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ABSTRACT

It is shown that the vertical acceleration of a particle beneath the crest of a steep gravity wave does not always
decrease monotonically with depth in the fluid. When the wave steepness ak exceeds 0.4, the acceleration at
first increases with depth, and is a maximum at points slightly below the free surface. The result may have

implications for the motions of a floating buoy.

1. Introduction

The acceleration of particles at the surface of steep
gravity waves in deep water has been considered in a
recent paper (Longuet-Higgins 1985), and was calcu-
lated accurately for representative values of the wave
steepness ak. One of the suggestions made in the course
of the discussion (section 4) was that for very steep
waves, the vertical component of the real, or Lagran-
gian, acceleration should exceed the corresponding
values at the free surface. This of course runs counter
to our intuition, derived from linear theory, that the
acceleration should diminish monotonically with the
depth.

In this paper we present further calculations which
confirm the above effect. First, we consider the accel-
eration beneath the crest of an almost-highest wave,
according to the asymptotic theory of Longuet-Higgins
and Fox (1977), and show how the acceleration in-
creases from less than 0.4g at the free surface to a lim-
iting value 0.5g at depths large compared to the radius.
In section 3 we consider waves of arbitrary amplitude,
and carry out accurate calculations for wave steepnesses
ak in the range 0.1 < ak < 0.42 (Figs. 2a to 2¢). Ap-
proximate calculations for waves of limiting steepness
are given in section 4. The results are collected and
discussed in section 5.

2. The almost-highest whve

The fluid flow near the crest of a gravity wave ap-
proaching its limiting steepness was first calculated nu-
merically by Longuet-Higgins and Fox (1977, 1978).
A close but convenient analytical approximation was
derived by Longuet-Higgins (1979). Figure 1 (right-
hand curve) shows the corresponding surface profile.
This has a rounded crest at the point (x, ) = (0, —1),
x being measured horizontally and y vertically upwards,
and the scale being chosen so that g = 1, and g2, the
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square of the speed at the wave crest, equals 2 in a
frame traveling horizontally to the left with the phase
speed c. It is assumed that

gt =<, 2.1)

o being the linear phase speed, and that at infinity the
flow tends to the Stokes corner-flow, in which the free
surface is inclined at 30° to the horizontal. The length
scale in Fig. 1 is equal to ecy?/g, and for gravity waves
in deep water it can be shown that e is related to the
wave steepness ak by

¢ = 2.0lak — 0.4432|

(see Longuet-Higgins and Fox, 1978).

The approximate profile in Fig. 1, which agrees with
the exact profile to within 1 percent, corresponds to
the flow

(2.2)

2= i+ iv)l(B + )P @3)

where z = x + iyand x = ¢ + i{ is the complex velocity
potential. The o, 8 and vy are numerical constants, given
in Longuet-Higgins (1979) and (1985). From this we
may calculate the real (or Lagrangian) accelerations a;
through the general formula

a; = —z%/(2,2¥). 2.4
(Here z, = dx/dz and an asterisk denotes the complex
conjugate). We shall examine only the values on the
vertical line through the wave crest, on which ¢ = 0;
then from (2.3) and (2.4) we find, after some reduction,
Y + (2a — 38y)
a; = 18(y — 8)° .
L= 180 = ) g+ (@ = 36T
This is plotted on the left-hand side of Fig. 1. At the -
free surface (Y = 0),
a; = —0.354g (2.6)

as compared with the accurate value 0.386g computed

(2.5)
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THE ALMOST-HIGHEST WAVE

FiG. 1. The vertical acceleration a; beneath the crest of an almost-highest wave,
as given by (2.3). The free-surface profile is shown on the right.

by Longuet-Higgins and Fox (1977). On the other hand,
at depths large compared to the radius of curvature at
the crest ({ — —oo) we have

ap = ~(9/8y°)g = -0.5¢ 2.7

since ¥ = (3/2)* by Eq. (3.3) of Longuet-Higgins
(1979). So the vertical acceleration is the same as in
the Stokes corner-flow, as we would expect.

Between ¥ = 0 and ¥ = —oo the acceleration in-
creases monotonically with distance from the crest. In
physical terms, the reason is that a; is given by g%/R
where ¢ is the local particle speed and R is the radius
of curvature of the local streamline. In the Stokes cor-
ner-flow, g2 and R are proportional: g2 = 4 gR. But in
the almost-highest wave g? increases with depth less
rapidly than R, in general.

On the other hand, in any horizontally periodic ir-
rotational motion, the velocity at great depths must
tend to zero, in a stationary reference frame (Longuet-
Higgins, 1953). So the acceleration must likewise tend
to zero. To reconcile these opposing results we must
now examine periodic waves of arbitrary steepness.

3.. Waves of arbitrary steepness

The accurate calculation of subsurface accelerations
in waves of arbitrary steepness can be carried out by
precisely the same method as in Longuet-Higgins
(1985) using either formula (2.4) or the equivalent re-
sult

ar = —qGsz;xa

3.1

g being the local particle speed. The only difference is
that each coeflicient g, in the Fourier series for x and
y must now be multiplied by e". In (3.1) it is generally
not permissible to substitute g2 = 2gy, a relation which
holds only at the free surface.

The results are shown in Figs. 2a to 2e, the accel-
erations below the crest being plotted horizontally on
the left of each diagram, and the corresponding surface
profiles on the right.

