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Reflection and Refraction at a Random Moving Surface.

I. Pattern and Paths of Specular Points
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Light falling from a point source on a ruffled surface produces a pattern of images, which move about
over the surface. The image points correspond to the maxima, minima, and saddle points of a certain func-
tion. It is shown that the images are generally created in pairs, a maximum with a saddle point or a mini-
mum with a saddle point, and that the total numbers of maxima, minima, and saddle points satisfy the
relation

Nma+Ti =Nsa+1.
The process of creation or annihilation of images is studied in detail, and also the tracks of the image

points, in certain special cases. It is shown that closed tracks may be common. This is confirmed by photog-
raphy of the sea surface.

1. INTRODUCTION

WHEN light from a fixed source falls upon a wave-
like surface, such as the surface of a lake when

ruffled by the wind, an observer may see a number of
dancing images of the source reflected at different points
in the surface; these points are sometimes called the
"specular points."' Similarly, an observer beneath the
surface would also see a number of moving images,
depending upon the refractive index and the positions
of the source and observer.

The number of images seen by the observer is not
constant. The images move, and two specular points
may come together and disappear or, on the other hand,
two such points may suddenly appear where there were
none before. Such an event, namely, the creation or the
annihilation of two specular points may be called a
"twinkle." 2

It can be shown that at a "twinkle" the intensity of
the image becomes exceptionally bright; the light is
partially focused on the observer, so that the latter sees
a bright flash. Correspondingly, if the reflected or re-
fracted light is allowed to illuminate a fixed surface
parallel to the mean wave surface, the intensity of
illumination on the fixed surface fluctuates, and lines of
especially bright illumination may be seen, for example,
on the bottom of a shallow lake or sea. At the instant
when one such line sweeps across a point Q in the plane,
an observer at Q will see a "twinkle." A particular case
of this phenomenon when the water surface is perfectly
regular and sinusoidal and the source is at infinite dis-
tance has been considered by Shenck.3

It is well known, however, that water waves generated
by wind are not perfectly regular but have a certain
degree of randomness arising from the character of
their origin. For example, the slopes of wind waves are
known to have a statistical distribution which is ap-

lC. Cox and W. Munk, J. Opt. Soc. Am. 44, 838 (1954).
2 M. S. Longuet-Higgins, Proc. Cambridge Phil. Soc. 56, 234

(1956).
' H. Shenck, J. Opt. Soc. Am. 47, 653 (1957).

proximately Gaussian.' It is sometimes convenient to
assume that the water surface is the sum of an infinite
number of long-crested waves of different wavelengths
and directions, whose phases have been chosen at
random from the interval (0,27r); under suitable condi-
tions, this leads to a Gaussian distribution of the
elevation, slopes, and higher derivatives.4

The purpose of the present paper is to study the
pattern of specular points in a random surface, to show
how specular points may be added or subtracted at a
"twinkle," and to examine the paths of specular points
such as would be revealed by a time exposure of the
surface. It is not here assumed that the surface is
Gaussian but only that it has a certain degree of
randomness so that special and unlikely cases (with
probability zero) can be ignored. In subsequent papers
the Gaussian assumption will be explicitly made, and the
average numbers of specular points, as well as the mean
number of twinkles per unit time, will be determined in
terms of the spectrum of the surface.

First, in Sec. 2, we consider the pattern of specular
points on the surface at a typical instant. Some of these
points are "maxima," some are "minima," and some
"saddle points." A simple relation between the number
of each kind, namely,

Nina+Nmi= Nsa+ 1 (1.1)

is established.
It is then shown that as the surface moves, the

specular points are generally created in pairs-a maxi-
mum with a saddle point or else a minimum with a
saddle point. The way in which these fit into the pre-
vious pattern is also considered.

