capillary jump superposed on the forward face
of a Stokes wave.

solid curve denotes the critical wave steepness (AK),
above which there is at least some part of the surface
for which ¢ < ¢/, where ¢’ = (4g'T)"*. For waves
of less than this steepness there are no such points on
the surface. If the wavelength L is say 20 cm, then AK
must exceed 0.41, while for L = 8 cm, AK may be as
small as 0.31.

It should be borne in mind that Fig. 11 refers to
asymmetric gravity waves and that the actual numbers
for slightly asymmetric waves may be somewhat dif-
ferent. Nevertheless, it remains true that the steeper the
wave, the more likely it is to have a region near the
crest where ¢ < ¢’. We may call such waves super-
critical. Waves for which g > ¢’ everywhere are called
subcritical.

According to the linear theory of wave-generated
ripples (sometimes called ‘‘parasitic capillary waves’’),
which is developed in Longuet-Higgins (1995), the
region over which g < ¢’ in a supercritical wave does
not contribute significantly to ripple generation, but
we can see from the preceding argument that non-
linear ripples may indeed be generated there, partic-
ularly if

0.656 < g/c¢' < 1. (4.3)

The lower limit in (4.3) corresponds to the speed of
the solitary wave of maximum amplitude and slowest

-460

-440 x@w

F1G. 13 (after Fig. 9 of Yao et al. 1995). Successive profiles of a focused wave from numerical integration
using LONGTANK. Parameters: g = 981 cms™%, T = 16 X 72 dyncm™', t = 12.355-12.637 s.
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F1G. 14 (see also Yao et al. Fig. 10). Closeup of the quasi-steady wave in Fig. 13 when r = 12.534 s.
The velocity vectors are relative to an observer moving horizontally with the phase speed.

speed shown in Fig. 2a. Then a solitary wave may in-
deed occur on the forward face of the gravity wave,
and is particularly likely to be found if this is close to
the point of maximum velocity gradient.

To make the meaning clear, Fig. 12 shows a sketch
of the solitary ripple in Fig. 5 superposed on the crest
of a Stokes wave with parameter ak = 0.40. If such a
solitary ripple occurs on the forward face of gravity
wave, then the combined capillary —gravity wave will
become asymmetric. However, a quasi-steady motion
is conceivable, provided the extra surface tension
forces introduced by the surface curvature of the ripple
approximately balance the tendency for the steep gray-
ity wave to develop a plunging breaker.

5. Numerical verification

A remarkable instance of an apparently steady,
asymmetric wave was found by Yao et al. (1995) using
the time stepping program LONGTANK (see Wang et
al. 1995). This is a highly developed boundary-integral
method for time stepping an irrotational velocity field
representing surface waves in a channel, starting with
a given set of initial conditions. In this case the initial
conditions corresponded to the focused waves pro-
duced experimentally by Duncan et al. (1994) with a
controlled plunger situated at one end of a long hori-
zontal wave tank. Adopting the same initial conditions
as in the Duncan et al. experiments but increasing the
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FI1G. 15 (see also Yao et al., Fig. 11). Surface curvature 1/R of the wave in Fig. 14,
showing ripples ahead of the jump.
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FIG. 16 (see also Yao et al., Fig. 13). As in Fig. 13 but with 7 = 9 X 72 dyn cm™', ¢ = 12.39-12.56 s.

surface tension by a factor of 16 over the experimental
value of 72 dyn cm™', the focused wave, instead of
breaking, settled down to a quasi-steady state as shown
in Fig. 13. This is of the type suggested by our argu-
ment in sections 2—4. Note that an increase in surface
tension by a factor n? (n = 4) is equivalent to reducing
the spacial scale in the experiment by a factor #n, dis-
regarding possible viscous effects.

To examine this result further we note that in Fig.
13 the time interval between successive wave profiles
was 0.00704 s and that the distance traveled over the
last 24 time intervals was 8.35 cm, giving a speed ¢
= 0.931 m s~'. At the same time the estimated wave-
length L is about 0.50 m and the crest-to-trough height
2A is about 0.06 m, giving a wave steepness AK for
the equivalent symmetric wave equal to approximately
0.38. The rough formula

c==(gL/2w)”2[14~%(AK)2] (5.1)

yields ¢ = 0.95 m s ' in agreement with measurement.
Figure 14 is a closeup of the wave crest, showing
some velocity vectors. Just beneath the crest of the cor-
responding Stokes wave, the effective value of gravity
at the crest is g’ = 0.665 g; see Longuet-Higgins
(1995). Hence with T = 16 X 72 dyn cm™' the mini-
mum phase speed is
Coin = (4g'TYV* =41 cms™! (5.2)
so that the condition ¢ < cp;, is satisfied. Indeed,
q/cmin = 0.73, which from Fig. 3 is appropriate to a
solitary ripple with maximum slope
Qmax = 1.15 = 65°. (5.3)
This is in plausible agreement with the profiles in Figs.
13 and 14. The corresponding height H, is given by the
entry ¢ = 1.20(gT)'? in Table 1 of Longuet-Higgins
(1989). Hence, we find
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F1G. 17 (see also Yao et al., Fig. 14). As in Fig. 15, but with T=9 X 72dyncm™', ¢t = 12.53 s.
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H, =093(T/g)"* = 0.25 cm, (54)

which also is consistent with Fig. 14.

