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Reflection and Refraction at a Random Moving Surface.

III. Frequency of Twinkling in a Gaussian Surface
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When light is reflected or refracted at a moving Gaussian
surface, the observer sees a number of moving images of the source,
which appear or disappear generally in pairs; such an event is
called a "twinkle." In the present paper the number of twinkles
per unit time is evaluated in terms of the frequency spectrum of
the surface and the distance of the source 0 and observer Q on
the assumption that the surface is Gaussian and that OQ is
perpendicular to the mean surface level.

A solution is found first for a single system of long-crested (or

two-dimensional) waves, and then extended to the case of two
such systems intersecting at right angles.

The rate of twinkling is found to depend, apart from a scale
factor, on two parameters of the surface, one of which, a, increases
steadily with the distance of 0 or Q from the surface; the other,
d, discriminates between waves of standing type and waves of
progressive type. Over a considerable range of a, the rate of
twinkling is almost independent of d, but for large values of a the
rate is much greater for standing waves than for progressive
waves; waves of intermediate type are included in the analysis.

1. INTRODUCTION

IN two previous papers",2 we have studied the
pattern of reflections of a point-source in a random,

moving surface, and have determined the average
number of distinct images seen by an observer in the
case when the surface slopes and curvature have a
Gaussian distribution. It was shown' that the specular
points (that is, images of the point source) are generally
created or annihilated in pairs, such an event being
called a "twinkle." In this paper our purpose is to
evaluate the frequency of twinkling, that is to say the
average number of twinkles per unit time over the whole
surface. This number is to be expressed in terms of the
wave energy spectrum of the surface.

It can be shown that at a twinkle the intensity of
radiation seen by the observer is greatly increased, so
that the observer sees a bright flash. (This may be analo-
gous to some sudden increases in the recorded intensity
of radio waves reflected from the ionosphere.) In the
language of ray optics, the surface momentarily focuses
the radiation at the point of observation. Corresponding
to the principal radii of curvature, there are gener-
ally two focal points along a reflected ray, and the
flash occurs when one of these coincides with the
observer.

An exactly similar effect is produced when the surface
is the boundary of a refracting medium (such as water)
and the source of light is observed from a point on the
far side of the surface; an observer below the water
surface will see a pattern of images of the light source;
these are created and destroyed in a manner analogous
to the reflected images.

Another way of looking at the phenomenon is as
follows. Suppose that the radiation, after passing
through the surface, illuminates a horizontal plane at
some fixed distance below the mean surface level-

' M. S. Longuet-Higgins, J. Opt. Soc. Am. 50, 838 (1960),
paper I of this series.

2 M. S. Longuet-Higgins, J. Opt. Soc. Am. 50, 845 (1960),
paper II of this series.

3 J. D. Whitehead, J. Terrest. Atm. Phys. 9, 269 (1956).

as sunlight falling on the sea bed in shallow water. If
the plane is not too near to the surface it can be seen
to be covered with a pattern of bright lines-the loci
of those points where a twinkle may be momentarily
observed. The rate of twinkling is then the average
number of times that one of these lines sweeps through
a fixed point in the plane.

The general problem, for a Gaussian surface with
arbitrary frequency spectrum, appears to be compli-
cated. Our approach will be to solve first the analogous
problem in two dimensions (when the surface is long-
crested and the light source is a line parallel to the
crests); then we may deduce the solution for a surface
which consists of two such long-crested systems inter-
secting at right angles.

It is found that apart from a scale factor the rate of
twinkling depends upon two parameters of the surface.
The first of these, a, is proportional to the distance of
the observer from the surface and to the rms curvature
of the surface. The second, d, is small for waves of
progressive type and increases to a maximum for waves
of standing type. Over much of the range of a the rate
of twinkling is found to be nearly independent of d;
for larger values of a, however, the rate of twinkling
increases with d, and is much greater for standing waves
than for progressive waves.