Ordinarily, a specular point, as it moves about on
the surface, has a finite velocity; but we find that at the
beginning and end of its life (that is to say when it is
created or destroyed with another specular point), the

4 M. S. Longuet-Higgins, Phil. Trans. Roy. Soc. London A247,
321 (1957).
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REFLECTION AND REFRACTION. I

velocity becomes infinite-in such a way, however, that
the total distance traveled by the point is finite.

Typical tracks of specular points are considered in
Sec. 6. When the surface consists of certain kinds of
wave systems, it is shown that closed tracks will be
common. A photograph of such tracks on the sea
surface is reproduced in Fig. 9.

2. CONDITIONS AT A SPECULAR POINT

Let the equation of the surface in rectangular coordi-
nates be

(2.1)

where the z axis is directed vertically upward. If the
light source 0 and the point of observation Q are at
(0,0,hi) and (0,0,h2 ), respectively (both above the
surface), then the conditions for a point P at (x,y,¢) to
be a specular point are

where
D/Ox=l-KX, aD/Oy=-Ky,

K=42(1/hl)+ (1/h2)],

it being supposed that Kx and aD/Ox, a¢/Oy are all small
quantities. Similarly, if Q is situated at a distance h2

below the surface and uii, A2 are the refractive indices
for the two media above and below, we again have
Eq. (2.2), but with

IC= (11+,u2hi2)/ (A2-A1)hlh2- (2.4)

It follows from (2.2) that the specular points corre-
spond to the solutions of the equations

where
af/x=O, f/Oy=O,

f(x,y,t) = r (Xyt) + K

that is to say, they are the stationary points of the
function f.

Let us first consider the surface as "frozen" at one
particular time t, so that f is a function of x, y only.
The form of the surface in the neighborhood of a
specular point is well known. Shifting the origin of x, y
to the point P and assuming that P (x,y) is differentiable
up to the second order, we have

f(x,y) = 2 (a2 ox2+2allxy+ao2y 2 )+R, (2.7)

where R is a remainder of higher order than the second.
We may write

Rf= (02f/Ox2) (02f/0y2) - (02f/lxdy)2

= a2oao2- a1l2 (2.8)

for the discriminant of the quadratic form in (2.7); if
also equals the "total" curvature of the surface z =f at
P. There are generally two distinct cases: either

(1) Of>O; the quadratic form in (2.7) is always of
the same sign, and f has a maximum or a minimum
according as a2o 0; the contours f=constant are
ellipses as in Figs. 1 (a) and 1 (c). Alternatively,

(�N

(a) (b) (C)

FIG. 1. The full lines indicate contours of f(x,y,t) in the neigh-
borhood of an ordinary specular point: (a) a maximum, (b) a
saddle point, (c) a minimum. The broken lines and arrows indicate
directions of steepest ascent.

(2) Qf <0; the quadratic form is indefinite, and the
contours of f are hyperbolic, as in Fig. 1 (b).

Of special interest to us are the paths of steepest
ascent on the surface; these are the orthogonal tra-
jectories of the contour lines shown in Fig. 2. It is
evident that in case (1) a path of steepest descent may
either leave or enter P in any direction whatsoever, and
there is a continuous family of such paths. In case (2)
on the other hand, the orthogonal trajectories are
rectangular hyperbolas with center P and so can never
pass through P itself, with the exception of the hyper-
bola of zero "radius," that is, the line pair which forms
the asymptotes of all the other paths. Thus, at a saddle
point only two pairs of directions exist from which a
path of steepest ascent may enter or leave the point,
compared with a continuous family of directions for a
maximum or minimum.

We have purposely not investigated the special case
Qf=O at present, because if the surface is "frozen" the
probability of such points occurring is nil; only when
the surface is allowed to move, that is to say, it is given
an extra degree of freedom, is there a finite probability
that if will pass through zero in a given length of time.

3. PATTERN OF SPECULAR POINTS

It is sufficient, then, so long as the surface is "frozen,"
to suppose that the stationary points are either maxima,
minima, or saddle points; any other cases have a total
probability zero.