Below the toe of the jump in Fig. 14 the particle speed
is about 70 cm s !, whereas the mean curvature ¥ of the
surface lies between about 0.2 and 0.02 cm™. At the
higher value of k, the contribution kg to the effective
gravity g’ in Eq. (4.2) is comparable to g so that g’ may

exceed 2g. In that case we find ¢y, Or (4g'T)Y4, is of
order 55 cm s !, Since this is less than g, the conditions
for a solitary wave are not satisfied and we expect the
jump to be leaky. In Fig. 15, the surface curvature is
shown as a function of the horizontal distance x. It will
be seen that the ripples do indeed extend out to a distance
of at least 4 wavelengths beyond the toe of the jump, but
their amplitude is rapidly attenuated.

Very similar results are found if the surface tension
is taken as T = 9 X 72 cm® s~2; see Figs. 16 and 17.
Then the particle speed at the crest is 26 cm s ™', the
value of cp, at the crest is 36 cm s ™! and so g/cpmn
= (.72, about the same.

It should be noted that although boundary-integral com-
putations have often been found to require intermittent
smoothing, as in Longuet-Higgins and Cokelet (1978),
nevertheless in the method of Wang et al. (1995) no
smoothing was required and, in fact, none was applied
except on the underside of the jet in an overturning breaker.
The agreement with observation reported in that paper
shows clearly that any other kind of effective damping
introduced by the discretrization of the surface elements
was quite negligible. The inclusion of surface tension into
the calculation by Yao et al. (1995) did not change this
situation.

6. Further comparisons

In the neighborhood of the wave crest where surface
tension is a controlling factor, we might expect the
length scale \ of the surface profile, including the jump,
to vary as (7/g)"/?. On the other hand, the timescale 7
for the development of the profile will be that of the
underlying focused gravity wave, and will therefore
obey Froude scaling. Hence, ¢ o \'/? o T"*, This idea
is tested in Fig. 18, where three jump profiles from the
run T = 16 X 72 dyn cm™' are compared with three
corresponding profiles from the run 7 = 9 X 72/cm.
The length scale of the former was reduced by a factor
3/4. The time difference between the three profiles was
reduced by a factor V3/2. As can be seen, the corre-
sponding pairs of profiles are indeed quite close.

Lastly, in order to understand the change in the form of
the jump as a function of time we plot the maximum angle
o Of the surface slope against the particle speed g, on
the left of the jump. For definiteness we approximate g,
by g.., the particle speed at the highest point of the wave
profile; g,, is further normalized by dividing by (g'T)"*,
where g’ is the effective gravity at the highest point of the
profile. The result is shown in Fig. 19. The measured val-
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F1G. 18. A comparison of pairs of jump profiles from Figs. 13 and
16. (Solid) T = 9 X 72 dyn cm™": r = 12.447, 12.489, 12.531 s (At
= 0.042 s); (dashed) T = 16 X 72 dyncm™": t = 12.397, 12.447,
12.496 s (At = 0.049 s). The horizontal scale is that shown in Fig.
16. For the second group of profiles (T = 16 X 72 dyn cm™), the
scale has been decreased by 4/3.

ues of o should no doubt be reduced by an amount
corresponding to the slope of the underlying gravity wave.
This slope is difficult to estimate, but if it is nearly a con-
stant, the plotted points will simply be displaced vertically
by approximately the same amount. It will be seen that the
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FiG. 19. The maximum angle of slope (. — @) of the jump
profiles in Figs. 13 and 16, plotted against g,./(a’T)"", where g,, is the
particle speed at the highest point of the profile. (open circles) 7= 9
X 72 dyn cm™', (crosses) T = 16 X 72 dyn em™", and (dashed line)
theoretical curve from Fig. 3.

plotted points do indeed follow a trend very similar to that
in Fig. 3 for the pure solitary wave, confirming the physical
interpretation of the jump as given in sections 3 and 4.

7. Discussion

It must be borne in mind that all of the numerical cal-
culations cited above are for potential flow in an inviscid
fluid and that in a real fluid viscous effects are found to
become important in the later stages of the phenomenon.
Any parasitic capillaries ahead of the jump must produce
a rectified vorticity that will contribute to a shear layer
beneath the surface (see Longuet-Higgins 1992), which
may then become unstable (Longuet-Higgins 1994 ). If the
curvature in the toe of the jump is sufficiently large, then
the flow must separate there, producing a free shear layer.
Both effects will give rise to turbulence beneath the wave
crest. In this situation the phenomenon is better described
as a capillary bore or ‘‘roller,”” rather than simply a jump.
The presence of vorticity will also affect the dynamics of
the flow, tending certainty to increase the dissipation and
probably also to reduce the height of the jump.
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From Fig. 11, the wavelengths L of the gravity waves
most likely to support a capillary jump lie in the range
5-50 cm.

From Figs. 2 and 4 the maximum height of the jump
is about 1.5(7/g)*"?, thatis 0.41 cm, that is of order 1%—
10% of the wavelength L. Because such features would
theoretically have quite steep maximum slopes, they
might be difficult to observe precisely by instruments de-
pending on the refraction of a vertical beam of light. On
the other hand, since they would exist in a quasi-steady
state close to the crest of short gravity waves, they would
be more likely than a transient feature to contribute sig-
nificantly to radar backscatter at low grazing angles.

The dynamics of waves on thin films of water (see, for
example, Chang 1994) are very different from those con-
sidered here, being much affected by the presence of a
solid boundary.
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