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ABSTRACT

An inviscid mechanism is proposed for the breakup of the jet in a plunging surface wave. Streamwise per-
turbations of the original surface are shown to grow rapidly owing to stretching of the thin jet and to drastic
reduction in the normal pressure gradient. This converts transverse gravity waves into almost pure capillary
waves. Conservation of wave action for the perturbations then implies a strong increase in the perturbation

amplitude.

1. Introduction

The spontaneous growth of longitudinal striations in
the jet of an overturning wave is a well-observed phe-
nomenon; usually it is an intermediate stage in the
breakup of the jet into droplets and spray. Some inves-
tigators have sought an explanation in the frictional ef-
fect of the air or in the formation of streamwise rolls
in the jet, analogous to Gdrtler vortices. Here we shall
show on the contrary that the phenomenon can be
largely accounted for by the behavior of irrotational
waves on a thin sheet of fluid. Two essential ingredients
are the longitudinal stretching of the jet and the highly
reduced pressure gradient normal to its surface.

2. Initial stages

Figure 1 illustrates the development of the jet in a
typical plunging breaker, calculated numerically with
the assumption that the flow is irrotational and two-
dimensional. The pressure at the free surface is con-
stant. Near time ¢ = ¢,, when the tangent to the surface
near the crest makes a sharp right-angled turn, there is
a large pressure gradient in the fluid that accelerates the
fluid near the crest horizontally and propels a jet for-
ward from the crest.

This part of the flow has been modeled analytically
as a rotating Dirichlet hyperbola (see Longuet-Higgins
1980, 1983). From about 7, < ¢ < t; the jet narrows
rapidly, and the pressure gradient within the jet dimin-
ishes drastically; the fluid is then almost in a state of
free-fall in a parabolic trajectory.

Now imagine a perturbation in the form of a short
surface wave of amplitude a propagated across the
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wave as in Fig. 2, with crests aligned in the plane of
undisturbed flow. If s is measured along the surface,
the normal displacement { will be given by

§ = a(s) cos(ky — ot), 2.1)

where k and & denote the wavenumber and the radian
frequency. These will be related by

o? = g*k + Tk*, (2.2)
where T denotes surface tension and g * is the effective
value of g for the surface; thus,

g* =gcosa + i — kq?, (2.3)
where a is the local angle between the surface and the
horizon, 7 is the local normal acceleration of the un-
disturbed surface, « is the curvature of the surface, and
q is the particle speed in a reference frame moving with
the wave. In fact, we have pg* = dp/8n, the normal
gradient of the pressure.

The wave amplitude a(s) is assumed to vary rela-
tively slowly compared to the phase (ky — ot), so that
we may apply the principle of conservation of wave
action where the action density A is defined by

A =>a%lk. (24)

1
2
Now at time ¢ = ¢,, when a = a,, say, g* will be of
the same order as g. But at time ¢ = ,, say, the pressure
gradient will be small and hence g * will be small com-

pared to g, and perhaps also compared to Tk2. In that
case we shall have simply

ol =Tk 2.5)

that is, the waves are controlled dominantly by capil-
larity. Since k remains constant, it follows that
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FiG. 1. Successive profiles of a plunging breaker in water of finite depth, calculated by numerical time stepping.
(After Vinje and Brevig 1981.)
A d’o If the initial perturbations are dominantly gravity
-A_o T (2.6) waves, they will, on becoming converted to capillary
waves, have their amplitude increased. For example, if
and hence the wavelength of the perturbations lies between 2 and
22 4 TR2\'2 A 20 cm, their amplitude will be increased by a factor
—~ (5_—2—_> = (2.7) between 1.23 and 3.40.

ap Tk Ay Supposing that the perturbations survive this initial

Now we may apply the law of action conservation in
the form

A As = const = Ag(As)o, (2.8)

where As denotes the distance along the surface be-
tween two neighboring particles moving with the fluid.
At about the time ¢ = t,, As/(As)y, is still of order 1,
so that from (1.7) and (1.8)

a2 ( g + Tk2>l/2

pe % (2.9)

increase in amplitude without breaking, let us consider
their subsequent history.