2. GEOMETRICAL CONDITIONS

If z= (x,y,t) denotes the equation of the surface in
rectangular coordinates, z being directed vertically
upward, then it can be shown' that the condition for a
specular point, when source and observer lie on the
z axis, is

where
af/ax=O, af/ay=o,

f(x,y,t) = (x,y,t)+ 2K((X
2+y 2 )

(2.1)

(2.2)

and K is a constant. In the reflection problem, if hi and
h2 denote the heights of source and observer above the
mean surface level, then

K= 2[(1/hi)+ (1/h 2 )]. (2.3)
851
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In the refraction problem, if I and /12 denote the
distances of source and observer above and below the
surface, and if ,u1 and i2 are the refractive indices of the
two media, then

(2.4)

The condition for a twinkle is that, besides Eqs. (2.1),

(02 f/x 2) (a2 f/0y 2) - (2 f/axay)2 = 0 (2.5)

The probability density of 01, 2, 3, ~4 is therefore
given by

PQ11t2,6,W 4= a xp-2 E Mjtjj], (3.6)

where (Mij) is the matrix inverse to (3.4). The occur-
rence of zeros in the matrix implies that the distributions
of 41, ~4 and of t2, 43 are independent. In fact,

shall also be satisfied; that is the vanishing of the total
curvature of the surface z= f.

In the corresponding one-dimensional case, when the
situation is independent of the y coordinate the con-
ditions are simply that

where
af/x=O, 02f/0x2=0,

f(x,t) = (Xt)+2KX2.

(2.6)

(2.7)

p (Q1,42,43,44) = pQ(1,44)p (%,6),
where

1

Q14)=27r(M2Mn6-M42) '
21r m~rn - 11 1141~+11~2

m6 ti2 + 2m4 tit4 ±m2 44
2]

X.\eXp[ - 2(m 2m6-m 4
2)

1

3. TWO-DIMENSIONAL CASE: STATISTICAL MODEL

We take as a model for the surface the function

no
(xt) = Zccos(kx+ojt+ En),

n=1
(3.1)

where the phase constants En are supposed to be
distributed randomly and uniformly over (0,27r), the
wave numbers k, o are distributed over the intervals
(-o, oo) and (0,oo), and where at last tends to
infinity in such a way that over any small intervals
(k, k+dk), (a-, +do-),

_ 1c 2= E(k,)dkdc, (3.2)

2 7r (1141m12 - M 3 12 ) -.

72%2
2 - 2m3

1 62 3+m443
2 1

Xexp I _ __ _ _ _.__ _ _

Le~p 2 (m 4 m2 " - M3 '2 )

It will be convenient to write

71,72,137,7374= 9f/ox,a 2f/0x 2,02f/xo/,0 3f/0x 3

= (Qj+KX),%4+K),ta,(4, (3.9)

so that the probability density of n1, 72, 3, 174 at a fixed
value of x, t is given by

where
P (717772,773,x74) = P Ql,#2,(3,#4), (3.10)

where E(ko-) is a continuous function of k a- (the
spectrum function). Such a model is a generalization
of that employed for a time-independent surface. 2

Under certain conditions the distribution of r and
its derivatives at a given point x and time t is Gaussian.
On writing, for brevity,

0v/0x, 02 r/0x2 , 02 v/0xdt,

d~v/x3= 1, 2, 6, 4, (3.3)

we have for the matrix of mean values of the products:

F 1)12
(%O-J~v) = 00 o

00 

X co

in,= f .A C
ai' f`0

-X 0

171r"=. fJ W
-GO O

0 0

?114 1713'

713 1112

0 0

01

fllo 

E(k,a-)krdkd-,

E (1,o-)k radkd(r,

E(k,a-)kru2dkdo.

