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Reflection and Refraction at a Random Moving Surface.

II. Number of Specular Points in a Gaussian Surface

M. S. LONGUET-HIGGINS
National Institute of Oceanography, England

(Received January 25, 1960)

The number of specular points reflected in a random Gaussian surface is determined theoretically under

the following alternative conditions: (1) when the surface is perfectly long crested (two-dimensional);
(2) when the surface is three-dimensional but isotropic; (3) for quite general surfaces, provided that the

observer and the source of radiation are both at a great distance from the surface.
The results can be applied to the similar problem when the surface forms the boundary of two refracting

media.

1. INTRODUCTION

SUPPOSE that light from a point source falls upon
a wavelike surface such as the surface of a lake or

sea. An observer may see many distinct images of the
source reflected in the surface at the specular points.
Following a previous paper' we shall here determine
the average number of reflections seen by the observer,
as a function of the wave-energy spectrum of the
surface and of the positions of observer and light
source.

It will be supposed in this paper that the surface is
Gaussian, that is to say, the probability distribution of
the surface slopes and their derivatives is jointly normal.
Such an assumption is convenient mathematically and
may approximate to naturally occurring surfaces under
some conditions; for example, it may apply to water
surfaces where the slope is not too great, so that the
waves do not approach breaking point. Ocean swell or
shorter wind waves passing through "slicks" may come
under this heading. Very steep wind waves, however,
can be markedly non-Gaussian. 2

When both source and observer are at infinite dis-
tance from the surface, the specular points in any
finite region are those points where the surface has a
particular gradient. The average number of specular
points per unit area in this case has been evaluated
previously.' Here we shall treat the more general case
when both the source 0 and observer Q may be at a
finite distance from the surface; but we restrict the
discussion to cases where OQ is nearly perpendicular
to the surface level.

With very slight modification the solution can be
applied to the case when 0 and Q are on opposite sides
of the surface, and the latter forms the boundary
between two media of different refractive index: for
example, how many images can an observer above water
see when a light source is situated below water level,
or vice versa?

The problem is first solved in the two-dimensional
case when, strictly speaking, the source 0 is a line

' M. S. Longuet-Higgins, J. Opt. Soc. Am. 50, 838 (1960).
2 A. H. Schooley, Trans. Am. Geophys. Union 36, 273 (1955).
3 M. S. Longuet-Higgins, Phil. Trans. Roy. Soc. London A249,

321 (1957).

source and Q is a line receiver. The full three-dimen-
sional problem is solved formally in Sec. 3 and is
explicitly evaluated in Sec. 4 for the special case when
the surface is isotropic (its statistical properties are
independent of azimuthal direction). The mean number
N of images is given by Eq. (4.11), in which A is a
parameter proportional to the mean-square curvature
of the surface and to the square of the distances of
source and observer from the surface.

In Sec. 5 the solution is given for the case when the
surface consists of two sets of long-crested waves (both
Gaussian) intersecting at right angles. The number N
is then given by Eq. (5.7). This and the isotropic case
are compared in Fig. 2.

Finally, the solution is given for large values of A
(corresponding to the source and observer at great
distances) and an arbitrary form of the wave spectrum.
In particular it is shown that if the surface consists of
two wave systems intersecting at an arbitrary angle
Oo, then the number of images is proportional to sinko
[see Eq. (6.9)]. The mean number of images is equal
to the mean number for an isotropic surface of the same
rms curvature provided that Oo = 660 30'.

2. TWO-DIMENSIONAL CASE

Let (x,z) be rectangular coordinates, with z vertically
upward, and let 0= (,hi) and Q= (0,h2) denote the
positions of the source of light and of the observer,
respectively, at heights hi and h2 above the mean surface
level. Further, let P= (x,¢) denote a typical point upon
the surface z= (x). It is easily seen' that for P to be
an image point we must have, at P,

ad/ax= -KX,

where
(2.1)

(2.2)

provided that Kr and ar/ax are both small quantities.
In the case of refraction, if hi and h2 denote the

distances of 0 and Q above and below the surface, and
if p, and /u2 denote the refractive indices, then Eq. (2.1)
must hold, but with

K= (h1+2h2)1(A2-A)hh2- (2.3)
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On writing, for brevity,

