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ABSTRACT

Laboratory observations of short gravity waves of length about' 1 m by Koga show the occurrence of a
downward flow separation near the wave crests, making angles of 10° to 50° with the horizontal. Koga’s
observations are compared with a theoretical model of flow separation suggested by Longuet-Higgins. Some

features of agreement are found.

1. Introduction

Steep surface waves in deep water are known to be-
come unstable in a variety of ways, some of which
have been described in a recent review (Longuet-Hig-
gins 1987). Among the better known instabilities is the
whitecap, or bubbly roller, which develops on the for-
ward face of a progressive gravity wave having a wave-
length greater than a few meters. A theoretical model
for this flow was proposed by Longuet-Higgins and
Turner (1974). At much shorter wavelengths, less than
about 10 cm, capillary—gravity waves can trap pockets
of air in the wave troughs, as first suggested by Crapper
(1957) and observed experimentally by Toba (1961).
However, at intermediate length-scales, of the order 1
m, a different type of instability has been observed by
Koga (1982). It is this that we wish to discuss in the
following note.

Koga (1982) found that near the crest of a steep
gravity wave having a period of about 0.73 s (wave-
length 75 cm ), a structured flow could be observed. A
cluster of bubbles was carried downwards into the in-
terior of the fluid at an angle of about 40° to the hor-
izontal (see Fig. la). Sometimes several such bubble
clusters were visible, as in Figs. 1b and 1c. The flow
appeared to separate from the free surface along a line
which marked the boundary between relatively smooth
flow ahead, (i.e. downwind) of the separation line, and
a rough, apparently turbulent region behind (i.e., up-
wind) of the line. The separation was confirmed by
photographs of the surface taken from below and
pointing vertically upwards (Koga 1982, Fig. 5). The
measured velocities in the bubble sheets, including their
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directions, are shown in Fig. 2 (adapted from Koga
1982).

The phenomenon is comparable to, but different
from, the flow studied by Banner and Phillips (1974).
They observed the separation at the edge of a turbulent
roller artificially induced by placing a submerged ob-
stacle in a steady current. In that case the angle of
depression of the separated flow appears to be some-
what smaller, and the flow resembles more the flow
beneath a whitecap.

Returning to Koga’s observations, we emphasise that
such a separated flow, involving as it sometimes does
the entrainment of air bubbles, is of considerable in-
terest in connection with the production of underwater
sound at low wind speeds. Although the turbulent zone
upwind of the line of separation may not be as easily
visible from above as in a whitecap, nevertheless the
process of trapping of air pockets, and their subsequent
distortion into spherical bubbles, can be expected to
contribute significantly to the level of underwater sound
(Longuet-Higgins 1989a,b).

In the present note we draw attention to the fact that
several years before Koga’s (1982) paper, a theoretical
model for the separation of flow at a free surface was
suggested by Longuet-Higgins (1973). The model, in
its simplest form, has several features corresponding
closely with Koga’s observations. In section 2 we out-
line the main features of the model, and in section 3
we shall compare it with Koga’s observations. A dis-
cussion follows in section 4 and conclusions in sec-
tion 5.

2. A theoretical model

The model is sketched in Fig. 3. In the unshaded
region to the right, bounded by the free surface § = o
and the sloping plane § = — 8, the flow is assumed to
be inviscid and irrotational. The density p in this region
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FIG. 1. Entrainment of bubble clusters in breaking wind waves. Wind-speed 16 ms™'.
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Fetch 16.4 m. (From Koga 1982).

is assumed constant. To satisfy both Laplace’s equation
and the condition of constant pressure when § = o we
take as streamfunction

¢=Aﬂﬂgn;w—a) (2.1)

where
A? =§gcosa. (2.2)

(The case a = Y corresponds to Stokes’ well-known
corner flow). The pressure p and the velocity ¢ are
then given by

= grcosf — % q° (2.3)

s

¢ =A% (2.4)
It will be seen that both p and g are proportional to
the radial distance r. There is a stagnation point at 7
= 0' .

In the shaded region to the left, where —y < 8 < — 8,
the flow is assumed to be turbulent with a constant
density p’. The main source of the turbulence is as-
sumed to be the free surface, where there is breaking

and dissipation of the short waves. Here we shall as-
sume that the flow is so strongly turbulent that it is
dominated by Reynolds stresses which can be repre-
sented by a constant eddy viscosity N, say. (Thisis a
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FiG. 2. Estimated velocities V and directions 6 of the flow near
the crest of wind waves, as calculated from observations of entrained
bubbles. (From Koga 1982).
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FiG. 3. Notation and coordinates for the theoretical
model of section 2.