(3.4)

4. EVALUATION OF THE PROBABILITY

We wish now to find the probability that in a given
small interval of time (t, t+dt), and in - oo <x < co,
the conditions

1=0, 12=0 (4.1)
shall be satisfied. Let this probability be ndt (clearly,
n is the mean number of "flashes" per unit time). We
first seek the probability of (4.1) being satisfied in a
small interval ( t+dt) and in (x, x+dx); if this proba-
bility is denoted by nidxdl, then clearly

In= f n dx. (4.2)

The advantage of dealing first with nx is that for fixed
x the distributions of 171, 172, 173, 174 are invariant. 4

Now the probability p (?71,172)d'11dx1 2 represents the
(3,5) probability that n17, 12 lie within the limits q, 7o+d'q

and 72, 12+d'q 2 at certain fixed values of x, t. On the

4 nx has been evaluated previously in the case when the source
and observer are at infinite distance. See M. S. Longuet-Higgins,
Proc. Cambridge Phil. Soc. 56, 234 (1956).

(3.7)

(3.8)

where
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K= (A1111+A2112) 1[(A2_A1)111112j-

P ,Q=

6,�2,6,�4= (?7j-KX),(172-1C),173,q4-
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other hand if 71, 772 take the given values (4.1) in a
given range (x, x+dx) and interval (t, +dt) then
(771,Th2) at (xt) itself may vary within a region of
measure

a (77 1,22) 02 f/Ox 2 a3f/Ox3

0 (xt) 0 2 f/oxot 03f/ax 2Ot dxdt, (4.3)

which in the neighborhood of the points (4.1) reduces
to 17737741dxdt simply. Hence the probability ndxdt is
given by

nxdxdt= f f P(r1,772,773,774) 113q4l dxdtd77 3 dr7 4 , (4.4)

and the required probability ndt is given by

n = f w G P(n7,772,773,74) 177374 l dxd773d 4. (4.5)

Now x is involved only in 771, so that the integration
with respect to x may be carried out immediately.
Replacing 772 at the same time by 0, we have, from
(3.10),

1 x0

n=(2r) 1
rn fm exp(-nl4

2 /2m 6 ) 1 4 774

1
X

27 (M4 m 2" -r 3 '2 ) 2

where

21
f(a,d) =-ad exp(- 2a2)-

7a

X [exp(-202)+qf exp(-.z2)dZ] (4.12)

and
=(1 - d2) 11ad.

Since the error integral on the right-hand side is a
tabulated function,5 this completes the formal solution
of the problem.

5. DISCUSSION

In Eq. (4.11) the first factor on the right-hand side
has the dimensions of (time)-'. If the spectrum con-
tains a single narrow band of frequencies centered on
a mean wavelength X and period , then

(m6m2"
1)'I/M4= 2r/r, (5.1)

approximately. This factor, therefore, essentially deter-
mines the time scale.

Of the remaining two parameters a, d, the first is
inversely proportional to K, and so increases linearly
with the distances of 0 and Q from the surface. Also, a
is proportional to m4 ', the root-mean-square value of
the "curvature" a

2r/Ox2.
The parameter d is a function of the frequency

spectrum E(k,a) only. Now, since

fX Go -0ff0

2 ( 4 m2" -M3 12) = E(k,o,)E(k2,02)

G M m2itK2 +2M 3 Kq3+M43 2 1
XJ exp 2( 4m2 -rn' 2) J. (4.6)

The remaining integrals present no difficulty, and give
the following:

21 Mr6 (m 4 m2 "-M3n2)
.n=r

,I KM4

exp ( -. K2/2r4)

X (k,4k 2
2
a 2

2H+k2
4k1

2 i2- 2k13k2
3cr 1 2)

Xdkjdadk 2 du2 , (5.2)

and since the factor in the integrand is a perfect square,
we have

m4 n 2 in3
1 2> 0,

whence

O<d<1.

X exp(-22)+0 exp(-2z2)dz],

where

0= Km3'/[m4'(M4 M2"-ma'2)l].