(1/x) (Or/Ox) = 41, 0 2 /&x2= 42, (2.4)

we seek first the probability that, at some point in a
given small interval (x, x+dx), 4i takes precisely the
value -K. Let us denote by p(41,42) the joint proba-
bility density of 41 and 2; thus p(4,4 2 )d4ld42 gives the
probability that 4l, 46 lie in given small intervals of
width d4,, d 2. But 41= -K in (x, x+dx) if and only if
(l at x lies within a range of width

ld~il = /lXIdx= (1/IxI) I (-4 2 dx (2.5)
approximately, 42 being kept constant. Hence the
probability of a specular point in (x, x+dx) is

fco 1
Vzdx=_ P(4,42)-| 41-42 fdxd42 , (2.6)_ xl

and the total expectation of specular points over the
whole range - - <x < o is given by

V= f AzNdx.
_00

(2.7)

Under general conditions to be satisfied by the ampli-
tudes c, the distribution of r and its derivatives is
Gaussian: We shall assume that this is so at least as
far as the second derivative 42. Now the matrix of
mean values for the 4s iS 4

where

(2.10)((Uitj)av) =(2/X" 0 
0 iM4

mr= E(k)krdr (2.11)

and hence we have

lx!
P(41,42)= exp[- (4122/M2+422/M4)]. (2.12)

27r(M2m4) i

On substituting into (2.7) and writing (l=-K, we have

27r(`M2 m4 ) J_
X exp-2 ( 2 x 2/m2 +42

2/m 4)]dxd42. (2.13)

As a model for the surface we may take the repre-
sentation used by Rice,4 and suppose that

no

¢ (X) = E_ c cos(k*x+eE),
n=1

(2.8)

where the k denote constant wave numbers, the
phases e are randomly distributed in (0,27r), and where,
in the end, no tends to infinity and the c tend to zero
in such a way that over any small interval of wave
number (k kdk), we have

E 2c =E(k)dk, (2.9)

where E is a continuous function of k, known as the
energy or power spectrum of ¢(x). The function ¢(x)
may also be expressed as a stochastic integral.-

N

L 1 2 a 3 4 5

FIG. 1. The mean number of images N, as a function of the
parameter a, defined by Eq. (2.15).

1 S. 0. Rice, Bell System Tech. J. 23, 282 (1944); 24, 46 (1945).6J. L. Doob, Stochastic Processes (John Wiley & Sons, Inc.,
Newv York, 1953).

The preceding integral is easily evaluated and we find

N= - a exp(- a -2)±f exp(-z2)dz 

where
a = m4 /K.

(2.14)

(2.15)

From (2.2) it will be seen that when h=h 2 , then
1/K represents the distance of the observer from the
mean surface [Eq. (2.2)]. Also, m4 equals the root-
mean-square value of the curvature 42 [from (2.10)].
The nondimensional quantity is the product of these
two. For small values of a (which therefore correspond
to sources or observers very close to the surface), we
have

NV= 1, (2.16)

as we might expect; only one image can be seen. For
large a, on the other hand, we find

(2.17)

that is to say, the total number of image points increases
almost linearly with distance from the surface.

The number NT as a function of a is plotted in Fig. 1.

3. THREE-DIMENSIONAL CASE: GENERAL SOLUTION

The formulation of the problem in three dimensions
is very similar. If z= (x,y) denotes the equation of the
surface, and if h1 , /12 denote the distances of 0, Q from
the mean surface level, then the conditions to be
satisfied by an image point P(x,y,~) are

9/aX=-KX, a/ay= -KY, (3.1)
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where K is defined by (2.2) or (2.3) according to the
physical situation. On writing

(1/x) (OW/dx), (l/y) (Wl/ay) = 41, 2,,

02r/ax2, a2 /IaXay, a2 /Oy2 =43, 44, 5, (3.2)

we seek the probability that (1,2) = (-K, -K) at some
point in a given small region dxdy. This probability is

where

Ixy
P( 1, 2)

27r (m20mo2- M11
2 ) 2

[ mo 2X 2% 2 - 2milxy6 1 t2+20 2
2 1

X exp - (

ot r, rWN,,,dxdy= f f f
where

7(41,- ,~) * a) ,Q
Xd (Xy)

X dxdydW~d4dS5,
I Mij l -= exp[-2
(27r)2(3.3)

E Mijijl
i j=3,4,5

(1/X)44

WlY) (Q5- Q

1
=-[3+K) (%5+K) - 42]

Xy

The total expectation of image points is then

N= f f N.,,dxdy.