We now give a chain of reasoning which suggests
that all the minima on the surface may be joined by a
network of paths so that each mesh contains one maximum
and each segment contains one saddle point.

Consider the form of z= f(x,y) as the radius
r= (x2+y2)1 tends to infinity. In Eq. (2.6) the constant
K is positive. If we suppose that (x,y) is Gaussian, so
that the probability of large negative values is expo-
nentially small, then it will follow that as r -
f (x,y) almost always tends to infinity also.

Further, if the first and second derivatives of D are
also Gaussian (and certainly if the slopes are bounded)
we may expect that the paths of steepest ascent on the
surface will, outside a circle of given radius ro, all tend
to infinity, except for a set of surfaces having probability
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84 . S. LONGUET-HIGGINS

e, where e tends to 0 as r c.c We assume, therefore,
that beyond a given radius all paths are directed out-
ward to a "maximum at infinity," it being. understood
that we are neglecting a set of cases of vanishing total
probability.

We shall also assume that there is only a finite
number of stationary points at any time throughout
the whole plane.

Starting from a typical point P on the surface (not a
stationary point), let us follow the path of steepest
ascent from P; this will climb until it reaches a station-
ary point or else goes to infinity. Generally, the path
will not encounter a saddle point, since to each saddle
point there are only two paths of steepest ascent;
therefore, it will generally reach a maximum A (which
may be the "maximum at infinity"). Moreover, if P'
is a point in the neighborhood of P, the path of steepest
ascent from P' will generally arrive at the same maxi-
mum A. Hence P lies in a continuous region, all points
of which are connected to A by paths of steepest
ascent. From Fig. 1 (a), every maximum is surrounded
by such a region.

In this way the whole plane, with the exceptions of
the minima and of the paths passing through the saddle
points, is divided into regions, one region for each
maximum.

Let us now go to a typical minimum B and follow
the line of steepest ascent, starting out from B in an
arbitrary direction . This path, for the same reason,
generally leads to a maximum A (0). Moreover, all paths
adjacent to the first path, that is starting in slightly
different directions 0+dO, generally arrive at A also.

Suppose now there exist two different directions 01
and 02 for which the paths of steepest ascent arrive at
different maxima A1 and A2 Fig. 2(a)]. By varying 
continuously from 01 to 02 we must encounter a direction
013 for which the path bifurcates, one branch going to
Al and one to A3 (where A3 may be the same as A2 ).
The point of bifurcation cannot be an ordinary point or
a maximum or minimum; it must therefore be a saddle
point C, say.

Now the path from B to C must form a part of the
boundary of the region surrounding A (for a slight

It
a

B

B

(a) (b)

FIG. 2. Configurations of stationary points. ( =maximum,
O = minimum, X =saddle point)

variation of 0 produces a path leading to AI on the one
side or to A3 on the other). Further, if the path BC is
continued beyond the saddle point C and down the
other side it must eventually reach a stationary point,
which is either a minimum or another saddle point. A
saddle point is ruled out, as being of vanishing prob-
ability. So in almost all cases the path ends in another
minimum B', say.

On continuing in this way round the maximum Al
we have a succession of minima B, B', B", and we
eventually arrive back at B, having toured A 1just once.
It is quite possible for B' to coincide with B, as in
Fig. 2(b).

Proceeding to the contiguous region which surrounds
A3, say, we may make a similar circuit. So eventually
we fill up the whole plane with a network of paths, each
mesh of the net containing just one maximum. The
minima lie at the corners of the mesh, and along each
segment between two adjacent minima there is one
saddle point.

In fact, the network of minima may be considered as
the Schlegel diagram of a polyhedron' in which the
faces correspond to the maxima, the vertices correspond
to the minima, and the edges correspond to the saddle
points-with the difference, however, that it is allow-
able to have one "vertex" joined to the rest of the net-
work by a single "edge," as in Fig. 2(b).