If we now define the dimensionless quantities

= r 2/K,

d= [(m4M2
"-M3 )/M4M2"],

then (4.7) can be written in the final form

n= [(m6M2") 1'/M 4]fj(ad),

The lower limit of d is approached whenever the spec-
(4.7) trum of the surface is narrow; the surface then has the

appearance of a progressive wave of slowly varying
amplitude and phase. The upper limit of d is attained
when m 3'= 0, which occurs, for example, if the spectrum

(4.8) function E(k,o-) is symmetrical with respect to k:
E(k,a)=E(-ko), while a- is an even function of k;
the surface then has the appearance of a standing-wave

(4.9) pattern of varying phase and amplitude. Thus the
parameter d discriminates between progressive and

(4.10) standing waves.
The function f (a,d) is shown in Fig. 1 for various

5 A. N. Lowan, "Tables of normal probability functions,"
(4.11) Natl. Bur. Standards, Appl. Math. Ser. 23 (1953).
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FIG. 1. Graphs of
f(ad) showing the
rate of twinkling as
a function of a (pro-
portional to distance
from surface) for
various values of d.

values of the parameter d. Two limiting forms may be

noted: as d 
f(a,d)- (/r) exp(-2a 2), (5.3)

and when d -> 1

f (a,d) ->(2-1/7l)a exp,(- 2a")-l. (5.4)

Although these two functions behave very differently
at infinity it is remarkable that when a< 1.5, they lie
quite close together, as indeed does the whole family
of functions; over the range O<a<1.5, f(a,d) may for
some purposes be taken as independent of d.

All the functions have an extremely sharp cutoff at
about a= 0.3, because of the factor exp (- 2a2)-'. Hence
the rate of twinkling falls off suddenly as the observer
approaches the surface.

On the other hand, for large values of a, and when
d>0, we have

f (a,d) - (2i/7r) ad, (5.5)

that is to say, n increases linearly with distance from
the surface, as we might expect. The limiting case d= 0,
when f (ad) -> l/7r as a -s oo, is never in fact attained,
because the bandwidth of the spectrum is never quite
zero.

6. THREE-DIMENSIONAL PROBLEM

The general problem in three dimensions, when
stated analytically, involves the evaluation of multiple
integrals of high order. A useful simplification, however,
results whenever the surface consists of two systems of
long-crested waves (both Gaussian) intersecting at
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right angles; for then by choosing the axes appro-
priately, we have

(6.1)(xy,.) = (2.)reucto
and the conditions (2.1) and (2.5) reduce to

af,/ax= 0, f2/x= 0, ( 2f1/ax2 ) (02f2/ay 2) = 0, (6.2)

where
fi(X,t) = P,(x,t)+ Kx2,

f2(X,t) = 2(X,t)+2Ky2.

Equations (6.2) show that a twinkle will occur in the
combined system if a specular point in the one system
(Of /Ox=0) is combined with a twinkle in the other
(af2/ay= 0, a2f 2/0y2= 0), or vice versa. Hence the total
rate of twinkling is given by

(6.4)

where N(1) and N(2) denote the numbers of specular
points in the two systems, respectively, and 0(') and
0(S) denote the rates of twinkling. Now N"W has been

4 I I

3

g (A,d)2

evaluated in a previous paper,' in fact, for a long-
crested system of waves,

N) = (-) La exp(- 2a2)-'+ J exp(- z2)dzJ, (6.5)

where a is the same parameter as before [Eq. (4.9)].
N is a function which increases steadily from unity at
small values of a to the asymptotic value

(6.6)

for large values of a.
If the frequency characteristics of the two systems

happen to be similar, then N(1) = N(2) and n(') = (2) and
we have, from (6.4),

This can be expressed in terms of the parameter

A =1 a2= K-2 D

(6.7)

(6.8)

where D represents the mean-square value of the mean
curvature of the surface (see footnote reference 1).

A .