3. Perturbations of a thinning jet

It was shown by Taylor in a celebrated paper (1959)
that the sinusoidal small perturbations of a thin sheet
of fluid of uniform thickness 2k are of two kinds: (a)
symmetric and (b) antisymmetric (see Fig. 3). In case
(a) the displacements on the two sides of the plane of
symmetry are opposite in sign, the velocity potential ¢
being given by

o Sl W on

FiG. 2. Sketch of short transverse waves on a plunging breaker,
at an early stage of development.

FiG. 3. Sketch of waves on a thin sheet of fluid: (a) symmetric and
(b) antisymmetric (after Taylor 1959).
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¢ = cosh kzsin(ky — ot)  (3.1)

ao
k sin hkh
in our notation, z = 0 being the central plane. The dis-
persion relation is

o? = Tk tanh kh (3.2)

as in pure capillary waves on water of finite depth k.
In case (b) the displacements on each side are of the
same sign, corresponding to a velocity potential

¢ = m sinh kz sin(ky — ot)  (3.3)
and dispersion relation
0% = Tk? cosh kh. (3.4)

It is obvious that an initial perturbation confined to
one side of the jet will be resolved into the sum of a
symmetric and an antisymmetric perturbation, which
then will be propagated independently, each with its
own phase and group velocity.

When the sheet is thin compared to the length of the
perturbation, that is, kh < 1, the above expressions are
greatly simplified. For the symmetric perturbations we
have

¢=
o =Thk4

sm(ky — ot)
, (3.5)

so that the particle velocxty is entirely tangentlal and
the phase speed c is given by

¢ =olk=(Th)"k. (3.6)

These waves are dispersive.
On the other hand, for the antlsymmetnc perturba-
tions

- ¢ = aozsin(kx — ot) , 3.7)
o? = (T/h)k?
giving
c=(T/h)'". (3.8)

These waves are therefore nondispersive and, in fact,
are closely analogous to the waves on a stretched
membrane of tension T and thickness 2h.

Consider now the behavior of the waves when the
jet (which we assume to be already thin compared to
the wavelength) is stretched in the x direction. For both
types of wave the potential energy V is derived from
the extension of both the upper and lower surfaces
against the surface tension 7. Hence we have

V= % T(ak)? (3.9)
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and

E = 2V = T(ak)>. (3.10)

The action density A is then given by E/o. For the
symmetric waves this leads to

A = (T/h)'?a>. (3.11)

We then have two relations, derived from the conser-
vation of mass and of wave action, respectively. From
mass conservation

_ hAs = const, (3.12)
and from action conservation
(a/h'"?)As = const. (3.13)
On dividing (3.13) by (3.12) we obtain
a?/h¥? = const, . (3.14)
SO
ax p¥* (3.15)

(b)

FiG. 4. Ultimate mode of disintegration of waves on a thin sheet
of fluid: (a) symmetric waves and (b) antisymmetric.
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FiG. 5. Sketch showing the change in orientation of obliquely propagating waves on a sheet of water,
when the sheet is stretched in the x direction.

and
alh < h=V%, (3.16)

From (3.15) it follows that stretching of the sheet re-
duces the amplitude of the symmetric perturbations, but
not as fast as the thickness 2/. From (3.16) we see that
relative to the thickness A the amplitude grows, and
though our analysis does not go beyond linear pertur-
bations, it appears that the perturbations will finally
pinch off the sheet into cylindrical drops.

From the nonlinear theory of capillary waves on thin
sheets of water (Kinnersley 1976) we find that in the
limit the surface profile is one of a family of circular
arcs with centers on the line of symmetry [see Kinner-
sley 1976; Eq. (10)]. This is illustrated in Fig. 4a. The
limiting flow in the ‘‘neck’’ of the wave is simple and
has been discussed by Longuet-Higgins (1988, sec-
tion 4).