When ak = 0.1 and 0.2 (Figs. 2a and 2b, respectively)
the accelerations are much as expected in linear theory,
diminishing monotonically with depth in a roughly ex-
ponential manner. In Fig. 2¢, corresponding to ak
= (.3, a point of inflexion already appears in the upper
part of the acceleration curve. In Fig. 2d, when ak
= (.4, there is now a maximum in |a;| at a point below
the free surface. When ak = 0.42 (Fig. 2e), the effect
is even more pronounced. There the maximum accel-
eration occurs at a depth 0.12 k™! below the free surface
(k = 2w /wavelength), in fact at a depth comparable to
the radius of curvature of the profile at the crest. The
value of aq; at the crest is less than this by some 6 per-
cent,

4. The limiting wave

A simple but fairly accurate approximation to the
motion of subsurface particles in a limiting wave is
given by the so-called “hexagon approximation”
(Longuet-Higgins 1973, 1979). In this, the transfor-
mation .

ez=¢ 4.1)

takes six successive crests of a wave of length L = 7
into the corners of a regular hexagon in the {-plane.
The surface profile of the wave corresponds to the sides
of the hexagon, and so in the z-plane the equation of
the surface in —¢7 < x < {= is simply

y = In(secx) 4.2)

which is accurate within 3 percent.
To obtain the particle velocities, the interior of the

hexagon is transformed onto the interior of the unit

circle |W] = 1 by the Schwartz-Christoffel transfor-

mation

v aw

o (1 — W83

where K is a constant. If z = 1 corresponds to a wave
crest, then

{=K 4.3)
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FIG. 2. Vertical accelerations a; beneath the crest of a gravity wave with steepness parameter
ak. The corresponding surface profile is shown on the right. (a) ak = 0.1, (b) ak = 0.2, (c) ak

= 0.3, (d) ak = 0.4 and (e) ak = 0.42.
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_ FIG. 3. The vertical acceleration beneath the crest of a limiting gravity wave,

in the hexagon approximation.
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X A U—_-W_ 1.1129. 4.4
The corresponding velocity potential is simply
x = —iclnW (4.5)

where c is the phase speed.
To evaluate the acceleration by means of the general
formula

a; = XzX:z (46)
[see Longuet-Higgins, 1985, Eq. (2.3)] we have
Wi, = U=
Xe = XwWike = =0 (4.7)
from (4.2), (4.3) and (4.5). Also
Xzz = Xz('fz + XzWWQ‘g-z (48)
_ fe§ 7 ict? (1+ W%
xw' = g g e (49)

Beneath a wave crest, both { and W are real and less
than 1. Hence on substitution in Eq. (4.6) we find

ap = A2H(1 — W3 — A(1 + W9)]  (4.10)

where :
A= {KW. 4.11)
Together with

y=In{ (4.12)

[from Eq. (4.2)], this enables us to plot g, against ky
(k = 6). We note that some numerical values of {/K
are already tabulated in Table 4 of Longuet-Higgins
(1979, p. 512).
To explore the neighborhood of the wave crest itself,
we write
W=1-2%6, n<1, (4.13)

and expand these expressions in powers of 7. To lowest
order we obtain

x = icn’/6
{=1-— Kn2/4 4.14)
- _ 302
ky=—3 Ky
since k = 2n/L = 6. Hence
2ic? 9
aL=—F(1—§Ky2), (415)
that is ,
2c 3
—ar/g = il (1 ~3 ky) (4.16)

by (4.14). To satisfy the condition of constant pressure-

at the free surface we must choose

2 =K3%4 4.17)
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[see Longuet-Higgins 1973, Eq. (4.13)], giving
=423
ar/g = 2(1 3 ky) .

The acceleration at the surface (y = 0) is now —igin
agreement with the Stokes corner-flow, and the vertical
gradient of the acceleration is given by
daL 3
— ==gk.
dy 8 &
This gradient is represented by the broken line in
Fig. 3.

(4.18)

(4.19)

5. Discussion

Figure 4 compares the acceleration curves for dif-
ferent wave steepnesses ak, and shows how these ap-
proach the curve for the limiting wave. Clearly the limit
is approached nonuniformly, so that for all wave steep-
nesses greater than 0.4 the maximum acceleration be-
low the surface exceeds that at the surface itself.

The occurrence of this maximum appears to be a
property of the local flow in the neighborhood of the
crest, related closely to the “almost-highest wave™ dis-
cussed in section 2.

It is tempting to associate the subsurface maximum
with the known instability of steep gravity waves at
high wave steepnesses (Tanaka 1983). However, the

k(y-¥)

F1G. 4. Comparison of the vertical accelerations beneath the crest,
for waves of different steepness ak. The broken line corresponds to
the limiting wave (ak = 0.4432).
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first superharmonic instability does not occur until ak
> 0.4292—a value somewhat exceeding the first ap-
pearance of the acceleration maximum (ak < 0.42). In
no case does the vertical acceleration exceed g, or even
0.5g, so that the vertical pressure gradient never changes
sign.

Wave buoys or other floating objects whose vertical
dimension is comparable to the radius of curvature at
a steep wave crest may experience a greater vertical
acceleration than others with a shallower draught. An
experimental investigation might prove interesting.
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