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ABSTRACT

Fractal models of breaking waves in a randoin surface should preferably describe dynamical as well as geo-
metrical properties. This becomes feasible if there is a wide separation between the length scales of component
waves. Using this idea, a simple mode! of breaking waves is constructed, which shows that whereas the downward
acceleration of particles at a wave crest is limited to g, the upward accelerations in a wave trough are unbounded.
Owing to tangential stretching or contraction, certain phases of a progressive or standing wave can be identified
as being stable or unstable. The most striking instabilities are expected on the forward slopes of progressive
waves, and in the troughs of steep waves meeting a vertical wall.

1. Introduction

Because of the involvement of breaking waves in
many important transfer processes at the sea surface,
much attention has been given in recent years to un-
derstanding the various types and mechanisms of wave
breaking in deep water. For reviews, see Longuet-Hig-
gins (1988) or Banner and Peregrine (1993). Here we
shall consider some aspects of a breaking sea state from
a fractal point of view.

The idea of self-similarity in a wmd-dnven sea state
is not new. Beginning with Phillips (1958), various
power-law spectra, which imply a dynamical self-sim-
ilarity, have been suggested. To lowest order in the
surface slopes, such sea states are generally considered
as Gaussian, so that the phases of the various harmonic
components are uncorrelated. Correlation between the
phases occurs only at higher orders.

A fractal representation, however, mvolves generally
not only self-similarity with respect to different length
scales, but also a nonrandom relation between. the
phases Recently, Huang et al. (1992) showed that the

“unwrapped phase” of an ocean wave record has a
fractal property, but no clear dynamical explanation
is forthcoming. A rather thorough analysis of photo-
graphic data of the sea surface in terms of a multifractal
representation has been performed by Kerman (1990)
(see also Kerman 1993). While successfully separating
out a “breaking wave” or fractal component of the
data from a “nonbreaking” or Gaussian component,
this analysis was essentially that of a static surface, fro-
zen in time. The dynamical equations of the surface,
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or their immediate consequences, did not enter directly.
Such a task is indeed very difficult. :

The dynamical discussion of superimposed trains of
finite-amplitude surface waves is much simplified if we
asstime that 1) the waves dre all pure gravity waves on
deep water and 2) there is a large proportional differ-
ence in scale between each component wave and the
next largest wave. In the present paper we use these
assumptions to prove certain properties of breaking
waves. Thus, whereas the maximum downward accel-
eration in an upward-point crest is equal to g (section
3), the maximum upward acceleration is shown to be
unlimited; see section 4. The very high upward accel-
eration may be realized in the smooth interaction of
random waves with a vertical wall, as has been found
in the numerical calculations by Cooker and Peregrine
(1991). In sections 5 and 6 we discuss the reasons why
certain phases of a progressive or standing wave may
be more or less stable to short-wavelength disturbances.
A discussion follows in section 7.

The dynamical mechanisms that will be described
are fractal in character, insofar as they involve ampli-
fication of the tendency toward breaking when wave
components of different scales are added in a self-sim-
ilar manner.

2. Superposing self-similar waves

In the simplest case, imagine a short surface wave
of shape given in rectangular coordinates (x, y) by y
= f(x), as in Fig. 1. On this is superposed a similar
wave smaller by a factor p, and on top of this a still
smaller wave reduced by a factor p2, and so on to (N
+ 1) waves where N is finite. Analytically, the surface
elevation 7 is given by
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FIG. 1. Superposition of wave profiles y = f{ x) having differing
length scales, with zero phase shift at x = 0.

n =f(x)+ pof(x/p) + p°f(x/p?)

+ -+ oV f(x/0™). (2.1)
At the origin x = 0 the elevation is given by
1 — pN+l
n=f0)(1+p+ -+ +p") :f(O)l—_p"‘,
(2.2)

which is finite as N = oo. The surface gradient 7,(0)
is given by

Mx = S(ONN + 1), (2.3)

which vanishes in the case of a profile symmetric about
x = 0. The curvature at the origin is given by

N = fur(0)(1 + P_l + p—2 oo+ p—N)’ (2.4)

which tends to infinity with M. Thus, in the limit the
surface must develop a sharp point.