The dual network, formed by lines joining the
maxima, and passing through the saddle points, is
easily constructed.

Both the original network and its dual satisfy Euler's
theorem 7 :

lVfaces+ NVvertices = edges+ 2 (3.1)

(where Nfaces denotes the number of faces, etc.). One
"face" in the original network corresponds to the maxi-
mum at infinity. On omitting this, we have

Nna+Nmi =Nsa+ 1, (3.2)

where Nina, Nmi, and Nsa denote the total numbers of
maxima, minima, and saddle points, respectively.

It may be noted that the surface can be divided in
another way, into regions where f is positive (elliptic
regions) on the one hand and regions where Qf is negative
(hyperbolic regions) on the other. The maxima and
minima all lie in elliptic regions, and saddle points in
hyperbolic regions. The boundaries between these,
that is to say, the loci of points for which Q =0, are
called the parabolic lines.

4. CONDITIONS AT A TWINKLE

From now on we shall allow the surface to be in
motion, so that individual specular points move about

5 H. S. M. Coxeter, Regular Polytopes (Methuen and Company,
Ltd., London, 1948), p. 321.

6 L. Euler, Nov. Comment. Acad. Sci. Imp. Petropol. 4, 109
(1752-1753).

7 D. M. Y. Sommerville, An Introduction to te Geometry of 
Diwensions (Methuen and Company, Ltd., London, 1929), p. 196.
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REFLECTION AND REFRACTION. I

on the surface. Let us follow one such point. Its coordi-
nates are given by the conditions that

af/ax=O, af/ay=0, (4.1)

and on taking the differential of these equations with
respect to both x,y and t we have

(a2f/ax2)dx+ (02f/axdy)dy+ (a2f/axat)dt=0, (4.2)

(02 f/axay)dx+ (02f/ay 2)dy+ (a2f/yat)dt=0.

Equations (4.2) may be solved uniquely for the ratios
dxldt and dy/dt, provided that

Qf, = ( 2f/f 2) (a2f/ay2) - ( 2f/axdy)2 ;0. (4.3)

In other words, after a short time dt, each specular point
will move to a well-defined new position, provided that
Qf is not zero. A necessary condition, therefore, for the
creation or annihilation of a specular point (which we
call a "twinkle") is the vanishing of 2f.

Let us shift the origin of coordinates to the position
of the twinkle, at which time we also take t=0. If the
surface is continuous and differentiable up to the third
order, f(x,y,t) may be expanded in the Taylor series

where

3 aijk
f(xyt)= E xiyitk+R,

i,j,k=O i!j!k!

aijk= (ai+i+kf/aXiayjatk) X=Y=t=O

(4.4)

(4.5)

The coordinates of a specular point in the neighbor-
hood are found by substituting this expression in (4.1),
which gives

2 (a300X2+ 2a21 0xy+ al20y2) + ajiot+ . * = 0,

a020Y+ 2 (a2jox2+2a 12 0xy+a030y2)+a 0 11+ * * = 0, (4.13)

whence it is clear that x is of order I t and y of order t.
In fact, on retaining only the lowest powers of in each
case, we have

(-2 aloit I

X=4 a3OO /

a 2 l0 al0 l-a 3 0 0 ao01= t.
a30 0aO20

(4.14)

The interpretation is interesting. If aoo/a3oo is posi-
tive, two solutions exist when <0 and none when
t>0; hence, two specular points are simultaneously
annihilated. If, on the other hand, a100/a3OO is negative,
no solution exists for <0 and two solutions exist for
t>0; therefore, two specular points are simultaneously
created.