(3.4)

(3.5)

We adopt the same model of the surface as in previous
studies.',6 It is supposed that

no

¢(X,y) = C, n CoS(UX+ny-+6-E), (3.6)
n=1

where Un and Vn denote constant wave numbers, the
phases e are randomly distributed in (0,27r), and where,
in the limit, as no oc we have, over an arbitrary small
area dudv,

Z2c 2=E(uv)dudv. (3.7)

Here E(u,v) is assumed to be a continuous function-
the spectrum of P(xy).

As beforej we assume that r and its derivatives up
to the second order are distributed normally. The
matrix of mean values for the (i is easily shown to be

m2 o/x2

mi 1 jxy
((itj)av) = 0

0
0

where

ml,/xy
mo2/y 2

0
0
0

0 0 0 
0 0 0

M40 M31 m22 ,
m31 m22 M13
M22 Ml3 M04

(3.8)

and (Mij) is the matrix inverse to

[ 4
(ZSij) = m31

CM22

M31 M2 2 )
M22 Ml3j = (Mij)-'.
M13 MI0 4

(3.12)

On substituting the expression (3.3) into Eq. (3.5)
and setting 1= == -K, we find that the integration
with respect to x, y may be carried out immediately,
and hence

N= Wul, Ad r f " (t3+K)Qt5+K)- 4 21(2 r ff - JX-.
Xexp-2 57 Mijjtjtjd43d,55. (3.13)

i,;-3,4,5

It is the evaluation of this integral which now concerns
us.

By means of the linear transformation

(3.14)j= aij-qj, i =3, 4, 5,i-l

it is possible to reduce the quadratic forms in (3.13)
simultaneously so that

,Mijttj=?712±722+732,
4345- ~4 = 11712+2722±+l3332.

(3.15)

The constants 11, 12, 13 may be shown3 to be the roots of
the cubic equation

413-3HI-A=O, (3.16)

where H and A are certain invariant combinations of
the moments m,,. Thus

mpq= J f E(u,v)uPvqdudv.
0 

(3.9)

Hence we have

(3.10)

6 M. S. Longuet-Higgins, Proc. Cambridge Phil. Soc. (to be
published).

3H= m40 m0 4-4m 31m 13+3m222,

A= I (t.) = (Mi.)) 1.

From (3.16) we have

l1+12+13=0,

1213+1311+112= - 4H,
111213 = A.

(3.17)

(3.18)
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It can further be shown6 that

(a 31+a 51)2 + (a 32 +a5 2)
2 + (a 3 3 +a 5 3 )2 = D, (3.19)

(a3 1+ a51 )2 /1l+ (a3 2 + a5 2) 2/12 + (a 3 3 + a5 3)2/13 = 4,

where
D= n40+2n22+1-o4, (3.20)

another invariant of the surface. The first factor in the
integrand of (3.13) may be written as

(a65- 6) + (3+ 5) +K2

= (l1 2+l2q22+l3,32)+,i E (a3j+as,)+,c2

(3.21)= E lj{3j+I(a3j+a5j)/21j}2,
j=1

by the second of equations (3.19). Since the modulus
of the transformation (3.14) is

d(Q3,(4,Q/d (ql,-q4,x17 = (ai,) = (Mij) i, (3.22)

Eq. (3.13) becomes

N= -} 2 _ j(j+yj)2
(27r)1K f o j

3

Xexp[-4 E nj2]dild-q2d'03 (3.23)
1=1

in which we have put, for brevity,

yj= K (a3j+a 5j)/(21). (3.24)

Now the corresponding triple integral without the
modulus sign equals

1 3

(27r) K 1j (27r) = (3.25)

by (3.18) and (3.19). On adding this quantity to each
side of (3.23), we have

2 ffr 3
N+ = (I[ lj(Tj+yj) 2 ]

(27r)~K J 1
3

X exp[-4 E ~?j2]d d 2dn3, (3.26)

where the integration is over that region of q space for
which the first factor in square brackets is positive.