“turbulent Stokes flow” model). The streamfunction
¢ for the mean flow then satisfies

V4 = 0. (2.5)
On the interface § = — 3 we assume that
V=0 (2.6)

so that there is negligible flow across the boundary,
and the turbulent stresses are given by

Py=—p, P,= Cqu (2.7)

where p and g are given by Eq. (2.3) and (2.4), and C
is a positive constant. We shall study in particular the
case when C is small. (C is likely to be of the same

order as the entrainment constant at the boundary of

a turbulent jet, that is, of order 0.08; see Turner 1969).
On the free surface §# = —y we assume

‘7/:07 PM:O, Pr0=0

(2.8)

®
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The above equations admit an exact solution in the
form

¢ =Er*sin3(8 +v) + Frisin(d +v) (2.9)

where E and F are constants. ( For details see Longuet-
Higgins 1973, sections 3 to 5). Some representative
flows when p = p’ and C > 0 are shown in Fig. 4. The
corner angle in the laminar flow to the right is always
120°. The angle of depression of the free surface lies
between 0° and 11° (actually arctan3 %/, = 10°54").
The upwards inclination of the free surface in the flow
to the left is supported by the turbulent Reynolds
stresses.

The limit C = 0 is of special interest. We find then
that F — 0 and so from (2.9)

¥ = Er¥sin3(8 + v) (2.10)

representing a simple, irrotational mean flow in a 60°
corner. By symmetry, the tangential stress P,, vanishes

both on the interface # = —8 and on the free surface
# = —v. The constant E is given by
E =0.0156g/N (2.11)

(see the Appendix to this paper).

The existence of the flow depends upon the eddy
viscosity N being greater than zero. If N were replaced
by the ordinary kinematic viscosity, then E would still
be finite, but improbably large.

The above solution may be generalized to the case
when p’/ p < 1; see Longuet-Higgins (1973, section 5).
In Figs. 9a and 9b of that paper the angles of inclination

o =90°—@a, ' =v-90° (2.12)

of the free surface on either side of the origin are shown
as functions of the coefficient C. In the limiting case
when C — 0 both of the angles o' and v’ lie generally
between 10°54’ and 30°.

FIG. 4. (from Longuet-Higgins 1973). Examples of particular flows when p = p’ and C > 0.
(a) 6 = 60° (b) 6 = 75° (c) 6 = 90°.
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We may mention that when p'/p < 1 there exists a
second class of solutions in which the flow velocity in
the left-hand sector —y < # < — 8 is relatively small.
Indeed when we let C — 0 the fluid on the left becomes
static. The inclination of the interface § = — @ is then
given by

tang = (3p/p’ — 1)/3"/2, (2.13)

If p'/p = 0, we see that the configuration is that of the
symmetric, 120° corner-flow. If on the other hand p'/
p = 1, it is found that the flow velocity vanishes ev-
erywhere. .

3. Comparison with observation

In Fig. 2b, which shows the direction of the flow as
indicated by the bubble clusters (but allowing for the
rate of rise of the bubbles relative to the surrounding
fluid; see Koga 1982, section 2) the direction varies
from 190° to 230°, i.e. 10° to 50° downwards from
the horizontal, with a mean value 39°. This compares
with the theoretical value 49° shown in Fig. 4 in the
case p’ = p, C = 0. If we assume p’ < p the theoretical
angle lies between 49° and 30°.

The magnitude of the velocities shown in Fig. 2a
above range from 0.4 to 1.2 m s™!, with a mean value
0.8 m s, In the theoretical model the flow velocity g
in the laminar region is given by equations (2.4) and
(2.2), hence

q* = 2gr cosa. (3.1)
This depends both on 7 and «, but if as representative
values we take r = 0.05 m, « = 39°, we obtain g = 0.87
m s™', within the range of observation.

Consider now the inclination of the free surface. The
photographs in Fig. 1 were taken from an angle slightly
oblique to the line of the wave crests on the left. It can
nevertheless be seen that the oblique line of bubbles
separates from the surface at a point slightly forward
of the wave crest. In Figs. 1a and Ic the crest profile is
fairly sharply curved, so that the inclination of the tan-
gent is not well defined. Nevertheless it can be seen
that the oblique angle between the line of bubbles and
the smooth part of the free surface ahead of the point
of separation is not far from 120° as predicted by the
theoretical model. '

In Fig. 1b there appears to have been more than one
separation event. The crest may also have become less
steep since the earlier events. Nevertheless the angle
between the lines of bubbles and the tangent to the
mean surface is about 135°, only slightly greater than
the predicted value.

From these comparisons we may conclude that there
is a rough, but quantitative agreement between the ob-
servations and the predictions of the model.