Consider, on the other hand, the antisymmetric
waves. We have for the action density

A = (Th)a’k. (3.17)
Therefore we have (3.12) together with
(a*h''?)As = const, (3.18)
leading to
axh'* (3.19)
and
alh < h™34, (3.20)

Hence the amplitude of the disturbance increases with-
out limit, but because the displacements are of the same
sign they do not pinch off the sheet into strips in the

same way. The nonlinear theory for antisymmetric
waves on thin sheets of fluid (Kinnersley 1976, section
5) indicates that the surface profile is described para-
metrically in terms of the elliptic integrals £(8, m) and
F(6, m) by

x==——(2E - F)

2ml/

z=acosé

, (3.21)

where m denotes the modulus. The velocity potential
is proportional to F. In the critical case m = 0.7312
when a/L = 1.330, the surfaces of adjacent waves
touch, as shown in Fig. 4b.

4. Oblique perturbations

We have so far considered only sinusoidal pertur-
bations that are propagated exactly transversely to the
direction of the plunging wave, that is, to the direction
of extension of the fluid sheet. Now consider a pertur-
bation such that the wave crests (lines of constant
phase) make a general angle  with the direction of the
breaker, as in Fig. 5a. A consequence of extending the
sheet in the x direction in the ratio ¢ > 1 will be to
distort the wave pattern so that two points P, Q, say,
on the x axis are now separated by a distance P'Q’
= ePQ, whereas as two points P, R in the transverse
direction remain at the same separation as before.
Hence, the wavenumber

(k., k,) = (k sing, k cos3) 4.1)
becomes

(ky, ky) = (e 'k sing, k cosB). 4.2)
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FiG. 6. The tip of a plunging breaker, modeled as a rotating
Dirichlet hyperbola in free-fall (Longuet-Higgins 1980.)

The effect is to turn the direction of the perturbation
more nearly transverse to the flow. In the limit, as the
sheet becomes infinitely stretched, the striations be-
come aligned with the flow, as is observed. The dy-
namics of the perturbation in the general case are sim-
ilar to those in the case of diréctly transverse waves,
except that some allowance must be made for propa-
gation of the wave action, with the group velocity, nor-
mal to the wave crests.

5. Discussion

In theoretical models of plunging breakers, the
plunging jet has sometimes been treated as a steady
flow (see, for example, Dias and Tuck 1993; Jenkins
1994 ), but in reality the flow is time dependent. A pos-
sible analytic model is the rotating hyperboloid (Lon-
guet-Higgins 1980, 1983), in which the thickness 2h
of the sheet (following a fixed particle) diminishes like
1/¢; see Fig. 6. .

In a steady waterfall, where the particles are almost
in free-fall, the vertical distance of a marked particle
below a given level will increase ultimately like 1/, g¢*.
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Hence, the vertical distance separating two marked par-
ticles following each other at a time-interval of At will
increase like gzAt. By continuity we see that again the
thickness 24 of the sheet forming the unperturbed wa-
terfall must decrease like 1/¢. In other models of break-
ing waves (Longuet-Higgins 1980, section 10; Lon-
guet-Higgins 1981, Fig. 12), a sharp cusp is attained
in a finite time ¢.

The most important and drastic stage of the instabil-
ity appears to be the initial transition of the perturbation
from a gravity to a capillary wave. This may be re-
sponsible for the breakup of the jet at an earlier stage
of its development. Once the jet has been broken up
into independent strips in the manner described, the
ensuing breakup of the strips into droplets can be ex-
pected to follow swiftly.

We have ignored the frictional and inertial influence
of the air surrounding the jet, which may be apprecia-
ble. However, we note that if the inviscid mechanism
just described is indeed significant, then an increase in
the amplitude of the initial cross-wave perturbation
would be expected to advance the process of disinte-
gration. This is a prediction amenable to experimental
verification.
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