Now A being a positive quantity it follows from (3.18)
that one of the roots 1j is positive (let it be 11, say) and
that the other two are negative in general. So over the
region of integration we may make the substitution

I)n- yl) = r

(-12)3(n12+Y2) = r sinG cosO,

(-13)3(713+y) = r sinG sinp.

(3.27)

The ranges of the variables are

-o<r<co, 0<0<r/2, 0<<27r,

and the modulus of transformation is

O(fll,12,l3)/ (r,,+)= (ll 2l3)-2r2 cosO sinG.

So, on using (3.17), we have

21 Xc ,2 27,
N+= j drf dof dbr4 cos3 0 sinG

Xexp[- 2 (Pr2+2Qr+R)],

where we have written

P=1I- 1-1 2 -1 sin2 0 cos 2 -l 3 ' sin2V sin 2 ,

Q=y1l1-+y2 (-12)-' sin6

R= Yl2+Y22+y32 .

(3.28)

(3.29)

(3.30)

+y3(-13)- sin sin0, (3.31)

The integration with respect to r can be carried out
immediately, giving

2e--IR 71/2 27

N+l = f dO do cos3G sinO
7rKX P J. ( 3

X (3P2 +6Q2P+Q4)P-12 exp(Q2/2P). (3.32)

4. ISOTROPIC CASE

In general, the integral (3.32) cannot be expressed
in terms of known functions. We therefore specialize
to the case when the surface is isotropic, that is to say,
its statistical properties are independent of direction
on the surface. In that case the spectrum E(u,v) is a
function of (u2+v2 ) only, and it has been shown6 that

H= (1/16)D2 , A= (1/64)D3 . (4.1)

The roots of (3.16) are then

11,12,13=4D, -4D,-8D.

Equations (3.19) then give

(a 31 +a6 1)2= D,
(a 32 +a 52)

2+ (a 33+a 3)2 =0,

whence it is clear that both squared terms
equation must be zero. So, from (3.24),

Y1;Y273 = K11-24)OyO

and hence from (3.28)

P= 4D-1 (1 + 2 sin2G),

Q = 4Th'K,

(4.2)

(4.3)

in the second

(4.4)

(4.5)

R= 4D-1K2.

We see then that the integrand in (3.32) is independent
of q5, so that integration with respect to amounts to
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multiplying by 27r. On writing, for brevity,

D/ (4K2) = A,
we find

4 r 7/2~ sin 201

N ±1= dO .cos1 O sinO exp[ 1+ sn G 
A f (± A (++ 2 sin )

X DA 2(1+2 Sil,20)2 +6A (1+2 sinV)+1]

X (1+2 sin2 6)5 12.

1+2 sin2V= s-2

(4.7)

(4.8)

reduces this integral to the form

N1+ j=- i (3S2 -1) (3A2+6As2+s4 )

XexP[(S 2 -1)/2A]ds, (4.9)

which can easily be evaluated by integrating by parts.
The result is

N+±I=2+(2A/V1e-(\A3), (4.10)
so that

N= 1+ (2A/V3)e-(GA-') (4.11)

The interpretation of this result is very similar to
the two-dimensional case discussed in Sec. 3. The
parameter A defined by (4.6) is proportional to K-,
that is to say, to the square of the distance of the
observer from the surface, and also to D, which by
(3.20) represents the average square of the "mean
curvature"; for this is

02 )02 v 2 ((%+ 5)2)av= (6 2)aV

ft ( aa P~ ) av

+2(6345)av+(45)av= M40+2m22+m04 (4.12)

by (3.8). When the point of observation is very close
to the surface (A is small), we find

N- 1 (4.13)

as before, and at great distances

N - 2A/,3 (4.14)

that is to say, the number of points increases as the
square of the distance from the surface. N is graphed
against A in Fig. 2, curve (a).

5. TWO LONG-CRESTED SYSTEMS

Another special case for which a complete solution
may be given is when the surface consists of two
systems of long-crested waves intersecting at right
angles.