A more interesting case is when the normal dis-
placement » at the rth stage of the superposition is
given as a scaled function p"f(e + s/p") where s is the
arc length measured along the surface after the rth wave
is added, e being some phase constant. Then by a sim-
ilar argument, the coordinates (x, y) of the crest will
remain finite as N = oo, but the surface curvature will
become infinite. If ¢ is independent of r, the angle be-
tween the tangent and a fixed line will also increase
indefinitely so that locally the surface will take the form
of a tight spiral (see Fig. 2).

3. Acceleration of a particle at a wave crest

Returning to the original case ¢ = 0, as in Fig. 1, let
us suppose that the original profile y = f( x) represents
- the surface of a Stokes gravity wave in deep water. The
downward acceleration a of a particle of water as it
passes through the wave crest will be some fraction of
2, the acceleration of gravity, say

0<A<0.39 (3.1)

(see Longuet-Higgins and Fox 1977). A second gravity
wave whose length is short compared to the radius of

a= Ag,
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Fi1G. 2. Superposition of profiles n = f(s) with nonzero
phase shift e.

curvature in the first wave will behave locally as if it
were propagated on a steady stream parallel to the sur-
face of the first wave, but in a field of gravity

g=g-a=(1-MNg. (3.2)

Accordingly a particle at the crest of the second wave
will have a downward acceleration

a=Ng'=N(1-Ng (3.3)

relative to the first wave. A third wave riding on the
second will therefore experience a gravitational field

g'=g—-a=(-N)(1-Ng, (3.4)

and so on. After the (N + 1)th wave is added, the
effective gravity will be

g™ = (1 =N)(1=N):++(1 = AP+Dg (3.5)

If the waves are all self-similar, then clearly g™ — 0
as N = oo. Hence the total downward acceleration of
a particle, which is given by

ata+a"+ .- =(@-g)t(E-g)t+- -
=g—g", (3.6)

will tend to g (cf. Longuet-Higgins 1985).

This result is in accordance with our expectation
that at any sharp point in the free surface of a fluid the
pressure gradient, which always has a zero component
tangential to the free surface, should be identically zero.
Hence, if the ordinary momentum equation

a=-Vp+g (3.7)

applies there, we might expect a = g.
However, this expectation fails in the next example.

4. Acceleration of a particle in a wave trough

Consider on the other hand the acceleration of a
particle in a wave trough (Fig. 3). In a single Stokes
wave, the upward acceleration has a magnitude a given
by

a=N, 0<X<0.30; 4.1)



1836

FiG. 3. Superposition of waves in the trough of a gravity wave.

see Longuet-Higgins (1985). A similar, much shorter
wave near the trough of a first wave then experiences
an effective gravity

g=a+tg=(1+MN)g (4.2)

in contrast to Eq. (3.2). After adding /N such waves in
succession, we see by a similar argument that the ef-
fective gravity g is given by

M = (1+M)(1+N)-+-(1 + AV D)g (43)

If the waves are all self-similar, or even if only
> M7 > oo, it follows that

g™ = . (4.4)

Hence the particle acceleration in the trough of the
composite wave is indefinitely large.

We remark that the demonstrations given in this
and the previous section apply equally well both to
progressive and to standing waves (or even to combi-
nations of progressive and standing waves). In each
case, however, it is necessary that the phases of the
component waves on different scales be suitably related.
In the next section we shall see under what circum-
stances this is most likely to occur. Here, however, we
may note that in the special situation where random
waves are impinging on a vertical wall (see Fig. 4), all
the wave components are in effect standing waves with
an antinode in surface elevation at the wall itself. Thus,
the phases at the wall are either 0° or 180° and hence
have a greater probability of being precisely correlated.

The above result helps to show that the very high
accelerations (20 g and higher) found by Cooker and
Peregrine (1991) in numerical studies of waves im-
pinging on a vertical wall are not in themselves unrea-
sonable.

5. Stability of the free surface

Those phases of a surface wave that are most liable
to instability may be investigated very simply by con-
sidering the radiation stress associated with short waves
riding on longer waves. It was shown by Longuet-Hig-
gins and Stewart (1960) that short waves riding on a
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FIG. 4. Random waves impinging on a vertical wall.

horizontal current U interact with it so as to produce
an additional momentum flux associated with the short
waves. The additional horizontal flux of horizontal
momentum is given by the leading component S, of
the radiation stress tensor Sj;. In deep water
Se =3 E, (5.1)
where E is the mean energy density of the short waves.
If the current U is varying in space, work is done by
the current on the short waves, so as to produce a
change in the short-wave energy. Thus, if U varies only
in the x direction,
JE U _