The path of the points is found by eliminating 
from (4.14):

(a2loaloo-a3ooaolo)x 2 +2aoaO2Oy = 0, (4.15)

which is a parabola with axis y= 0. The velocity of the
specular points near the vertex of the parabola is
given by

and R is a higher-order remainder. Since the origin is at

aooo= 0, (4.6)

dx /-_ajoi_

dt \2a300t

dy a 2 o0 a1 0o- a 3 oaoii

dt a30 0ao20

and the conditions (4.1) at t=0 give also

aioo= ao= 0. (4.7)

Further, by a rotation of the axes of x,y we may make

aijo=0. (4.8)

The condition that Of shall vanish now gives

a200ao20 = 0, (4.9)

whence either a200 or a020 must vanish also. By naming
the axes appropriately we make

a 2OO=O. (4.10)

Lastly, the terms independent of x,y do not alter the
form of the surface near P, except to raise or lower it
bodily by a small amount. So without loss of generality,
we assume

ao0= aO02= ao03= 0. (4.11)

The resulting expression for f in the neighborhood of the
twinkle is

f (x,y,t) = 2aO2 oy
2

+ (a3 oox3 + 3a2 10x 2y+ 3a12oxy2+ ao30y2)

+ (ajoix+aouy)t+ (a201x2+2a 1,,xy+a21y 2)t
+2(aj0 2 x+ao, 2y)t2 +R. (4.12)

showing that the x component of velocity tends to
infinity as t -0, as was expected.

Consider now the locus of "parabolic points," that
is to say, points for which the total curvature, given by

Of = (,02f/aX 2) (02f/ay 2 )- (a2 f/axay) 2 (4.17)

vanishes. Substitution from (4.12) gives this locus as

a 300X+ a2ioy+ a201t= 0 (4.18)

(terms of higher order being neglected). This is a
straight line making an angle

tan-l (a300/a210) (4.19)

with the path of the specular points, and passing
within a distance of order I from the origin. But the x
coordinates of the specular points are of order ti. Hence,
the two specular points lie generally on either side of
the parabolic line Of = 0.

Now the parabolic line is a boundary separating
points for which Qf <0 from those for which Qf > 0. It
follows that one of the two specular points is a saddle
point and the other is a maximum or a minimum.

In other words, specular points are generally created
or annihilated in pairs; a maximum together with a
saddle point or a minimum together with a saddle

(4.16)
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FIG. 3. Contours of the func-
tion

* f(xyt)=y23+(x+3x'y)+xt
when (a) t=-0.01; (b) t=0;
(c) t=0.01.

(c)

point. It is evident that this process p
relation (3.2).

The form of the surface at the twinkle
1=0) is found from (4.12):

f(x,y,O) = aO2 oy2+ (a300x3+3a2 1oX2Y

+3a12 Oxy2+ ao30y3) +

By the linear transformation

x+ (a210/a300)y= t
Y=77

(a change to oblique axes), the equation be

f(x,y,O) = Wa3003 + 2ao 20 (1+ A +BO) +*

where A and B are constants; or, since an(
near the origin,

a= O2or-/2+ 6a3 OO3 ±+ ....

The contour through the origin (f=0) is t
cubical parabola with a cusp lying to the lei
the origin, according as a 2o/a3 0O is positive
The tangent at the cusp is the line q=0, i.e.

The essential features of the surface befor
twinkle are illustrated by the function

f(xy,/) = y2 + (x3 +3x2 y)±xI

whose contours are plotted in Fig. 3 for 
and 0.01. Two specular points-a minin
saddle point-are shown in the process of a

A geometrical interpretation may be give
At each point on the surface there are tv

I

(a) (b)

FIG. 4. Modifications of the pattern of stationary
addition of a maximum and a saddle poir

reserves the curvatures, Ka and Kb, say, and the total curvature Of is
the product of these. At a maximum or minimum, Ka

itself (time and Kb are of the same sign, while at a saddle point they
are of opposite signs. At a twinkle, when Oif vanishes,
one of the principal curvatures also vanishes (in the
foregoing example this curvature is in the x direction).