4. Discussion

We emphasize first that the model of flow sepération
which has been suggested is only a local model, possibly
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applicable to the immediate neighbourhood of the
point (or line) of separation. Like the Stokes 120° cor-
ner flow, it does not aim to describe the total flow in
the wave, or even in the crest. Nevertheless a complete
description of the flow must take into account the spe-
cial conditions existing near the separation point, which
may largely determine the global characteristics of the
flow.

Perhaps the most controversial aspect of the model
is its modeling of the turbulence by a uniform eddy
viscosity. Such an assumption can be expected to yield,
at best, only approximate, or qualitatively correct, pre-
dictions. Underlying the assumption is that the tur-
bulence arises only partly from the shear layer along
the boundary (§ = —3) of the laminar flow. A much
stronger source of turbulence is the dissipation of en-
ergy by short capillary-scale features near the wave
crest. Such dissipation occurs naturally as a result of
the breaking of capillary waves riding on the longer
gravity waves. Such capillary waves are blocked by the
gradients of velocity on the forward face of the gravity
waves; see Phillips (1981). The turbulence so created
will tend to be circulated by the mean flow in the tur-
bulent sector of the fluid.

We have mentioned that the turbulence will help to
support the inclination of the free surface to the left
(i.e., up-wave) of the point of separation. In addition
we may expect a contribution from the radiation
stresses in the short capillary waves. The effect would
be simiiar to the wave “set-up” maintained by waves
in a coastal surf zone (Longuet-Higgins and Stewart
1963). *

We note that Koga (1982) has proposed an expla-
nation for the entrainment of bubbles at the point of
separation. He suggested that it was analogous to the
entrainment of air by a jet entering the surface from
above. The presence of such jets is not evident in the
photographs of Fig. 2. Rather, we believe the entrain-
ment of air is to be associated with the stability of the
flow near the point of separation. However the inves-
tigation of this_problem is beyond the scope of the
present paper.

5. Conclusions

Several features of the flow separation observed by
Koga (1982) near the crests of steep gravity waves are
in agreement with the simple theoretical model pro-
posed earlier by Longuet-Higgins (1973). The latter
assumes that on one side of the separating streamline
the flow is irrotational, and on the other side it is tur-
bulent. The turbulence, however, arises mainly from
dissipation of energy at the free surface, and not from
shearing at the separating streamline. The flow is es-
sentially nonlinear, and is not contiguous to a state of
rest. Aeration of the fluid by the entrainment of bubbles
has only a small effect on the bulk density of the fluid.

A possible difference in density between the laminar
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and turbulent regions has been included in the model
in order to allow for the bulk effect of bubbles pene-
trating the free surface. However on the small scales
considered here such density differences will probably
be slight. Only in the case of large-scale spilling breakers
where foaming is evident do we expect significant den-
sity differences (Longuet-Higgins and Turner 1974).

APPENDIX

The Evaluation of E and F

In section 3 of Longuet-Higgins (1973) it is shown
that the boundary conditions (2.6) and (2.7) lead to
the equations

Esin36 + Fsiné =0
1 (A1)
E sin36 + 3 Fsind = -2CQ
and
Ecos36 + Fcoso = —Q (A2)
where
d=v—8 (A3)
1 2
Q=;(g/N) COS(gw—B) (A4)
Hence
1
t36 — 6= — AS
cot38 — cot 3C (AS)
1
Csc38 — cscd = — o8y (A6)

3¢ cos(%w - v+ 6)

We examine the solution as C = 0 and 6 — «/3.
Writing

3C=)\ 6=x/3+7, (A7)
we find from (AS), to order €2, that
1

3¢ V3 A

Now substituting into (A6) and expanding similarly
in powers of ¢ we obtain

(1 +2V§—%ez)cos('y—e)

=(1—V3e+ e2)cosy (A9)
whence to order €2 '

(3V3e — 2¢2) cosy + (¢ + 2V3e?) siny = 0.  (A10)
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Assuming e # 0, we have, to lowest order
3V3 cosy + siny = 0 (All)

whence

Y= % 7 + arctan3 "2 = 100°54".  (A12)

We shall denote this value of v by vo.
Now from equations (A1) we have

300 20 _
sin 36 3e

_3CQ - A0
sind sinw/3

Q (A13)

-0 (A14)
as ¢ = 0. Moreover from (A4)
Q=1(8/M cos(ﬁvr +6- 'y)
~ é (8/N) cos(m — 7o)

= 1—‘2- (g/N) sin(10°54"). (A15)

Hence the limiting value of E is
Ey = Q=0.0156(g/N)

as stated in section 2.

(A16)
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