-5+(Cg+ U)

U

— =S, 5.2

ax ox (5.2)
where ¢, is the group velocity of the short waves. For
short waves propagating on long waves, we may take
U to be the orbital motion in the long waves. The term
(cg + U)aU/dx will then be relatively small and we

shall have roughly

aUu

OE _ 1 _aU
ox

= % (5.3)

Thus the parts of the long wave that are most unstable
to short-wave disturbances are those for which aU/dx
< 0; that is to say, where the surface is contracting
horizontally.
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FIG. 5. Stable and unstable phases in a progressive gravity wave.
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FIG. 6. Relative steepening factor r for short waves riding on a long wave of finite steepness
AK, shown as a function of the surface elevation y in the long wave (from Longuet-Higgins 1987).

In a progressive wave (see Fig. 5) the surface is con-
tracting on the forward face of the wave, and stretching
horizontally on the rear face. Thus, the forward face
of the wave is unstable to short-wave disturbances, and
the rear face is stable. This is reflected in the common
observation that the forward face of a steep wind wave
is generally rough, while the rear face is smooth.

The wavelength of the short waves is also affected
by the contraction of the free surface, and the amplitude
of the short waves is further increased by the relatively
smaller value of the apparent gravity g’ on the upper
part of the long waves (Longuet-Higgins and Stewart
1960).

The extent of the short-wave steepening on long
waves of finite amplitude is, in fact, greater than would
be expected on a linear theory for the long waves. Exact
calculations (see Fig. 6) show that even on a long wave
with steepness parameter 4K = 0.3, the short waves
steepen between the long-wave trough and long-wave
crest by a factor as great as 4. When 4K = 0.4 the
. steepening factor exceeds 10.

Thus, it is most probable that the steepest short waves
will be found near the crests of the long waves, and
preferably on their forward face. For, if the short waves
break ahead of the long-wave crests, they will not regain
enough energy from the wind to break on the rear face
(cf. Longuet-Higgins 1991).

Still shorter waves riding on the short waves will be
subject to the similar processes of steepening by con-
traction of the free surface due to the short waves, work

done by radiation stress, and reduction in the effective
gravity. All these effects will be cumulatively greater
on the forward face of the longest waves.

6. Surface stability in standing waves

Consider on the other hand a standing surface wave
(Fig. 7). In such a wave the amplitude of the crests
and troughs are either increasing simultaneously as in
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FIG. 7. Stable and unstable phases in a standing gravity wave: (a)
crests and troughs increasing in amplitude; (b) crests and troughs
diminishing.
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Fig. 7a or decreasing simultaneously (Fig. 7b). In the
first case the free surface is everywhere being stretched.
Hence, it is everywhere stable to short-wavelength per-
turbations. In the second case the free surface is every-
where contracting and so it is unstable to short-wave-
length perturbations. The latter case, when the wave
trough is rising, corresponds to the situations found by
Cooker and Peregrine (1991) to give rise to very high
upward accelerations.

7. Discussion

We have shown how, by incorporating dynamical
considerations into a simple fractal model of surface
waves it is possible to understand some observed fea-
tures of the sea surface. The model is highly simplistic
and is made possible only by the assumption of a wide
separation of scales between the component waves.
This enables us to assume that the short waves are in
a sense controlled by the longer waves on which they
ride and to ignore the reaction of the short waves on
the much more energetic long waves.

Nevertheless it is worth noting that the short-wave
steepening shown in Fig. 6, for example, is nearly in-
dependent of the wavelength of the short waves when
the ratio of the wavelengths exceeds about 2 (see Lon-
guet-Higgins 1987, Figs. 4 and 5). Thus the aspects of
wave steepening discussed here may not be very de-
pendent on the assumption concerning the component
length scales.

It should also be noted that the horizontal contrac-
tion, which destabilizes certain portions of the free sur-
face, is merely the mechanism that initiates the break-
ing. Another such mechanism is the instability of the
crest of a steep wave (see Longuet-Higgins and Cleaver
1994). It appears the latter is mainly a local phenom-
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enon. But even there the local contraction of the free
surface in the unperturbed flow is a significant factor
in the instability.

A satisfying fractal model of a breaking sea that fully
incorporates the dynamics of a free surface under the
action of gravity still awaits development. The present
paper draws attention to this challenge and makes a
modest start.
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