(4.20) That is to say, one of the principal sections of the surface
has a point of inflexion. It is not difficult to see, by con-
sidering the corresponding two-dimensional problem2

(4.21) that, at a point of inflexion, two specular points must
coincide and that their velocities become infinite.

If the source of light is of small but still finite di-
ecomes mensions, each image on the surface covers a small area.

(4.22) It can be shown that as the two specular points approach
each other, the images become elongated along their

Id 7 are small direction of travel (that is to say in the x direction).
During this process the area of the image is greatly

(4.23) enlarged, so that an observer sees a bright flash.8 How-
ever, the brighter the image, the faster it is moving,

hus a semi- and it can be shown that the total intensity of light
I or right of (integrated with respect to time) which is received from
or negative, any small part of the track remains finite. Hence a

the x axis. time exposure of the whole track shows no particular
and after a increase in brightness at the twinkle itself.

In what has been said we have purposely ignored the
(4.24) possibility of such special cases as a2O=0 or a30 0=0.

These situations, besides being of zero probability, may
= -0.01, 0, be considered as coincidences of the kind of twinkle
num and a just described. For example, if aO=0, then we have
nnihilation. for the coordinates of the specular points the equations
r as follows.
wo principal 2 (a3oo2±+2a2ioxy a2oy2)+aiolt+±.. . =0

2 (a2iox2+ 2al2oxy+ aO3oy2) +aoiit+. . . = 0,

which represent two concentric conics. Generally, there
are either four real intersections or none, giving four
specular points in the neighborhood or none. If either
conic is real when <0 it will be imaginary when t>0.
So we may distinguish the following cases: (1) both
conics are simultaneously real and intersecting: then
four specular points are simultaneously created or
annihilated; (2) both conics are simultaneously real
but nonintersecting: this gives an isolated flash at
= 0; (3) one conic is real, the other imaginary: again

there is an isolated flash at t=0. In case (1) the event
(c) can be regarded as the simultaneous creation of two

points by the 8 At an ordinary point the total brightness is proportional to
it. IQ, I-', but when f vanishes this approximation breaks down.

w .JSHe 4 ^ b- - z

842

::Li
ZZZZ:Z__



REFLECTION AND REFRACTION. I

pairs of specular points (or their simultaneous destruc-
tion). In cases (2) and (3) the event can be regarded as
the simultaneous creation and annihilation of the same
pair of specular points; their life ends as soon as it has
begun.

5. CHANGING THE PATTERN OF SPECULAR POINTS

Let us now consider how two new specular points
may be fitted into an already existing pattern.

We have seen that specular points are generally born
in pairs at a parabolic line. Let us consider first the
addition of a saddle point and a maximum.

The saddle point must lie on a path joining two
minima. Since the minima are to be preserved, the only
way to create a new path is to join up two already
existing minima-these must therefore belong to the
same mesh. The mesh being thus divided into two parts,
a new maximum is created at the same time.

Three possible ways of dividing the mesh are illus-
trated in Figs. 4(a)-4(c). These ways correspond to the

0 03k

0 I 

(a) ( ) (C)

FIG. 5. Modifications of the pattern of stationary points by the
addition of a minimum and a saddle point.

joining of one minimum to itself, to an adjacent
minimum, or to one of the other minima of the same
mesh.

The addition of a new minimum may be regarded in a
precisely similar way but from the point of view of the
dual network (see Sec. 3). Modifying the dual as in
Figs. 4(a)-4(c) and then returning to the original we
obtain the three types of division shown in Figs.
5 (a)-5 (c).

The destruction of two specular points consists of
any such step in reverse.

Since a complete network may be built up from a
single minimum or may be reduced to a single minimum
by a combination of such steps, it follows that any
pattern of specular points may be converted into any
other by the steps described.