If the axes of x and y are chosen to be parallel to the
two systems, respectively, we have then

(Xy) = RI(x)+ 2(y) (51

2
A

FIG. 2. The mean number of images as a function of A, defined
by Eq. (4.6): (a) an isotropic surface, (b) a surface consisting of
two long-crested systems at right angles.

and it is clear that the two conditions for a specular
point [Eqs. (3.1)] are satisfied if and only if

0P1 /aX,=-KX, aO2/9Y=-Ky. (5.2)

Thus, specular points occur only when they would
occur (in the two-dimensional sense) for each of the
two long-crested systems simultaneously; whence it
follows that the total number of specular points is the
product of the number for the two systems individually:

N = N(1)(2) (5.3)
where

/2 _

NW = ( i i exp[- (1a- 2)I

+J1i exp(--z2)dz (5.4)
:i

and Cii, 2 are the nondimensional parameters for the
two systems.

The energy in the spectrum E must be regarded as
being concentrated along the two axes of , v, and
negligible elsewhere. The moments m of equation
(3.9) are then zero whenever pq 40, and the two pa-
rameters ai, a2 are given by

i1= M402/K, (X2= mO42/K. (5.5)

In the case when the two systems have equal mean-
square curvature, i.e., m40=mO4, then

(5.6)

where D and A are given by (3.19) and (4.6). Hence,

2 - 1/(2A) 
V=- (2A) 2e- 4 A)+ 2 exp(-+2)dz 

7r fo 
(5.7)

This function is shown in Fig. 2, curve (b), and it will
be seen that the results are not very different from the

(4.6)

The substitution

N
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isotropic case [curve (a)]. For large values of A, we
find

N".4A/7r. (5.8)

6. CASE - 0

Further, it is possible to determine the behavior of
N at great distances from the surface for quite general
forms of the energy spectrum E. For when K -+0, we
have, from (3.26),

fff[E 1 ljvi 2]

Xexp-2 57 j2 ]dnld~q2drq3. (6.1)
i=1

The preceding integral has been evaluated previously
(footnote reference 3, Sec. 2.4; the integral equals 21').
The result is

v- o(12130( E (k) -( - ) (k)] (6.2)
?rK

2
1 21

where

E(k) = f (1-k 2 sin2k)'do

7/2 (6.3)

F(k) = f (1-k 2 sin2q)-,do

and
k 2= 11(13-12)/13(11-12). (6.4)

This can also be written

N- (A/ir) (11/D)7(-1 2/l1), (6.5)
where

O(p) {p( -M p)}[ E(k)-I+P ) (k)], (6.6)

p=-12/l1, k2=(1-2p)/(1-p2).

The function ci is plotted in Fig. 10 of footnote reference
3. It is a very slowly varying function and lies always
between 0.917 and 1.

For example, when the surface consists of two equal
long-crested systems of waves intersecting at an
arbitrary angle Oo, it can be shown (see footnote
reference 6) that

(6.7)H = A D2 sin0o, A = 0,

and so from (3.16),

l1,l2,I3= D sinGo, 0, -' sin0o.

It follows that p=0 and 'I(p)= 1, whence

N- (4AI/7r) sin0o. (6.9)

When o=Ir/2, i.e., the systems are perpendicular, we
regain Eq. (5.8).

On the other hand, when the surface is isotropic, we
see from (4.2) that p= and so D(p) = r/2V3 . Hence

N- D/2 2 = 2A/\/1 (6.10)

in agreement with (4.14).
We may compare an isotropic surface with a surface

consisting of two intersecting long-crested systems
having the same mean-square curvature D. From Eqs.
(6.9) and (6.10) we see that they will give equal numbers
of image points provided the angle of intersection O is

sin-' (r/2v/3) = 66°30'. (6.11)

7. CONCLUSIONS

The average number of specular reflections seen by
an observer at distance Ii from an isotropic Gaussian
surface is given by Eq. (4.11), in which A=4h2 D and
D denotes the mean-square curvature. This number
increases from 1 at small distances to a value pro-
portional to It2 at great distances.

For two long-crested systems of waves intersecting
at right angles, the number of images is given by Eq.
(5.7). The two solutions are shown as functions of A
in Fig. 2.

Finally a solution can always be found for large
values of h; it is given by Eq. (6.5). In particular, when
the surface consists of two long-crested systems of
waves intersecting at an angle o, the total number of
images is given by Eq. (6.9).
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