FIG. 2. Graphs of g(A,d), showing the rate of twinkling for two intersecting systems as a function of A (proportional to
the square of the distance from the surface) for various values of d.
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n = 2n (1) N(1).

n= n(l)N(2) +,n(2)N(1),
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Thus,
n= [(m6m2")l/m 4 ]g(A,d).

and similarly in the two long-crested systems the mean
(6.9) lifetime of a specular line is given by

The function g(A,d) is shown in Fig. 2.
The interpretation of this result is similar to the two-

dimensional case. A is proportional to the square of the
distance from the origin and to the mean-square
curvature, while d discriminates between standing
waves and progressive waves. The function g(A,d) is
nearly independent of d for 0 <A <1, while for large
values of A (that is, great distances from the origin),
we have

(6.10)

Thus, the rate of twinkling is more vigorous for standing
waves d= 1 than for progressive waves d<<1.

A rather general result may be deduced from Eq.
(6.4). Consider the mean lifetime of a specular point.
Since each specular point involves two twinkles, one
at the beginning and one at the end of its life, and since
two specular points are involved in a twinkle it follows
that the mean lifetime of a specular point is given by

L=N/n, (6.11)

(6.12)

Now, since a specular point in the combined system is
always the intersection of two specular lines, one from
each of the two systems, we have

N= N(')N . (6.13)

On dividing each side of Eq. (6.4) by the corresponding
side of (6.13), we find

1/L= (1/L(1 ))+ (1/L(2 )). (6.14)

Hence, the lifetime of a specular point in the combined
system is always less than the lifetime of a specular
line in either long-crested system. When the two long-
crested systems are similar, L (1) = L (2), and hence

1/L = 2L(1), (6.15)

that is, the mean lifetime in the combined system is
exactly half that in either system individually.
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On Gabor's Expansion Theorem*
KENRO MIYAMOTOt

Institute of Optics, University of Rochester, Rochester, New York
(Received February 10, 1960)

As a generalization for optics of the well-known sampling theorem of information theory, D. Gabor pro-
posed an expansion theorem. It relates to the number of independent solutions of the wave equation in a
region defined by the object and by the aperture of an optical system.

A proof of this theorem presents formidable difficulties. In this paper, a proof relating to important cases
is established, and a more accurate estimate for the number of the independent solutions in the general case
is given.

1. INTRODUCTION

IN recent years the introduction of information theory
has brought about many useful developments in

optics.1'2 In these researches the sampling theorem of
Shannon plays a fundamental role. Gabor' and Gamo4
formulated a theory of image formation in matrix form
using this theorem, and furthermore Gabor3 proposed

* This research was supported in part by the U. S. Air Force
under a contract monitored by the AF Office of Scientific Research
of the Air Research and Development Command.

tOn leave of absence from Nippon Kogako K. K., Tokyo,
Japan.

' P. B. Fellget and E. H. Linfoot, Phil. Trans. Roy. Soc.
London. Ser. A247, 367 (1955).

2 E. L. O'Neill, IRE Trans. on Information Theory, IT-2,
(1956).

3 D. Gabor, Proceedings of the Symposium on Astronomical
Optics (North-Holland Publishing Company, Amsterdam, 1956),
p. 17., --

4 H. Gamo, J. Opt. Soc. Am. 47, 976 (1957).

the following expansion theorem as a generalization of
the sampling theorem: "Assume that the object area,
large compared with the square of the wavelength, is
limited by a black screen. Assume also that there is a
similar limitation in the aperture plane, at a great dis-
tance from the object plane. Then, in the domain
limited by these two black screens, there exist N inde-
pendent solutions of the wave equation V2 u+ (27r/X)2U
=0, that is to say, solutions with u=0 immediately
behind the black screens, and N is N=X-2 fbXy(cosa.,)
X5(cosa)=h- rbx3y~pzp,. (xy are coordinates in
object plane and cosax, cosa, are direction cosines of
the geometrical optical rays. p-= h/X, where h is Planck's
constant.) Any progressive wave through the object
area and through the aperture can be expanded in
terms of these N eigenfunctions with not more than N
complex coefficients."
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(2) (2) (2)L(1)===N(i)1n(i), L =N In 

g(Ad)_`- (8/r2)Ad.