6. PATHS OF SPECULAR POINTS

If z= (x,y,t) is a Gaussian surface, the tracks of the
specular points are generally complicated, However, in

FIG. 6. The formation of specular lines on a moving waveform.

some special cases purely qualitative considerations
may help in understanding certain features of the
observed tracks.

Consider the special case when the surface consists of
two systems of long-crested waves crossing at right
angles. We have

(x,y,t) = 1 (xt) +¢2 (y,t),

and the conditions for a specular point reduce to

a81/aX=-KX, 2/ay= -Ky,

(6.1)

(6.2)

which is to say that a specular point in the combined
system is the intersection of two specular lines, one from
each of the long-crested systems individually.

Let us further suppose that each of the systems P
and P2 consists of a fairly narrow band of wavelengths,
and that the distances of the source and observer from
the surface are great compared with the mean wave-
length X. Then the condition for a specular line in the
system ¢, (say) is that the gradient 0a11ax shall take
the value -KX, which value is almost constant over a
few wavelengths.

Consider now a progressive train of waves in a dis-
persive medium such as water (Fig. 6). The envelope of
such a wave train will move forward with the group
velocity of the waves, and if, as in water, the phase
velocity exceeds the group velocity,9 the individual
waves will grow at the rear of the group, move forward
through the group and eventually die out at the front.
At the instant when the wave amplitude rises through
the value K I X I X/27r, two specular lines suddenly appear,
and when the amplitude falls below this value, they
disappear together. The specular lines are thus carried
along through a distance comparable to the length

( a ) ( b ) (c)

FIG. 7. The formation of specular points by two
intersecting wave systems.

9 This is for gravity waves. For surface-tension waves the reverse
is true, but a similar argument applies.
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of the group, which equals nX, where n is the number of
waves in the group.

Consider on the other hand a standing wave train.
The wavelength is nearly uniform but the amplitude
fluctuates rapidly, twice per complete cycle. Specular
lines will appear (in pairs) and disappear again within
half a cycle. The distance that they traverse is, by
contrast with the previous case, only a fraction of X.

Figure 7 illustrates the combined effect of the two
intersecting systems. In Fig. 7 (a) a pair of specular lines
exists in system Pj but not in system ¢2; then (b) a pair
appears also in the system 2; this generates simul-
taneously two pairs of specular points (of which one
pair is a maximum and a saddle point, the other a
minimum and a saddle point). The pairs of points
quickly separate in the y direction. Then either (c) the
specular lines of Pj vanish first or (a) the specular
lines of ¢2.

Typical tracks of the points are shown in Fig. 8. In
Figs. 8(a) and 8(b), both systems Pj and 2 are pro-
gressive. In case (c), tj is a progressive wave but ¢2 a
standing wave; in case (d), both tj and t2 are standing
waves. The directions of movement are shown by
arrows.

�w -�

-V

(a) (b)

( c ) (d )

FIG. 8. Possible tracks of specular points (the
arrows indicate directions of motion).

FIG. 9. A time exposure of the sea surface, showing tracks
formed by images of the sun. The photograph was taken at mid-
day, the camera being inclined at about 450 to the horizontal.
(Triex XXX plate film was used, with a red filter.)

A time exposure (0.2 sec) of the pattern of sunlight
reflected in the sea surface, taken a few feet above the
water, is shown in Fig. 9. It seems from the photograph
that the existence of closed tracks is quite common.
Probably some waves were being reflected from the
structure in the foreground, thus producing standing
waves.

In Figs. 8 (c) and 8 (d) we saw that a closed track may
correspond to two or four nearly simultaneous twinkles.
Thus the closed tracks will enhance strongly the glitter-
ing appearance of the sea surface.

ACKNOWLEDGMENT

I am much indebted to Timothy Rhodes for a vaca-
tion on Beach Island, Maine, which first stimulated
consideration of this problem. For the photograph in
Fig. 9, I am indebted to Harlow G. Farmer of the
Woods Hole Oceanographic Institution.

844 Vol. 50


